Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (10): 138-143    DOI: 10.11868/j.issn.1001-4381.2020.000954
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响
周松, 贾耀雄, 许良(), 边钰博, 涂宜鸣
沈阳航空航天大学 机电工程学院, 沈阳 110136
Effect of hygrothermal environment on mechanical properties of T800 carbon fiber/epoxy resin composites
Song ZHOU, Yao-xiong JIA, Liang XU(), Yu-bo BIAN, Yi-ming TU
College of Electromechanical Engineering, Shenyang Aerospace University, Shenyang 110136, China
全文: PDF(6588 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

对T800碳纤维/环氧树脂基复合材料进行湿热老化实验,通过质量变化、老化前后表面形貌、红外光谱、动态力学性能,层间剪切和压缩实验,研究3.5%(质量分数,下同)NaCl溶液和去离子水两种介质分别在70℃下溶液浸泡对碳纤维/环氧树脂基复合材料力学性能的影响。结果表明:T800碳纤维/环氧树脂基复合材料在去离子水和3.5% NaCl溶液中的吸湿率相对较低,分别为0.82%和0.67%;未老化试样纤维与基体之间黏结良好,在3.5% NaCl溶液老化后纤维与基体界面破坏相比去离子水中老化更严重;经去离子水中浸泡后剪切强度降低8.8%,压缩强度降低4.3%;在3.5% NaCl中浸泡后剪切强度降低10.1%,压缩强度降低4.7%。在两种溶液老化后试样的Tg降低,但相差不大。此次研究结果对T800碳纤维/环氧树脂基复合材料在腐蚀环境中的应用提供了依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周松
贾耀雄
许良
边钰博
涂宜鸣
关键词 T800碳纤维/环氧树脂基复合材料湿热老化腐蚀环境力学性能    
Abstract

The hygrothermal aging test of T800 carbon fiber/epoxy resin composites was carried out. Through mass change, surface morphology before and after aging, dynamic mechanical properties, infrared spectroscopy, interlayer shear and compression tests, the effects of solution immersion in deionized water and 3.5% (mass fraction, the same as below) NaCl solution at 70℃ on the mechanical properties of carbon fiber/epoxy resin composites were studied. The results show that the moisture absorption rate of T800 carbon fiber/epoxy resin matrix composite is relatively low in deionized water and 3.5%NaCl solution, which is 0.82% and 0.67%, respectively; Good adhesion between unaging sample fiber and matrix, after aging in 3.5%NaCl solution, the interface damage between fiber and matrix is more serious than that in deionized water. After immersion in deionized water, the shear strength is decreased by 8.8%, the compressive strength is decreased by 4.3%. After soaking in 3.5% NaCl, the shear strength is decrease by 10.1%, the compressive strength is decreased by 4.7%. The Tg of the samples decreased after aging in the two solutions, but the difference is not significant, at the same time, no new substances are generated or chemical reactions occur. The research results provide a basis for the application of T800 carbon fiber/epoxy resin composites in corrosive environment.

Key wordsT800 carbon fiber/epoxy resin composite    hygrothermal aging    corrosive environment    mechanical property
收稿日期: 2020-10-14      出版日期: 2021-10-14
中图分类号:  TB332  
基金资助:国家自然科学基金项目(51775355)
通讯作者: 许良     E-mail: xuxusy@163.com
作者简介: 许良(1965-), 男, 教授, 硕士, 主要从事复合材料和金属材料性能研究, 联系地址: 辽宁省沈阳市道义南大街37号沈阳航空航天大学机电工程学院(110136), E-mail: xuxusy@163.com
引用本文:   
周松, 贾耀雄, 许良, 边钰博, 涂宜鸣. 湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响[J]. 材料工程, 2021, 49(10): 138-143.
Song ZHOU, Yao-xiong JIA, Liang XU, Yu-bo BIAN, Yi-ming TU. Effect of hygrothermal environment on mechanical properties of T800 carbon fiber/epoxy resin composites. Journal of Materials Engineering, 2021, 49(10): 138-143.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000954      或      http://jme.biam.ac.cn/CN/Y2021/V49/I10/138
Fig.1  质量变化曲线
Fig.2  不同浸泡溶液下SEM照片
(a)未老化;(b)去离子水老化30 d;(c)3.5%NaCl溶液老化30 d
Soaking solution Maximum damage load/N Shear strength/MPa
Unaged 4875 76.781
Pure water 4448 70.056
3.5%NaCl 4385 69.064
Table 1  不同溶液浸泡对T800碳纤维复合材料层间剪切性能的影响
Soaking solution Maximum damage load/N Compression strength/MPa
Unaged 33251 604.425
Pure water 31806 578.158
3.5%NaCl 31682 575.904
Table 2  不同溶液浸泡对T800碳纤维复合材料压缩性能的影响
Fig.3  不同环境下的DMA曲线
Fig.4  老化前后红外光谱图
1 FINNEGAN K , KOOISTRA G , WADLEY H N G , et al. The compressive response of carbon fiber composite pyramidal truss sandwich cores[J]. International Journal of Materials Research, 2007, 98 (12): 1264- 1272.
doi: 10.3139/146.101594
2 张静, 张琦, 马会平, 等. G827/5224和G803/5224碳纤维增强环氧树脂湿热老化的研究[J]. 装备环境工程, 2008, 5 (3): 16- 20.
doi: 10.3969/j.issn.1672-9242.2008.03.005
2 ZHANG J , ZHANG Q , MA H P , et al. Study of hydrothermal aging of carbon fiber/epoxy resin composites G827/5224, G803/5224[J]. Equipment Environmental Engineering, 2008, 5 (3): 16- 20.
doi: 10.3969/j.issn.1672-9242.2008.03.005
3 陈祥宝. 先进树脂基复合材料的发展[J]. 航空材料学报, 2000, 20 (1): 46- 54.
doi: 10.3969/j.issn.1005-5053.2000.01.009
3 CHEN X B . Development of advanced polymer composites[J]. Journal of Aeronautical Materials, 2000, 20 (1): 46- 54.
doi: 10.3969/j.issn.1005-5053.2000.01.009
4 过梅丽, 肇研, 许凤和, 等. 先进聚合物基复合材料的老化研究-Ⅰ热氧老化[J]. 航空学报, 2000, 21 (增刊1): 62- 65.
4 GUO M L , ZHAO Y , XU F H , et al. Study of aging of advanced polymer matrix composites-Ⅰthermooxidizing aging[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21 (Suppl 1): 62- 65.
5 SELZER R , FRIEDRICH K . Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture[J]. Composites: Part A, 1997, 28 (6): 595- 604.
doi: 10.1016/S1359-835X(96)00154-6
6 BUFFA G , FRATINI L , SHIVPURI R . Finite element studies on friction stir welding processes of tailored blanks[J]. Computers and Structures, 2008, 86 (1/2): 181- 189.
7 KUMAR B G , SINGH R P , NAKAMURA T . Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation[J]. Journal of Composite Materials, 2002, 36 (24): 2713- 2733.
doi: 10.1177/002199802761675511
8 吕小军, 张琦, 马兆庆, 等. 湿热老化对碳纤维/环氧树脂基复合材料力学性能影响研究[J]. 材料工程, 2005, (11): 50- 53.
doi: 10.3969/j.issn.1001-4381.2005.11.014
8 LU X J , ZHANG Q , MA Z Q , et al. Study of hydrothermal aging effect on mechanical properties of carbon fiber/epoxy resin composites[J]. Journal of Materials Engineering, 2005, (11): 50- 53.
doi: 10.3969/j.issn.1001-4381.2005.11.014
9 黄业青, 张康助, 王晓洁. T700碳纤维复合材料的海水腐蚀研究[J]. 材料开发与应用, 2007, 22 (3): 28- 32.
doi: 10.3969/j.issn.1003-1545.2007.03.008
9 HUANG Y Q , ZHANG K Z , WANG X J . Research on durability of T700 carbon fiber composite in seawater[J]. Development and Application of Materials, 2007, 22 (3): 28- 32.
doi: 10.3969/j.issn.1003-1545.2007.03.008
10 PINGKARAWAT K , PICKERD V , GARGANO A , et al. Effect of seawater immersion on the explosive blast response of a carbon fibre-polymer laminate[J]. Composites: Part A, 2018, 109, 382- 391.
doi: 10.1016/j.compositesa.2018.03.027
11 GUO F , RAMAN SINGH R K , Al-SAADI S , et al. Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment[J]. Corrosion Science, 2018, 141 (8): 1- 13.
12 KUMAR N R , CHANDRA R B . Influence of seawater absorption on retention of mechanical properties of nano-TiO2 embedded glass fiber reinforced epoxy polymer matrix composites[J]. Archives of Civil and Mechanical Engineering, 2018, 18 (4): 1597- 1607.
doi: 10.1016/j.acme.2018.07.002
13 CERBU C. Effects of the long-time immersion on the mechanical behavior in case of some E-glass/resin composite materials[M]//Woven Fabric Engineering. London: InTech, 2010.
14 RAR B C . Temperature effect during humid ageing on interfaces of glass and carbon fibers rein forced epoxy composites[J]. Journal of Colloid and Interface Science, 2006, 298, 111- 117.
doi: 10.1016/j.jcis.2005.12.023
15 ADAMSON M J . Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials[J]. Journal of Material Science, 1980, 15 (7): 1736- 1745.
doi: 10.1007/BF00550593
16 ALMEIDA J R M . Effects of distilled water and saline solution on the interlaminar shear strength of an aramid/epoxy composite[J]. Composites, 1991, 22 (6): 448- 450.
doi: 10.1016/0010-4361(91)90203-S
17 栗晓飞, 张琦, 谢国君, 等. 影响碳纤维增强树脂基复合材料腐蚀重要环境因素的研究[J]. 装备环境工程, 2005, 2 (6): 34- 40.
doi: 10.3969/j.issn.1672-9242.2005.06.009
17 LI X F , ZHANG Q , XIE G J , et al. Study of important environmental factors on the corrosion failure of the carbon/epoxy composite[J]. Equipment Environmental Engineering, 2005, 2 (6): 34- 40.
doi: 10.3969/j.issn.1672-9242.2005.06.009
18 GRANT T S , BRADLEY W L . In-situ observations in SEM of degradation of graphite/epoxy composite materials due to seawater immersion[J]. Journal of Composite Materials, 1995, 29 (7): 852- 867.
doi: 10.1177/002199839502900701
19 WOLFF E G . Polymer matrix composites: moisture effects and dimensional stability, international encyclopedia of composites[M]. New York: VCH Publishers, 1991.
20 XU Z R , ASHBEE K H G . Photoelastic study of the durability of interfacial bonding of carbon fiber epoxy resin composites[J]. Journal of Materials Science, 1994, 29 (2): 394- 403.
doi: 10.1007/BF01162498
21 过梅丽, 肇研, 谢令. 航空航天结构复合材料湿热老化机理的研究[J]. 宇航材料工艺, 2002, 32 (4): 51- 54.
doi: 10.3969/j.issn.1007-2330.2002.04.011
21 GUO M L , ZHAO Y , XIE L . Study on hygrothermal ageing mechanisms of aerospace structural composites[J]. Aerospace Materials & Technology, 2002, 32 (4): 51- 54.
doi: 10.3969/j.issn.1007-2330.2002.04.011
22 高坤, 史汉桥, 孙宝岗, 等. 湿热老化对玻璃纤维/环氧树脂复合材料性能的影响[J]. 复合材料学报, 2016, 33 (6): 1147- 1152.
22 GAO K , SHI H Q , SUN B G , et al. Effects of hydro-thermal aging on properties of glass fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2016, 33 (6): 1147- 1152.
23 马少华, 王勇刚, 回丽, 等. 湿热环境下复合材料孔板压缩性能的研究[J]. 宇航材料工艺, 2015, 45 (6): 66- 70.
doi: 10.3969/j.issn.1007-2330.2015.06.014
23 MA S H , WANG Y G , HUI L , et al. Compressing property of composite laminate with hole in hygrothermal environment[J]. Aerospace Materials & Technology, 2015, 45 (6): 66- 70.
doi: 10.3969/j.issn.1007-2330.2015.06.014
24 余治国, 杨胜春, 宋笔锋. T700和T300碳纤维增强环氧树脂基复合材料耐湿热老化性能的对比[J]. 机械工程材料, 2009, 33 (6): 48- 51.
24 YU Z G , YANG S C , SONG B F . Comparison of wet and hot aging resistance of T700 and T300 carbon fiber strengthened epoxy resin composites[J]. Mechanicals for Material Engineering Materials, 2009, 33 (6): 48- 51.
25 李玉玲, 万里强, 黄发荣, 等. 碳纤维/聚三唑树脂复合材料的湿热老化行为[J]. 玻璃钢/复合材料, 2014, (11): 36- 41.
25 LI Y L , WAN L Q , HUANG F R , et al. The hygrothermal aging behaviour of carbon fiber reinforced polytriazole resin composites[J]. Fiber Reinforced Plastics/Composites, 2014, (11): 36- 41.
26 MA S H , HE Y , HUI L , et al. Effects of hygrothermal and thermal aging on the low-velocity impact properties of carbon fiber composites[J]. Advanced Composite Materials, 2020, 29 (1): 55- 72.
doi: 10.1080/09243046.2019.1630054
27 XU L, HE Y, MA S H, et al. Effects of aging process and testing temperature on the open-hole compressive properties of a carbon fiber composite[J]. High Perform Polym, 2020, 32(2): 095400831989729.
28 LI R B. Moisture absorption and hygrothermal aging in a bismaleimide resin and its carbon fiber composites[D]. Ann Arbor, Michigan: University of Michigan, 2001.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn