1 College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China 2 College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
The 2NaBH4+MgH2 and 2NaBH4+MgH2+0.1MFx (M=Ni, Ti, Zr;x=2, 3, 4) hydrogen storage composites were prepared by ball milling. The morphology, element distribution, and crystal structure of the composites were detected by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. In addition, the hydrogen release thermodynamic properties of the materials were tested by differential scanning calorimetry (DSC) and temperature-programmed desorption (TPD). The results show that the peak temperature of the first hydrogen release process for 2NaBH4+MgH2 is decreased by 8.9, 35.7 ℃ and 54.5 ℃ by the addition of NiF2, TiF3 and ZrF4, respectively. In addition, the NaMgF3 phase that appeared during the hydrogen release process changes the reaction path of the first hydrogen release process, and catalyzes the second hydrogen release process of 2NaBH4+MgH2, which reduces the peak temperature of the second dehydrogenation process by 18.0 ℃, 31.1 ℃ and 34.1 ℃, respectively. The quantity ratio of hydrogen release for 2NaBH4+MgH2 reaches 91.7%, 91.9% and 98.7% by the addition of NiF2, TiF3 and ZrF4, respectively. In these three catalysts, ZrF4 shows the best catalytic effect on the entire hydrogen release process of 2NaBH4+MgH2. Therefore, 2NaBH4+MgH2+0.1ZrF4can be used as a potential application system of fuel cell hydrogen supply system.
WANG Y , CHEN X , ZHANG H , et al. Heterostructures built in metal hydrides for advanced hydrogen storage reversibility[J]. Advanced Materials, 2020, 32 (31): 2002647.
doi: 10.1002/adma.202002647
2
LIU P , LIAN J , CHEN H , et al. In-situ synthesis of Mg2Ni-Ce6O11 catalyst for improvement of hydrogen storage in magnesium[J]. Chemical Engineering Journal, 2020, 385, 123448.
doi: 10.1016/j.cej.2019.123448
3
YU H , BENNICI S , AUROUX A . Hydrogen storage and release: kinetic and thermodynamic studies of MgH2 activated by transition metal nanoparticles[J]. International Journal of Hydrogen Energy, 2014, 39 (22): 11633- 11641.
doi: 10.1016/j.ijhydene.2014.05.069
LIU X J , LI X Y , JIANG R Q , et al. Effect of lanthanum on kinetic and thermodynamic properties of magnesium for hydrogen absorption and desorption[J]. Rare Metal Materials and Engineering, 2019, 48 (7): 2239- 2243.
CHEN J , ZHU M . Progress in research of hydrogen storage materials with high capacity[J]. Materials China, 2009, 28 (5): 2- 10.
6
LIU P , CHEN H , YU H , et al. Oxygen vacancy in magnesium/cerium composite from ball milling for hydrogen storage improvement[J]. International Journal of Hydrogen Energy, 2019, 44 (26): 13606- 13612.
doi: 10.1016/j.ijhydene.2019.03.258
7
LIU B , ZHANG B , WU Y , et al. Theoretical prediction and experimental study on catalytic mechanism of incorporated Ni for hydrogen absorption of Mg[J]. International Journal of Hydrogen Energy, 2019, 44 (51): 27885- 27895.
doi: 10.1016/j.ijhydene.2019.09.045
8
HAN Z Y , CHEN H P , LI X Y , et al. Novel application of MgH2/MoS2 hydrogen storage materials to thiophene hydrodesulfurization: a combined experimental and theoretical case study[J]. Materials & Design, 2018, 158, 213- 223.
9
XI S L , ZHANG P , FU Y Y , et al. Hydrogen release: Thermodynamic and kinetic studies of NaBH4 activated by different zeolite nanoparticles[J]. Energy & Fuels, 2020, 34 (8): 10218- 10224.
10
BENNICI S , YU H , OBEID E , et al. Highly active heteropolyanions supported Co catalysts for fast hydrogen generation in NaBH4 hydrolysis[J]. International Journal of Hydrogen Energy, 2011, 36 (13): 7431- 7442.
doi: 10.1016/j.ijhydene.2011.03.148
11
HUANG T , ZOU J , ZHAO N , et al. Reversible hydrogen storage system of 3NaBH4-0.5ScF3-0.5YF3: the synergistic effect of ScF3 and YF3[J]. Journal of Alloys and Compounds, 2019, 791, 1270- 1276.
doi: 10.1016/j.jallcom.2019.02.306
12
MARTELL P , CAPUTO R , REMHOF A , et al. Stability and decomposition of NaBH4[J]. The Journal of Physical Chemistry C, 2010, 114 (15): 7173- 7177.
doi: 10.1021/jp909341z
SHAO Y Y , JIN H M , YU L , et al. Preparation of Mo-doped Co-B amorphous alloy and its catalytic performance on sodium borohydride hydrolysis for hydrogen production[J]. Materials Reports, 2020, 34 (1): 2063- 2066.
14
LIU X , PEASLEE D , JOST C Z , et al. Systematic pore-size effects of nanoconfinement of LiBH4: elimination of diborane release and tunable behavior for hydrogen storage applications[J]. Chemistry of Materials, 2011, 23 (5): 1331- 1336.
doi: 10.1021/cm103546g
15
GUO L , LI Y , MA Y , et al. Enhanced hydrogen storage capacity and reversibility of LiBH4 encapsulated in carbon nanocages[J]. International Journal of Hydrogen Energy, 2017, 42 (4): 2215- 2222.
doi: 10.1016/j.ijhydene.2016.11.184
FANG Z Z , KANG X D , WANG P . Study of hydrogen storage properties of lithium borohydride[J]. Progress in Chemistry, 2009, 21 (10): 2212- 2218.
17
MAO J F , YU X B , GUO Z P , et al. Enhanced hydrogen storage performances of NaBH4-MgH2 system[J]. Journal of Alloys and Compounds, 2009, 479 (1/2): 619- 623.
18
GARRONI S , MILANESE C , GIRELLA A , et al. Sorption properties of NaBH4/MH2 (M=Mg, Ti) powder systems[J]. International Journal of Hydrogen Energy, 2010, 35 (11): 5434- 5441.
doi: 10.1016/j.ijhydene.2010.03.004
19
MILANESE C , GARRONI S , GIRELLA A , et al. Thermodynamic and kinetic investigations on pure and doped NaBH4+MgH2 system[J]. The Journal of Physical Chemistry C, 2011, 115 (7): 3151- 3162.
doi: 10.1021/jp109392e
20
PISTIDDA C , BARKHORDARIAN G , RZESZUTEK A , et al. Activation of the reactive hydride composite 2NaBH4+MgH2[J]. Scripta Materialia, 2011, 64 (11): 1035- 1038.
doi: 10.1016/j.scriptamat.2011.02.017
21
DING Z , LI H , SHAW L . New insights into the solid-state hydrogen storage of nanostructured LiBH4-MgH2 system[J]. Chemical Engineering Journal, 2020, 385, 123856.
doi: 10.1016/j.cej.2019.123856
22
UTKE R , THIANGVIRIYA S , JAVADIAN P , et al. 2LiBH4-MgH2 nanoconfined into carbon aerogel scaffold impregnated with ZrCl4 for reversible hydrogen storage[J]. Materials Chemistry and Physics, 2016, 169, 136- 141.
doi: 10.1016/j.matchemphys.2015.11.040
23
PUSZKIEL J A , GENNARI F C , LAROCHETTE P A , et al. Effect of Fe additive on the hydrogenation-dehydrogenation properties of 2LiH+MgB2/2LiBH4+MgH2 system[J]. Journal of Power Sources, 2015, 284, 606- 616.
doi: 10.1016/j.jpowsour.2015.02.153
24
GOSALAWIT-UTKE R , MILANESE C , JAVADIAN P , et al. 2LiBH4-MgH2-0.13TiCl4 confined in nano porous structure of carbon aerogel scaffold for reversible hydrogen storage[J]. Journal of Alloys and Compounds, 2014, 599, 78- 86.
doi: 10.1016/j.jallcom.2014.02.032
25
LI Y , LI P , TAN Q , et al. Thermal properties and cycling performance of Ca(BH4)2/MgH2 composite for energy storage[J]. Chemical Physics Letters, 2018, 700, 44- 49.
doi: 10.1016/j.cplett.2018.04.011
26
KARIMI F , PRANZAS P K , PISTIDDA C , et al. Structural and kinetic investigation of the hydride composite Ca(BH4)2+MgH2 system doped with NbF5 for solid-state hydrogen storage[J]. Physical Chemistry Chemical Physics, 2015, 17 (41): 27328- 27342.
doi: 10.1039/C5CP03557K
27
BONATTO MINELLA C , GARRONI S , PISTIDDA C , et al. Sorption properties and reversibility of Ti(Ⅳ) and Nb(Ⅴ)-fluoride doped-Ca(BH4)2-MgH2 system[J]. Journal of Alloys and Compounds, 2015, 622, 989- 994.
doi: 10.1016/j.jallcom.2014.11.038
28
MULAS G , CAMPESI R , GARRONI S , et al. Hydrogen storage in 2NaBH4+MgH2 mixtures: destabilization by additives and nanoconfinement[J]. Journal of Alloys and Compounds, 2012, 536, 236- 240.
doi: 10.1016/j.jallcom.2011.12.042
29
HUANG T , ZOU J , ZENG X , et al. Reversible hydrogen sorption behaviors of the 3NaBH4-(x)YF3-(1-x)GdF3 system: the effect of double rare earth metal cations[J]. International Journal of Hydrogen Energy, 2019, 44 (10): 4868- 4877.
doi: 10.1016/j.ijhydene.2018.12.060
30
ZHAO N , ZOU J , ZENG X , et al. Mechanisms of partial hydrogen sorption reversibility in a 3NaBH4/ScF3 composite[J]. RSC Advances, 2018, 8 (17): 9211- 9217.
doi: 10.1039/C8RA00429C
31
NWAKWUO C C , PISTIDDA C , DORNHEIM M , et al. Microstructural study of hydrogen desorption in 2NaBH4+MgH2 reactive hydride composite[J]. International Journal of Hydrogen Energy, 2012, 37 (3): 2382- 2387.
doi: 10.1016/j.ijhydene.2011.10.070
32
POTTMAIER D , PISTIDDA C , GROPPO E , et al. Dehydrogenation reactions of 2NaBH4+MgH2 system[J]. International Journal of Hydrogen Energy, 2011, 36 (13): 7891- 7896.
doi: 10.1016/j.ijhydene.2011.01.059
33
ZHANG L , SUN Z , CAI Z , et al. Enhanced hydrogen storage properties of MgH2 by the synergetic catalysis of Zr0.4Ti0.6Co nanosheets and carbon nanotubes[J]. Applied Surface Science, 2020, 504, 144465- 144472.
doi: 10.1016/j.apsusc.2019.144465
34
YANG X , JI L , YAN N , et al. Superior catalytic effects of FeCo nanosheets on MgH2 for hydrogen storage[J]. Dalton Transactions, 2019, 48 (33): 12699- 12706.
doi: 10.1039/C9DT02084E
ZHANG X L , WANG N F , LI T , et al. Hydrogen desorption kinetics of magnesium hydride[J]. Journal of Functional Materials, 2015, 46 (9): 9041- 9044.
36
ZHANG Q , ZANG L , HUANG Y , et al. Improved hydrogen storage properties of MgH2 with Ni-based compounds[J]. International Journal of Hydrogen Energy, 2017, 42 (38): 24247- 24255.
doi: 10.1016/j.ijhydene.2017.07.220
37
JIN S A , SHIM J H , CHO Y W , et al. Dehydrogenation and hydrogenation characteristics of MgH2 with transition metal fluorides[J]. Journal of Power Sources, 2007, 172 (2): 859- 862.
doi: 10.1016/j.jpowsour.2007.04.090
38
DELEDDA S , BORISSOVA A , POINSIGNON C , et al. H-sorption in MgH2 nanocomposites containing Fe or Ni with fluorine[J]. Journal of Alloys and Compounds, 2005, 404/406, 409- 412.
doi: 10.1016/j.jallcom.2005.01.115