Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (9): 97-104    DOI: 10.11868/j.issn.1001-4381.2020.000986
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
过渡金属氟化物改善2NaBH4+MgH2储氢体系的放氢热力学性能
郗森良1,2, 王晓军1,2, 张同环1, 韩宗盈1,2, 高猛1,2, 周仕学1, 于昊1,2,*()
1 山东科技大学 储能技术学院,山东 青岛 266590
2 山东科技大学 化学与生物工程学院,山东 青岛 266590
Thermodynamic performance of 2NaBH4+MgH2 hydrogen storage system improved by transition metal fluoride
Senliang XI1,2, Xiaojun WANG1,2, Tonghuan ZHANG1, Zongying HAN1,2, Meng GAO1,2, Shixue ZHOU1, Hao YU1,2,*()
1 College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
2 College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
全文: PDF(1197 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过机械球磨法制备了2NaBH4+MgH2和2NaBH4+MgH2+0.1MFx(M=Ni,Ti,Zr;x=2,3,4)储氢复合材料。分别通过扫描电子显微镜(SEM)、能谱分析仪(EDS)和X射线衍射(XRD)分析了复合材料的形貌、元素分布和晶体结构。另外,通过差示扫描量热法(DSC)和程序升温脱附(TPD)测试了材料的放氢热力学性质。结果表明,通过添加NiF2,TiF3和ZrF4,分别将2NaBH4+MgH2的第一个放氢峰温降低了8.9,35.7 ℃和54.5 ℃。此外,放氢过程中出现的NaMgF3相改变了第一个放氢过程的反应路径,并且改变了2NaBH4+MgH2的第二次放氢过程,使得第二个脱氢过程的峰温分别降低了18.0,31.1 ℃和34.1 ℃。添加NiF2,TiF3和ZrF4使2NaBH4+MgH2的放氢比例分别达到91.7%,91.9%和98.7%。其中ZrF4对2NaBH4+MgH2的整个放氢过程显示出了最好的效果。因此,2NaBH4+MgH2+0.1ZrF4可以作为燃料电池供氢系统的潜在应用体系。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郗森良
王晓军
张同环
韩宗盈
高猛
周仕学
于昊
关键词 金属氟化物2NaBH4+MgH2机械球磨法热力学稳定性    
Abstract

The 2NaBH4+MgH2 and 2NaBH4+MgH2+0.1MFx (M=Ni, Ti, Zr;x=2, 3, 4) hydrogen storage composites were prepared by ball milling. The morphology, element distribution, and crystal structure of the composites were detected by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. In addition, the hydrogen release thermodynamic properties of the materials were tested by differential scanning calorimetry (DSC) and temperature-programmed desorption (TPD). The results show that the peak temperature of the first hydrogen release process for 2NaBH4+MgH2 is decreased by 8.9, 35.7 ℃ and 54.5 ℃ by the addition of NiF2, TiF3 and ZrF4, respectively. In addition, the NaMgF3 phase that appeared during the hydrogen release process changes the reaction path of the first hydrogen release process, and catalyzes the second hydrogen release process of 2NaBH4+MgH2, which reduces the peak temperature of the second dehydrogenation process by 18.0 ℃, 31.1 ℃ and 34.1 ℃, respectively. The quantity ratio of hydrogen release for 2NaBH4+MgH2 reaches 91.7%, 91.9% and 98.7% by the addition of NiF2, TiF3 and ZrF4, respectively. In these three catalysts, ZrF4 shows the best catalytic effect on the entire hydrogen release process of 2NaBH4+MgH2. Therefore, 2NaBH4+MgH2+0.1ZrF4can be used as a potential application system of fuel cell hydrogen supply system.

Key wordsmetal fluoride    2NaBH4+MgH2    mechanical ball milling method    thermodynamic stability
收稿日期: 2020-10-26      出版日期: 2022-09-20
中图分类号:  TB332  
  TK91  
基金资助:国家自然科学基金青年项目(21805169);国家自然科学基金面上项目(21978156);山东省自然科学基金(ZR2018BB069);山东省自然科学基金(ZR2018PEM003);山东省高等学校科技计划项目(J17KA113)
通讯作者: 于昊     E-mail: haoyu@sdust.edu.cn
作者简介: 于昊(1983—),男,副教授,博士研究生,主要研究方向为储氢材料、二氧化碳加氢催化剂制备、生物质转化、精细化学品化学、第一性原理计算等,联系地址:山东省青岛市黄岛区前湾港路579号山东科技大学储能技术学院、化学与生物工程学院(266590),E-mail: haoyu@sdust.edu.cn
引用本文:   
郗森良, 王晓军, 张同环, 韩宗盈, 高猛, 周仕学, 于昊. 过渡金属氟化物改善2NaBH4+MgH2储氢体系的放氢热力学性能[J]. 材料工程, 2022, 50(9): 97-104.
Senliang XI, Xiaojun WANG, Tonghuan ZHANG, Zongying HAN, Meng GAO, Shixue ZHOU, Hao YU. Thermodynamic performance of 2NaBH4+MgH2 hydrogen storage system improved by transition metal fluoride. Journal of Materials Engineering, 2022, 50(9): 97-104.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000986      或      http://jme.biam.ac.cn/CN/Y2022/V50/I9/97
Fig.1  球磨后2NaBH4+MgH2的扫描电镜图(a), (b)和Na(c),Mg(d)元素分布图
Fig.2  球磨后2NaBH4+MgH2+0.1NiF2的扫描电镜图(a), (b)和Na(c),Mg(d), Ni(e)元素分布图
Fig.3  球磨后2NaBH4+MgH2+0.1TiF3的扫描电镜图(a), (b)和Na(c),Mg(d), Ti(e)元素分布图
Fig.4  球磨后2NaBH4+MgH2+0.1ZrF4的扫描电镜图(a), (b)和Na(c),Mg(d), Zr(e)元素分布图
Fig.5  复合储氢体系球磨后的XRD谱图
Fig.6  复合储氢体系分别升温到450 ℃(a)和600 ℃(b)后的XRD谱图
Fig.7  复合储氢体系在不同升温速率下的DSC曲线
Fig.8  复合储氢体系第一个放氢过程的表观活化能
Fig.9  复合储氢体系在5 ℃/min的升温速率下的TPD曲线
Sample Quantity of hydrogen release/% Theoretical quantity of hydrogen release/% Quantity ratio of hydrogen release/%
2NaBH4+MgH2 9.61 9.8 98.1
2NaBH4+MgH2+0.1NiF2 8.22 8.96 91.7
2NaBH4+MgH2+0.1TiF3 8.18 8.9 91.9
2NaBH4+MgH2+0.1ZrF4 8.32 8.43 98.7
Table 1  不同复合储氢体系的放氢量及放氢质量分数
1 WANG Y , CHEN X , ZHANG H , et al. Heterostructures built in metal hydrides for advanced hydrogen storage reversibility[J]. Advanced Materials, 2020, 32 (31): 2002647.
doi: 10.1002/adma.202002647
2 LIU P , LIAN J , CHEN H , et al. In-situ synthesis of Mg2Ni-Ce6O11 catalyst for improvement of hydrogen storage in magnesium[J]. Chemical Engineering Journal, 2020, 385, 123448.
doi: 10.1016/j.cej.2019.123448
3 YU H , BENNICI S , AUROUX A . Hydrogen storage and release: kinetic and thermodynamic studies of MgH2 activated by transition metal nanoparticles[J]. International Journal of Hydrogen Energy, 2014, 39 (22): 11633- 11641.
doi: 10.1016/j.ijhydene.2014.05.069
4 刘晓静, 李辛元, 蒋瑞乾, 等. 镧对镁吸氢和放氢动力学及热力学性能的影响[J]. 稀有金属材料与工程, 2019, 48 (7): 2239- 2243.
4 LIU X J , LI X Y , JIANG R Q , et al. Effect of lanthanum on kinetic and thermodynamic properties of magnesium for hydrogen absorption and desorption[J]. Rare Metal Materials and Engineering, 2019, 48 (7): 2239- 2243.
5 陈军, 朱敏. 高容量储氢材料的研究进展[J]. 中国材料进展, 2009, 28 (5): 2- 10.
5 CHEN J , ZHU M . Progress in research of hydrogen storage materials with high capacity[J]. Materials China, 2009, 28 (5): 2- 10.
6 LIU P , CHEN H , YU H , et al. Oxygen vacancy in magnesium/cerium composite from ball milling for hydrogen storage improvement[J]. International Journal of Hydrogen Energy, 2019, 44 (26): 13606- 13612.
doi: 10.1016/j.ijhydene.2019.03.258
7 LIU B , ZHANG B , WU Y , et al. Theoretical prediction and experimental study on catalytic mechanism of incorporated Ni for hydrogen absorption of Mg[J]. International Journal of Hydrogen Energy, 2019, 44 (51): 27885- 27895.
doi: 10.1016/j.ijhydene.2019.09.045
8 HAN Z Y , CHEN H P , LI X Y , et al. Novel application of MgH2/MoS2 hydrogen storage materials to thiophene hydrodesulfurization: a combined experimental and theoretical case study[J]. Materials & Design, 2018, 158, 213- 223.
9 XI S L , ZHANG P , FU Y Y , et al. Hydrogen release: Thermodynamic and kinetic studies of NaBH4 activated by different zeolite nanoparticles[J]. Energy & Fuels, 2020, 34 (8): 10218- 10224.
10 BENNICI S , YU H , OBEID E , et al. Highly active heteropolyanions supported Co catalysts for fast hydrogen generation in NaBH4 hydrolysis[J]. International Journal of Hydrogen Energy, 2011, 36 (13): 7431- 7442.
doi: 10.1016/j.ijhydene.2011.03.148
11 HUANG T , ZOU J , ZHAO N , et al. Reversible hydrogen storage system of 3NaBH4-0.5ScF3-0.5YF3: the synergistic effect of ScF3 and YF3[J]. Journal of Alloys and Compounds, 2019, 791, 1270- 1276.
doi: 10.1016/j.jallcom.2019.02.306
12 MARTELL P , CAPUTO R , REMHOF A , et al. Stability and decomposition of NaBH4[J]. The Journal of Physical Chemistry C, 2010, 114 (15): 7173- 7177.
doi: 10.1021/jp909341z
13 邵阳阳, 靳惠明, 俞亮, 等. Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报, 2020, 34 (1): 2063- 2066.
13 SHAO Y Y , JIN H M , YU L , et al. Preparation of Mo-doped Co-B amorphous alloy and its catalytic performance on sodium borohydride hydrolysis for hydrogen production[J]. Materials Reports, 2020, 34 (1): 2063- 2066.
14 LIU X , PEASLEE D , JOST C Z , et al. Systematic pore-size effects of nanoconfinement of LiBH4: elimination of diborane release and tunable behavior for hydrogen storage applications[J]. Chemistry of Materials, 2011, 23 (5): 1331- 1336.
doi: 10.1021/cm103546g
15 GUO L , LI Y , MA Y , et al. Enhanced hydrogen storage capacity and reversibility of LiBH4 encapsulated in carbon nanocages[J]. International Journal of Hydrogen Energy, 2017, 42 (4): 2215- 2222.
doi: 10.1016/j.ijhydene.2016.11.184
16 方占召, 康向东, 王平. 硼氢化锂储氢材料研究[J]. 化学进展, 2009, 21 (10): 2212- 2218.
16 FANG Z Z , KANG X D , WANG P . Study of hydrogen storage properties of lithium borohydride[J]. Progress in Chemistry, 2009, 21 (10): 2212- 2218.
17 MAO J F , YU X B , GUO Z P , et al. Enhanced hydrogen storage performances of NaBH4-MgH2 system[J]. Journal of Alloys and Compounds, 2009, 479 (1/2): 619- 623.
18 GARRONI S , MILANESE C , GIRELLA A , et al. Sorption properties of NaBH4/MH2 (M=Mg, Ti) powder systems[J]. International Journal of Hydrogen Energy, 2010, 35 (11): 5434- 5441.
doi: 10.1016/j.ijhydene.2010.03.004
19 MILANESE C , GARRONI S , GIRELLA A , et al. Thermodynamic and kinetic investigations on pure and doped NaBH4+MgH2 system[J]. The Journal of Physical Chemistry C, 2011, 115 (7): 3151- 3162.
doi: 10.1021/jp109392e
20 PISTIDDA C , BARKHORDARIAN G , RZESZUTEK A , et al. Activation of the reactive hydride composite 2NaBH4+MgH2[J]. Scripta Materialia, 2011, 64 (11): 1035- 1038.
doi: 10.1016/j.scriptamat.2011.02.017
21 DING Z , LI H , SHAW L . New insights into the solid-state hydrogen storage of nanostructured LiBH4-MgH2 system[J]. Chemical Engineering Journal, 2020, 385, 123856.
doi: 10.1016/j.cej.2019.123856
22 UTKE R , THIANGVIRIYA S , JAVADIAN P , et al. 2LiBH4-MgH2 nanoconfined into carbon aerogel scaffold impregnated with ZrCl4 for reversible hydrogen storage[J]. Materials Chemistry and Physics, 2016, 169, 136- 141.
doi: 10.1016/j.matchemphys.2015.11.040
23 PUSZKIEL J A , GENNARI F C , LAROCHETTE P A , et al. Effect of Fe additive on the hydrogenation-dehydrogenation properties of 2LiH+MgB2/2LiBH4+MgH2 system[J]. Journal of Power Sources, 2015, 284, 606- 616.
doi: 10.1016/j.jpowsour.2015.02.153
24 GOSALAWIT-UTKE R , MILANESE C , JAVADIAN P , et al. 2LiBH4-MgH2-0.13TiCl4 confined in nano porous structure of carbon aerogel scaffold for reversible hydrogen storage[J]. Journal of Alloys and Compounds, 2014, 599, 78- 86.
doi: 10.1016/j.jallcom.2014.02.032
25 LI Y , LI P , TAN Q , et al. Thermal properties and cycling performance of Ca(BH4)2/MgH2 composite for energy storage[J]. Chemical Physics Letters, 2018, 700, 44- 49.
doi: 10.1016/j.cplett.2018.04.011
26 KARIMI F , PRANZAS P K , PISTIDDA C , et al. Structural and kinetic investigation of the hydride composite Ca(BH4)2+MgH2 system doped with NbF5 for solid-state hydrogen storage[J]. Physical Chemistry Chemical Physics, 2015, 17 (41): 27328- 27342.
doi: 10.1039/C5CP03557K
27 BONATTO MINELLA C , GARRONI S , PISTIDDA C , et al. Sorption properties and reversibility of Ti(Ⅳ) and Nb(Ⅴ)-fluoride doped-Ca(BH4)2-MgH2 system[J]. Journal of Alloys and Compounds, 2015, 622, 989- 994.
doi: 10.1016/j.jallcom.2014.11.038
28 MULAS G , CAMPESI R , GARRONI S , et al. Hydrogen storage in 2NaBH4+MgH2 mixtures: destabilization by additives and nanoconfinement[J]. Journal of Alloys and Compounds, 2012, 536, 236- 240.
doi: 10.1016/j.jallcom.2011.12.042
29 HUANG T , ZOU J , ZENG X , et al. Reversible hydrogen sorption behaviors of the 3NaBH4-(x)YF3-(1-x)GdF3 system: the effect of double rare earth metal cations[J]. International Journal of Hydrogen Energy, 2019, 44 (10): 4868- 4877.
doi: 10.1016/j.ijhydene.2018.12.060
30 ZHAO N , ZOU J , ZENG X , et al. Mechanisms of partial hydrogen sorption reversibility in a 3NaBH4/ScF3 composite[J]. RSC Advances, 2018, 8 (17): 9211- 9217.
doi: 10.1039/C8RA00429C
31 NWAKWUO C C , PISTIDDA C , DORNHEIM M , et al. Microstructural study of hydrogen desorption in 2NaBH4+MgH2 reactive hydride composite[J]. International Journal of Hydrogen Energy, 2012, 37 (3): 2382- 2387.
doi: 10.1016/j.ijhydene.2011.10.070
32 POTTMAIER D , PISTIDDA C , GROPPO E , et al. Dehydrogenation reactions of 2NaBH4+MgH2 system[J]. International Journal of Hydrogen Energy, 2011, 36 (13): 7891- 7896.
doi: 10.1016/j.ijhydene.2011.01.059
33 ZHANG L , SUN Z , CAI Z , et al. Enhanced hydrogen storage properties of MgH2 by the synergetic catalysis of Zr0.4Ti0.6Co nanosheets and carbon nanotubes[J]. Applied Surface Science, 2020, 504, 144465- 144472.
doi: 10.1016/j.apsusc.2019.144465
34 YANG X , JI L , YAN N , et al. Superior catalytic effects of FeCo nanosheets on MgH2 for hydrogen storage[J]. Dalton Transactions, 2019, 48 (33): 12699- 12706.
doi: 10.1039/C9DT02084E
35 张晓丽, 王乃飞, 李涛, 等. 氢化镁放氢动力学的研究[J]. 功能材料, 2015, 46 (9): 9041- 9044.
35 ZHANG X L , WANG N F , LI T , et al. Hydrogen desorption kinetics of magnesium hydride[J]. Journal of Functional Materials, 2015, 46 (9): 9041- 9044.
36 ZHANG Q , ZANG L , HUANG Y , et al. Improved hydrogen storage properties of MgH2 with Ni-based compounds[J]. International Journal of Hydrogen Energy, 2017, 42 (38): 24247- 24255.
doi: 10.1016/j.ijhydene.2017.07.220
37 JIN S A , SHIM J H , CHO Y W , et al. Dehydrogenation and hydrogenation characteristics of MgH2 with transition metal fluorides[J]. Journal of Power Sources, 2007, 172 (2): 859- 862.
doi: 10.1016/j.jpowsour.2007.04.090
38 DELEDDA S , BORISSOVA A , POINSIGNON C , et al. H-sorption in MgH2 nanocomposites containing Fe or Ni with fluorine[J]. Journal of Alloys and Compounds, 2005, 404/406, 409- 412.
doi: 10.1016/j.jallcom.2005.01.115
[1] 张传杰, 颜超, 刘云, 崔莉, 朱平. 过程控制剂对机械球磨法制备壳聚糖微细粉体结构与性能的影响[J]. 材料工程, 2016, 44(12): 54-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn