Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (4): 1-12    DOI: 10.11868/j.issn.1001-4381.2020.000990
  综述 本期目录 | 过刊浏览 | 高级检索 |
基于超材料的无标记光学生物传感
陶承东1, 刘传宝1,2, 李扬1, 乔利杰1, 周济2, 白洋1
1. 北京科技大学 新材料技术研究院, 北京 100083;
2. 清华大学 材料学院, 北京 100084
Metamaterial-based label-free optical biosensing
TAO Cheng-dong1, LIU Chuan-bao1,2, LI Yang1, QIAO Li-jie1, ZHOU Ji2, BAI Yang1
1. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China;
2. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1273 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 超材料(metamaterials)因为能够在亚波长尺度范围内精细调控电磁波而受到人们广泛关注。超材料具有丰富的电磁模态,在表面支持高度局域场增强且对周围介电环境极其敏感,可应用于无标记光学生物传感领域。与传统光学生物传感器相比,超材料生物传感器具有小型化、集成化、高度灵敏、多功能可定制等突出优点。本文总结了近年来超材料生物传感器在可见光、近红外、中红外以及太赫兹波段的研究进展,包括折射率生物传感、表面增强拉曼散射、表面增强红外吸收和太赫兹生物传感等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶承东
刘传宝
李扬
乔利杰
周济
白洋
关键词 超材料生物传感表面增强拉曼散射表面增强红外吸收太赫兹光谱    
Abstract:Metamaterials have drawn extensive attention for their fine regulation of electromagnetic waves at subwavelength scales. They have abundant electromagnetic modes, and support highly confined and enhanced electromagnetic fields on the surface which are highly sensitive to the surrounding dielectric environment, so they can be used in label-free optical biosensing. Compared with traditional optical biosensors, metamaterial biosensors have many advantages, such as miniaturization, integration, high sensitivity and multi-function customization. The recent progress of metamaterial biosensors in visible light and near infrared, middle infrared, and terahertz spectrums was summarized in this paper, including refractive index biosensing, surface-enhanced Raman scattering, surface-enhanced infrared absorption, and terahertz biosensing.
Key wordsmetamaterial    biosensing    surface-enhanced Raman scattering    surface-enhanced infrared absorption    terahertz spectroscopy
收稿日期: 2020-10-26      出版日期: 2021-04-21
中图分类号:  TB34  
  O441  
基金资助:北京市科学技术委员会资助(Z191100004819002);国家自然科学基金(91963114,51902175)
通讯作者: 白洋(1979-),男,教授,博士,研究方向为功能陶瓷与新型电子元器件、电磁及多物理场超材料与新型器件设计、材料基因工程等,联系地址:北京市海淀区学院路30号北京科技大学新材料技术研究院(100083),E-mail:baiy@mater.ustb.edu.cn     E-mail: baiy@mater.ustb.edu.cn
引用本文:   
陶承东, 刘传宝, 李扬, 乔利杰, 周济, 白洋. 基于超材料的无标记光学生物传感[J]. 材料工程, 2021, 49(4): 1-12.
TAO Cheng-dong, LIU Chuan-bao, LI Yang, QIAO Li-jie, ZHOU Ji, BAI Yang. Metamaterial-based label-free optical biosensing. Journal of Materials Engineering, 2021, 49(4): 1-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000990      或      http://jme.biam.ac.cn/CN/Y2021/V49/I4/1
[1] SMITH D R, PENDRY J B, WILTSHIRE MC K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792.
[2] PENDRY J B. Negative refraction makes a perfect lens[J]. Phys Rev Lett, 2000, 85(18):3966.
[3] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781):1780-1782.
[4] HUANG B, BABCOCK H. ZHUANG X. Breaking the diffraction barrier:super-resolution imaging of cells[J]. Cell, 2010, 143(7):1047-1058.
[5] DE A F, GENTILE F, MECARINI F, et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures[J]. Nat Photonics, 2011, 5(11):682-687.
[6] BROLO A G. Plasmonics for future biosensors[J]. Nat Photonics, 2012, 6(11):709-713.
[7] TSENG M L, JAHANI Y, LEITIS A, et al. Dielectric metasurfaces enabling advanced optical biosensors[J]. ACS Photonics, 2020,doi:org/10.1021/acphotonics.ocol030.
[8] JEONG J W, ARNOB M M P, BAEK K M, et al. 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis[J]. Adv Mater, 2016, 28(39), 8695-8704.
[9] RODRIGO D, LIMAJ O, JANNER D, et al. Mid-infrared plasmonicbiosensing with graphene[J]. Science, 2015, 349(6244):165-168.
[10] FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Phys Rev, 1961, 124(6):1866-1878.
[11] FAN J A,BAO K, WU C, et al. Fano-like interference in self-assembled plasmonic quadrumer clusters[J]. Nano Lett, 2010, 10(11):4680-4685.
[12] LIU N, WEISS T, MESCH M, et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing[J]. Nano Lett, 2010, 10(4):1103-1107.
[13] MORITAKE Y, KANAMORI Y, HANE K. Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars[J]. Opt Lett, 2014, 39(13):4057-4060.
[14] ZHANG S, BAO K, HALAS N J, et al. Substrate-induced Fano resonances of a plasmonic nanocube:a route to increased-sensitivity localized surface plasmon resonance revealed[J]. Nano Lett, 2011, 11(4):1657-1663.
[15] SHEN Y, ZHOU J, LIU T, et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit[J]. Nat Commun, 2013, 4(1):1-9.
[16] LEE K L, WU S H, LEE C W, et al. Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves[J]. Opt Express, 2011, 19(24):24530-24539.
[17] LEE K L, HUANG J B, CHANG J W, et al. Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays[J]. Sci Rep, 2015, 5:8547.
[18] HUO P,ZHANG S,LIANG Y,et al.Hyperbolic metamaterials and their applications[J].Adv Opt Mater,2019,7(14):1801616.
[19] KABASHIN A V, EVANS P, PASTKOVSKY S, et al. Plasmonic nanorod metamaterials for biosensing[J]. Nat Mater, 2009, 8(11):867-871.
[20] SREEKANTH K V, ALAPAN Y, ELKABBASH M, et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials[J]. Nat Mater, 2016, 15(6):621.
[21] SREEKANTH K V, ALAPAN Y, ELKABBASH M, et al. Enhancing the angular sensitivity of plasmonic sensors using hyperbolicmetamaterials[J]. Adv Opt Mater, 2016, 4(11):1767-1772.
[22] KRAVETS V G, SCHEDIN F, JALIL R, et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection[J]. Nat Mater, 2013, 12(4):304-309.
[23] MALASSIS L,MASSE P,TREGUER-DELAPIERRE M, et al. Topological darkness in self-assembled plasmonic metamaterials[J]. Adv Mater, 2014, 26(2):324-330.
[24] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine absorbed at a silver electrode[J]. Chem Phys Lett, 1974, 26(2):163-166.
[25] ALBRECHT M G, CREIGHTON J A.Anomalously intense Raman spectra of pyridine at a sliver electrode[J].Am Chem Soc, 1977, 99(15):5215-5217.
[26] CAO C, ZHANG J, WEN X, et al. Metamaterials-based label-free nanosensor for conformation and affinity biosensing[J]. ACS Nano, 2013, 7(9):7583-7591.
[27] SHIOI M, JANS H, LODEWIJKS K, et al. Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications[J]. Appl Phys Lett, 2014, 104(24):243102.
[28] GUDDALA S, RAO D N, RAMAKRISHNA S A. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances[J]. Opt, 2016, 18(6):065104.
[29] CHU Y, BANEE M G, CROZIER K B. Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies[J]. ACS Nano, 2010, 4(5):2804-2810.
[30] JIAO Y, RYCKMAN J D, KOKTYSH D S, et al. Controlling surface enhanced Raman scattering using grating-type patterned nanoporous gold substrates[J]. Opt Mater Express, 2013, 3(8):1137-1148.
[31] ZHANG X, ZHENG Y, LIU X, et al. Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy[J]. Adv Mater, 2015, 27(6):1090-1096.
[32] GRIFFITHS P R, DE H J A.Fourier transform infrared spectrometry[M]. New York:John Wiley & Sons Inc, 2007:1-18.
[33] BAGRI A, MATTEVI C, ACIK M, et al. Structural evolution during the reduction of chemically derived graphene oxide[J]. Nature Chem, 2010, 2(7):581-587.
[34] GARCZAREK F, GERWERT K. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy[J]. Nature, 2006, 439(7072):109-112.
[35] NEUBRECH F, HUCK C, WEBER K, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas[J]. Chem Rev,2017,117(7):5110-5145.
[36] DONG L, YANG X, ZHANG C, et al. Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy[J]. Nano Lett,2017, 17(9):5768-5774.
[37] NOVOTNY L, Van HULST N. Antennas for light[J]. Nat Photonics, 2011, 5(2):83-90.
[38] NEUBRECH F, PUCCI A, CORNELIUS T W, et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection[J]. Phys Rev Lett, 2008, 101(15):157403.
[39] BAGHERI S, WEBER K, GISSIBL T, et al. Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography:effects of collective excitations on SEIRA enhancement[J]. ACS Photonics, 2015, 2(6):779-786.
[40] CHEN K, ADATO R, ALTUG H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 2012, 6(9):7998-8006.
[41] AOUANI H, SIPOVA H, RAHMANI M, et al. Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas[J]. ACS Nano, 2013, 7(1):669-675.
[42] WALLACE G Q, FOY H C, ROSENDAHL S M, et al. Dendritic plasmonics for mid-infrared spectroscopy[J]. Phys Chem C, 2017, 121(17):9497-9507.
[43] HUGHES T W, FAN S. Plasmonic circuit theory for multiresonant light funneling to a single spatial hot spot[J]. Nano Lett, 2016, 16(9):5764-5769.
[44] DODSON S, HAGGUI M, BACHELOT R, et al. Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae[J]. PhysChemLett, 2013, 4(3):496-501.
[45] YOO D, MOHRD A, VIDAL-CODINA F, et al. High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps[J]. Nano Lett, 2018, 18(3):1930-1936.
[46] RODRIGO D, TITTL A, AIT-BOUZIAD N, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces[J]. Nat Commun, 2018, 9(1):2160.
[47] ETEZADI D, WARNER Ⅳ J B, LASHUEL H A, et al. Real-time in situ secondary structure analysis of protein monolayer with mid-infrared plasmonicnanoantennas[J]. ACS Sens, 2018, 3(6):1109-1117.
[48] WU C, KHANIKAEV A B, ADATO R, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers[J]. Nat Mater, 2012, 11(1):69.
[49] ZHONG Y, MALAGARI S D, HAMILTON T, et al. Review of mid-infrared plasmonic materials[J]. Nanophotonics, 2015, 9(1):093791.
[50] GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J]. Nat Photonics, 2012, 6(11):749-758.
[51] KOPPENS F H L, CHANG D E, GARCIA D A F J. Grapheneplasmonics:a platform for strong light-matter interactions[J]. Nano Lett, 2011, 11(8):3370-3377.
[52] HU H, YANG X, ZHAI F, et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons[J]. Nat Commun, 2016, 7(1):1-8.
[53] HU H, YANG X, GUO X, et al. Gas identification with graphene plasmons[J]. Nat Commun, 2019, 10(1):1131.
[54] TITTL A, LEITIS A, LIU M, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393):1105-1109.
[55] LEITIS A, TITTL A, LIU M, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval[J]. Sci Adv, 2019, 5(5):2871.
[56] XIE L, YAO Y, YING Y. The application of terahertz spectroscopy to protein detection:a review[J]. Appl Spectrosc Rev, 2014, 49(6):448-461.
[57] YONEYAMA H, YAMASHITA M, KASAI S, et al. Terahertz spectroscopy of native-conformation and thermally denatured bovine serum albumin (BSA)[J]. Phys Med Biol, 2008, 53(13):3543.
[58] ARORA A, LUONG T Q, KRUGER M, et al. Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution[J]. Analyst, 2012, 137(3):575-579.
[59] SHIRAGA K, OGAWA Y, SUZUKI T, et al. Characterization of dielectric responses of human cancer cells in the terahertz region[J].Infrared Millim Terahertz Waves,2014,35(5):493-502.
[60] MENG K, CHEN T, CHEN T, et al. Terahertz pulsed spectroscopy of paraffin-embedded brain glioma[J]. J Biomed Opt, 2014, 19(7):077001.
[61] LEE D K, KANG J H, LEE J S, et al. Highly sensitive and selective sugar detection by terahertz nano-antennas[J]. Sci Rep, 2015, 5(1):15459.
[62] LEE D K, KIM G, KIM C, et al. Ultrasensitive detection of residual pesticides using THz near-field enhancement[J]. IEEE Trans THz SciTechnol, 2016, 6(3):389-395.
[63] FAN F, CHEN S, LIN W, et al. Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals[J]. ApplPhysLett, 2013, 103(16):161115.
[64] PARK S J, HONG J T, CHOI S J, et al. Detection of microorganisms using terahertz metamaterials[J]. Sci Rep, 2014, 4:4988.
[65] YAHIAOUI R, TAN S, CONG L, et al. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber[J]. Appl Phys, 2015, 118(8):083103.
[66] XU W, XIE L, ZHU J, et al. Gold nanoparticle-based terahertz metamaterial sensors:mechanisms and applications[J]. ACS Photonics, 2016, 3(12):2308-2314.
[67] YAN X, YANG M, ZHANG Z,et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosens Bioelectron, 2019, 126:485-492.
[68] CHENG R, XU L, YU X, et al. High-sensitivity biosensor for identification of protein based on terahertz Fano resonance metasurfaces[J]. Opt Commun, 2020, 473:125850.
[69] CHIN C D, LINDER V, SIA S K. Lab-on-a-chip devices for global health:past studies and future opportunities[J]. Lab on a Chip, 2007, 7(1):41-57.
[70] YAGER P, EDWARDS T, FU E, et al. Microfluidic diagnostic technologies for global public health[J]. Nature, 2006, 442(7101):412-418.
[71] GARDENIERS J G E, VAN D B A. Lab-on-a-chip systems for biomedical and environmental monitoring[J]. Anal BioanalChem, 2004, 378(7):1700-1703.
[72] TAO H, CHIEFFO L R, BRENCKLE M A, et al. Metamaterials on paper as a sensing platform[J]. Adv Mater, 2011, 23(28):3197-3201.
[73] SUN Y, XIA X, FENG H, et al. Modulated terahertz responses of split ring resonators by nanometer thick liquid layers[J]. Appl Phys Lett, 2008, 92(22):221101.
[74] HU X, XU G, WEN L, et al. Metamaterial absorber integrated microfluidic terahertz sensors[J]. Laser Photonics Rev, 2016, 10(6):962-969.
[75] GENG Z, ZHANG X, FAN Z, et al. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage[J]. Sci Rep, 2017, 7(1):16378.
[76] PAPASIMAKIS N, FEDOTOV V A, SAVINOV V, et al. Electromagnetic toroidal excitations in matter and free space[J]. Nat Mater, 2016, 15(3):263.
[77] AHMADIVAND A, GERISLIOGLU B, AHUJA R, et al. Terahertz plasmonics:the rise of toroidalmeta devices towards immunobiosensings[J]. Mater Today, 2020, 32:108-130.
[78] GUPTA M, SRIVASTAVA Y K, MANJAPPA M, et al.Sensing with toroidal metamaterial[J]. Appl Phys Lett, 2017, 110(12):121108.
[79] AHMADIVAND A, GERISLIOGLU B, MANICKAM P, et al. Rapid detection of infectious envelope proteins by magnetoplasmonictoroidalmetasensors[J].ACS Sens,2017,2(9):1359-1368.
[80] AHMADIVAND A, GERISLIOGLU B, TOMITAKA A, et al. Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells[J]. Biomed Opt Express, 2018, 9(2):373-386.
[1] 高玉魁. 负泊松比超材料和结构[J]. 材料工程, 2021, 49(5): 38-47.
[2] 刘晓明, 任志宇, 陈陆平, 李国建, 王强, 周济. 红外隐身超材料[J]. 材料工程, 2020, 48(6): 1-11.
[3] 傅晓建, 石磊, 崔铁军. 太赫兹超材料及其成像应用研究进展[J]. 材料工程, 2020, 48(6): 12-22.
[4] 吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
[5] 张帅, 黄燕萍, 赵国敏, 潘明珠. 基于层层自组装技术的复合聚电解质及其应用研究进展[J]. 材料工程, 2020, 48(12): 12-23.
[6] 马绪强, 苏正涛. 民用航空发动机树脂基复合材料应用进展[J]. 材料工程, 2020, 48(10): 48-59.
[7] 苏继龙, 吴金东, 刘远力. 蜂窝结构力学超材料弹性及抗冲击性能的研究进展[J]. 材料工程, 2019, 47(8): 49-58.
[8] 黄金国, 郭宇, 赵治亚, 李雪, 邢明军, 谢镇坤. 基于有源超材料的可调超薄雷达吸波体研究[J]. 材料工程, 2019, 47(6): 77-81.
[9] 高海涛, 王建江, 李泽. 基于超材料设计的钡铁氧体吸波涂层研究[J]. 材料工程, 2019, 47(1): 70-76.
[10] 礼嵩明, 蒋诗才, 望咏林, 顾涧潇, 邢丽英. “超材料”结构吸波复合材料技术研究[J]. 材料工程, 2017, 45(11): 10-14.
[11] 于相龙, 周济. 智能超材料研究与进展[J]. 材料工程, 2016, 44(7): 119-128.
[12] 张勇, 张斌珍, 段俊萍, 王万军. 超材料在完美吸波器中的应用[J]. 材料工程, 2016, 44(11): 120-128.
[13] 周卓辉, 黄大庆, 刘晓来, 牟维琦, 康飞宇. 超材料在宽频微波衰减吸收材料中的应用研究进展[J]. 材料工程, 2014, 0(5): 91-96.
[14] 黄大庆, 康飞宇, 周卓辉, 刘翔, 丁鹤雁. 超材料结构单元轮廓法对吸波材料衰减吸收频带的拓宽与优化[J]. 材料工程, 2014, 0(11): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn