TAO Cheng-dong1, LIU Chuan-bao1,2, LI Yang1, QIAO Li-jie1, ZHOU Ji2, BAI Yang1
1. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; 2. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Abstract:Metamaterials have drawn extensive attention for their fine regulation of electromagnetic waves at subwavelength scales. They have abundant electromagnetic modes, and support highly confined and enhanced electromagnetic fields on the surface which are highly sensitive to the surrounding dielectric environment, so they can be used in label-free optical biosensing. Compared with traditional optical biosensors, metamaterial biosensors have many advantages, such as miniaturization, integration, high sensitivity and multi-function customization. The recent progress of metamaterial biosensors in visible light and near infrared, middle infrared, and terahertz spectrums was summarized in this paper, including refractive index biosensing, surface-enhanced Raman scattering, surface-enhanced infrared absorption, and terahertz biosensing.
[1] SMITH D R, PENDRY J B, WILTSHIRE MC K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792. [2] PENDRY J B. Negative refraction makes a perfect lens[J]. Phys Rev Lett, 2000, 85(18):3966. [3] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781):1780-1782. [4] HUANG B, BABCOCK H. ZHUANG X. Breaking the diffraction barrier:super-resolution imaging of cells[J]. Cell, 2010, 143(7):1047-1058. [5] DE A F, GENTILE F, MECARINI F, et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures[J]. Nat Photonics, 2011, 5(11):682-687. [6] BROLO A G. Plasmonics for future biosensors[J]. Nat Photonics, 2012, 6(11):709-713. [7] TSENG M L, JAHANI Y, LEITIS A, et al. Dielectric metasurfaces enabling advanced optical biosensors[J]. ACS Photonics, 2020,doi:org/10.1021/acphotonics.ocol030. [8] JEONG J W, ARNOB M M P, BAEK K M, et al. 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis[J]. Adv Mater, 2016, 28(39), 8695-8704. [9] RODRIGO D, LIMAJ O, JANNER D, et al. Mid-infrared plasmonicbiosensing with graphene[J]. Science, 2015, 349(6244):165-168. [10] FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Phys Rev, 1961, 124(6):1866-1878. [11] FAN J A,BAO K, WU C, et al. Fano-like interference in self-assembled plasmonic quadrumer clusters[J]. Nano Lett, 2010, 10(11):4680-4685. [12] LIU N, WEISS T, MESCH M, et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing[J]. Nano Lett, 2010, 10(4):1103-1107. [13] MORITAKE Y, KANAMORI Y, HANE K. Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars[J]. Opt Lett, 2014, 39(13):4057-4060. [14] ZHANG S, BAO K, HALAS N J, et al. Substrate-induced Fano resonances of a plasmonic nanocube:a route to increased-sensitivity localized surface plasmon resonance revealed[J]. Nano Lett, 2011, 11(4):1657-1663. [15] SHEN Y, ZHOU J, LIU T, et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit[J]. Nat Commun, 2013, 4(1):1-9. [16] LEE K L, WU S H, LEE C W, et al. Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves[J]. Opt Express, 2011, 19(24):24530-24539. [17] LEE K L, HUANG J B, CHANG J W, et al. Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays[J]. Sci Rep, 2015, 5:8547. [18] HUO P,ZHANG S,LIANG Y,et al.Hyperbolic metamaterials and their applications[J].Adv Opt Mater,2019,7(14):1801616. [19] KABASHIN A V, EVANS P, PASTKOVSKY S, et al. Plasmonic nanorod metamaterials for biosensing[J]. Nat Mater, 2009, 8(11):867-871. [20] SREEKANTH K V, ALAPAN Y, ELKABBASH M, et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials[J]. Nat Mater, 2016, 15(6):621. [21] SREEKANTH K V, ALAPAN Y, ELKABBASH M, et al. Enhancing the angular sensitivity of plasmonic sensors using hyperbolicmetamaterials[J]. Adv Opt Mater, 2016, 4(11):1767-1772. [22] KRAVETS V G, SCHEDIN F, JALIL R, et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection[J]. Nat Mater, 2013, 12(4):304-309. [23] MALASSIS L,MASSE P,TREGUER-DELAPIERRE M, et al. Topological darkness in self-assembled plasmonic metamaterials[J]. Adv Mater, 2014, 26(2):324-330. [24] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine absorbed at a silver electrode[J]. Chem Phys Lett, 1974, 26(2):163-166. [25] ALBRECHT M G, CREIGHTON J A.Anomalously intense Raman spectra of pyridine at a sliver electrode[J].Am Chem Soc, 1977, 99(15):5215-5217. [26] CAO C, ZHANG J, WEN X, et al. Metamaterials-based label-free nanosensor for conformation and affinity biosensing[J]. ACS Nano, 2013, 7(9):7583-7591. [27] SHIOI M, JANS H, LODEWIJKS K, et al. Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications[J]. Appl Phys Lett, 2014, 104(24):243102. [28] GUDDALA S, RAO D N, RAMAKRISHNA S A. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances[J]. Opt, 2016, 18(6):065104. [29] CHU Y, BANEE M G, CROZIER K B. Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies[J]. ACS Nano, 2010, 4(5):2804-2810. [30] JIAO Y, RYCKMAN J D, KOKTYSH D S, et al. Controlling surface enhanced Raman scattering using grating-type patterned nanoporous gold substrates[J]. Opt Mater Express, 2013, 3(8):1137-1148. [31] ZHANG X, ZHENG Y, LIU X, et al. Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy[J]. Adv Mater, 2015, 27(6):1090-1096. [32] GRIFFITHS P R, DE H J A.Fourier transform infrared spectrometry[M]. New York:John Wiley & Sons Inc, 2007:1-18. [33] BAGRI A, MATTEVI C, ACIK M, et al. Structural evolution during the reduction of chemically derived graphene oxide[J]. Nature Chem, 2010, 2(7):581-587. [34] GARCZAREK F, GERWERT K. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy[J]. Nature, 2006, 439(7072):109-112. [35] NEUBRECH F, HUCK C, WEBER K, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas[J]. Chem Rev,2017,117(7):5110-5145. [36] DONG L, YANG X, ZHANG C, et al. Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy[J]. Nano Lett,2017, 17(9):5768-5774. [37] NOVOTNY L, Van HULST N. Antennas for light[J]. Nat Photonics, 2011, 5(2):83-90. [38] NEUBRECH F, PUCCI A, CORNELIUS T W, et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection[J]. Phys Rev Lett, 2008, 101(15):157403. [39] BAGHERI S, WEBER K, GISSIBL T, et al. Fabrication of square-centimeter plasmonic nanoantenna arrays by femtosecond direct laser writing lithography:effects of collective excitations on SEIRA enhancement[J]. ACS Photonics, 2015, 2(6):779-786. [40] CHEN K, ADATO R, ALTUG H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 2012, 6(9):7998-8006. [41] AOUANI H, SIPOVA H, RAHMANI M, et al. Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas[J]. ACS Nano, 2013, 7(1):669-675. [42] WALLACE G Q, FOY H C, ROSENDAHL S M, et al. Dendritic plasmonics for mid-infrared spectroscopy[J]. Phys Chem C, 2017, 121(17):9497-9507. [43] HUGHES T W, FAN S. Plasmonic circuit theory for multiresonant light funneling to a single spatial hot spot[J]. Nano Lett, 2016, 16(9):5764-5769. [44] DODSON S, HAGGUI M, BACHELOT R, et al. Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae[J]. PhysChemLett, 2013, 4(3):496-501. [45] YOO D, MOHRD A, VIDAL-CODINA F, et al. High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps[J]. Nano Lett, 2018, 18(3):1930-1936. [46] RODRIGO D, TITTL A, AIT-BOUZIAD N, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces[J]. Nat Commun, 2018, 9(1):2160. [47] ETEZADI D, WARNER Ⅳ J B, LASHUEL H A, et al. Real-time in situ secondary structure analysis of protein monolayer with mid-infrared plasmonicnanoantennas[J]. ACS Sens, 2018, 3(6):1109-1117. [48] WU C, KHANIKAEV A B, ADATO R, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers[J]. Nat Mater, 2012, 11(1):69. [49] ZHONG Y, MALAGARI S D, HAMILTON T, et al. Review of mid-infrared plasmonic materials[J]. Nanophotonics, 2015, 9(1):093791. [50] GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J]. Nat Photonics, 2012, 6(11):749-758. [51] KOPPENS F H L, CHANG D E, GARCIA D A F J. Grapheneplasmonics:a platform for strong light-matter interactions[J]. Nano Lett, 2011, 11(8):3370-3377. [52] HU H, YANG X, ZHAI F, et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons[J]. Nat Commun, 2016, 7(1):1-8. [53] HU H, YANG X, GUO X, et al. Gas identification with graphene plasmons[J]. Nat Commun, 2019, 10(1):1131. [54] TITTL A, LEITIS A, LIU M, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393):1105-1109. [55] LEITIS A, TITTL A, LIU M, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval[J]. Sci Adv, 2019, 5(5):2871. [56] XIE L, YAO Y, YING Y. The application of terahertz spectroscopy to protein detection:a review[J]. Appl Spectrosc Rev, 2014, 49(6):448-461. [57] YONEYAMA H, YAMASHITA M, KASAI S, et al. Terahertz spectroscopy of native-conformation and thermally denatured bovine serum albumin (BSA)[J]. Phys Med Biol, 2008, 53(13):3543. [58] ARORA A, LUONG T Q, KRUGER M, et al. Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution[J]. Analyst, 2012, 137(3):575-579. [59] SHIRAGA K, OGAWA Y, SUZUKI T, et al. Characterization of dielectric responses of human cancer cells in the terahertz region[J].Infrared Millim Terahertz Waves,2014,35(5):493-502. [60] MENG K, CHEN T, CHEN T, et al. Terahertz pulsed spectroscopy of paraffin-embedded brain glioma[J]. J Biomed Opt, 2014, 19(7):077001. [61] LEE D K, KANG J H, LEE J S, et al. Highly sensitive and selective sugar detection by terahertz nano-antennas[J]. Sci Rep, 2015, 5(1):15459. [62] LEE D K, KIM G, KIM C, et al. Ultrasensitive detection of residual pesticides using THz near-field enhancement[J]. IEEE Trans THz SciTechnol, 2016, 6(3):389-395. [63] FAN F, CHEN S, LIN W, et al. Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals[J]. ApplPhysLett, 2013, 103(16):161115. [64] PARK S J, HONG J T, CHOI S J, et al. Detection of microorganisms using terahertz metamaterials[J]. Sci Rep, 2014, 4:4988. [65] YAHIAOUI R, TAN S, CONG L, et al. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber[J]. Appl Phys, 2015, 118(8):083103. [66] XU W, XIE L, ZHU J, et al. Gold nanoparticle-based terahertz metamaterial sensors:mechanisms and applications[J]. ACS Photonics, 2016, 3(12):2308-2314. [67] YAN X, YANG M, ZHANG Z,et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosens Bioelectron, 2019, 126:485-492. [68] CHENG R, XU L, YU X, et al. High-sensitivity biosensor for identification of protein based on terahertz Fano resonance metasurfaces[J]. Opt Commun, 2020, 473:125850. [69] CHIN C D, LINDER V, SIA S K. Lab-on-a-chip devices for global health:past studies and future opportunities[J]. Lab on a Chip, 2007, 7(1):41-57. [70] YAGER P, EDWARDS T, FU E, et al. Microfluidic diagnostic technologies for global public health[J]. Nature, 2006, 442(7101):412-418. [71] GARDENIERS J G E, VAN D B A. Lab-on-a-chip systems for biomedical and environmental monitoring[J]. Anal BioanalChem, 2004, 378(7):1700-1703. [72] TAO H, CHIEFFO L R, BRENCKLE M A, et al. Metamaterials on paper as a sensing platform[J]. Adv Mater, 2011, 23(28):3197-3201. [73] SUN Y, XIA X, FENG H, et al. Modulated terahertz responses of split ring resonators by nanometer thick liquid layers[J]. Appl Phys Lett, 2008, 92(22):221101. [74] HU X, XU G, WEN L, et al. Metamaterial absorber integrated microfluidic terahertz sensors[J]. Laser Photonics Rev, 2016, 10(6):962-969. [75] GENG Z, ZHANG X, FAN Z, et al. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage[J]. Sci Rep, 2017, 7(1):16378. [76] PAPASIMAKIS N, FEDOTOV V A, SAVINOV V, et al. Electromagnetic toroidal excitations in matter and free space[J]. Nat Mater, 2016, 15(3):263. [77] AHMADIVAND A, GERISLIOGLU B, AHUJA R, et al. Terahertz plasmonics:the rise of toroidalmeta devices towards immunobiosensings[J]. Mater Today, 2020, 32:108-130. [78] GUPTA M, SRIVASTAVA Y K, MANJAPPA M, et al.Sensing with toroidal metamaterial[J]. Appl Phys Lett, 2017, 110(12):121108. [79] AHMADIVAND A, GERISLIOGLU B, MANICKAM P, et al. Rapid detection of infectious envelope proteins by magnetoplasmonictoroidalmetasensors[J].ACS Sens,2017,2(9):1359-1368. [80] AHMADIVAND A, GERISLIOGLU B, TOMITAKA A, et al. Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells[J]. Biomed Opt Express, 2018, 9(2):373-386.