Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (4): 139-146    DOI: 10.11868/j.issn.1001-4381.2020.000996
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性
安强1, 祁文军1,*(), 左小刚2
1 新疆大学 机械工程学院, 乌鲁木齐 830047
2 新疆众合股份有限公司, 乌鲁木齐 830013
Microstructure and wear resistance of in-situ TiC reinforced Ti-based coating by laser cladding on TA15 titanium alloy surface
Qiang AN1, Wenjun QI1,*(), Xiaogang ZUO2
1 School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China
2 Xinjiang Joinworld Company Limited, Urumqi 830013, China
全文: PDF(10062 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用激光熔覆技术在TA15钛合金表面原位合成TiC增强钛基涂层。利用光学显微镜、扫描电镜、X射线衍射仪、能谱分析仪、显微硬度计、摩擦磨损试验机等研究涂层的成形质量、微观组织、物相组成、硬度和摩擦学性能。结果表明: 涂层主要由β-Ti, Co3Ti, CrTi4和TiC等物相组成, 涂层与基体形成了良好的冶金结合。涂层结合区组织是平面晶和柱状晶, 中部组织是树枝晶, 顶部组织是等轴晶。涂层各微区的碳化钛形貌有显著差别, 其中顶部和中部区域碳化钛为粗大的树枝状和花瓣状, 而结合区为针状和近球状。涂层显微硬度最大值为715HV, 约是TA15显微硬度(330HV)的2.1倍; 同等条件下涂层磨损量为30.14 mg, 约为TA15磨损量98.11 mg的30.7%。涂层与基体的磨损机制均为磨粒磨损和黏着磨损的复合磨损模式, 但涂层的磨损程度较轻。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安强
祁文军
左小刚
关键词 TA15激光熔覆钛基涂层微观组织耐磨性    
Abstract

The TiC-reinforced Ti-based coating was prepared in-situ on the surface of the titanium alloy TA15 by laser cladding technology. The forming quality, microstructure, phase composition, hardness, and tribological properties were investigated by optical microscope, X-ray diffractometer, scanning electron microscope, energy spectrum analyzer, microhardness tester and friction and wear apparatus. The results show that the coating mainly composes of β-Ti, Co3Ti, CrTi4 and TiC, and the good metallurgical bond is formed between coating and the substrate. The microstructure of the coating bond zone is planar crystal and columnar crystal, the middle is dendritic, and the top is equiaxed. Significant differences in the morphology of TiC are observed in each micro-area of the coating. TiC of the top and middle areas is thick dendritic and petal-like, while TiC of the bonding area is needle-like and spherical. The maximum microhardness of the coating is 715HV, which is about 2.1 times than that of TA15 (330HV). Under the same conditions, the wear loss of coating is 30.14 mg, which is about 30.7% of TA15(98.11 mg). The wear mechanism of the cladding coating and substrate is a composite wear mode of adhesive wear and abrasive wear, but the wear degree of the coating is lighter.

Key wordsTA15    laser cladding    Ti-based coating    microstructure    wear resistance
收稿日期: 2020-10-27      出版日期: 2022-04-18
中图分类号:  TG174.4  
基金资助:新疆维吾尔自治区高校科研计划自然科学重点项目(XJEDU2020I007);新疆维吾尔自治区自然科学基金(2021D01C051)
通讯作者: 祁文军     E-mail: wenjuntsi@163.com
作者简介: 祁文军(1968—),女,教授,硕士,主要从事材料加工领域中的数字化设计与应用,联系地址:新疆维吾尔自治区乌鲁木齐市水磨沟区秋实路新疆大学机械工程学院(830017),E-mail: wenjuntsi@163.com
引用本文:   
安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
Qiang AN, Wenjun QI, Xiaogang ZUO. Microstructure and wear resistance of in-situ TiC reinforced Ti-based coating by laser cladding on TA15 titanium alloy surface. Journal of Materials Engineering, 2022, 50(4): 139-146.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000996      或      http://jme.biam.ac.cn/CN/Y2022/V50/I4/139
Al Zr Mo V Si Fe C Ti
5.5-7.0 1.5-2.5 0.5-2.0 0.8-2.5 0.15 0.25 0.10 Bal
Table 1  TA15基材化学成分(质量分数/%)
Fig.1  涂层的横截面图(a)及纵截面图(b)
Fig.2  涂层的SEM图像
(a)涂层底部及中部;(b)涂层中上部及顶部
Fig.3  涂层的XRD图谱
Position C Al Si Ti Cr Co Ni Zr Mo W V
1 1.42 8.52 1.14 77.67 0.51 1.80 2.98 1.62 1.70 1.14 1.50
2 44.76 0 0.13 53.60 0.14 0 0.23 0.09 0 0.25 0.80
3 8.41 7.53 0.01 64.41 8.60 6.28 0.27 0.20 0.43 1.14 2.72
4 47.46 1.32 0.01 49.75 0.12 0.56 0 0.12 0.14 0.32 0.20
5 49.89 1.24 0.22 45.90 1.97 0 0.07 0.10 0 0.10 0.51
6 53.21 1.51 0.15 40.19 1.86 1.80 0.09 0.14 0.14 0.22 0.68
7 7.52 6.32 0.13 64.76 9.12 7.28 0.30 0.12 0.35 1.85 2.25
Table 2  涂层中各测试点的EDS成分分析(原子分数/%)
Fig.4  激光熔覆各微区显微硬度分布曲线(a)及部分涂层压痕的金相形貌(b)
Fig.5  涂层和基体的摩擦因数
Fig.6  TA15基体(a)及涂层(b)的磨损形貌
1 于新年, 孙福权, 刘新宇, 等. 钛合金表面缺陷的激光熔覆修复研究[J]. 航空制造技术, 2011, (16): 116- 118.
doi: 10.3969/j.issn.1671-833X.2011.16.025
1 YU X N , SUN F Q , LIU X Y , et al. Research on laser cladding repairing for defect on titanium alloy surface[J]. Aeronautical Manufacturing Technology, 2011, (16): 116- 118.
doi: 10.3969/j.issn.1671-833X.2011.16.025
2 WENG F , YU H J , CHEN C Z , et al. Microstructures and wear properties of laser cladding Co-based composite coatings on Ti-6Al-4V[J]. Materials & Design, 2015, 80, 174- 181.
3 贺星, 孔德军, 宋仁国. 激光熔覆Al-Ni-TiC-CeO2复合涂层的组织与耐腐蚀磨损性能[J]. 材料工程, 2019, 47 (10): 68- 75.
doi: 10.11868/j.issn.1001-4381.2018.000274
3 HE X , KONG D J , SONG R G . Microstructure and corrosion-wear resistance of laser cladding Al-Ni-TiC-CeO2 composite coatings[J]. Journal of Materials Engineering, 2019, 47 (10): 68- 75.
doi: 10.11868/j.issn.1001-4381.2018.000274
4 杨胶溪, 余兴, 王艳芳, 等. TiC含量对激光熔覆制备TiC/Ti基复合涂层组织与性能的影响[J]. 航空材料学报, 2018, 38 (3): 65- 71.
4 YANG J X , YU X , WANG Y F , et al. Effect of TiC content on microstructures and properties of laser cladding TiC/Ti based composite coatings[J]. Journal of Aeronautical Materials, 2018, 38 (3): 65- 71.
5 李嘉宁, 巩水利, 李怀学, 等. TA15钛合金激光非晶-纳米晶增强镍基涂层的组织结构及耐磨性[J]. 焊接学报, 2014, 35 (10): 57- 60.
5 LI J N , GONG S L , LI H X , et al. Microstructure and wear resis-tance of laser amorphous nanocrystals reinforced Ni-based coating on TA15 titanium alloy[J]. Transactions of the China Welding Institution, 2014, 35 (10): 57- 60.
6 LIU S S , WANG Y H , ZHANG W P . Microstructure and wear resistance of laser clad cobalt-based composite coating on TA15 surface[J]. Rare Metal Materials & Engineering, 2014, 43 (5): 1041- 1046.
7 张天刚, 庄怀风, 薛鹏, 等. 钛基稀土激光熔覆层组织细化机制及性能[J]. 航空学报, 2020, 41 (9): 334- 347.
7 ZHANG T G , ZHUANG H F , XUE P , et al. Microstructure refinement mechanism and properties of Ti-based rare earth laser cladding layers[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (9): 334- 347.
8 ZHANG K M , ZOU J X , LI J , et al. Surface modification of TC4 Ti alloy by laser cladding with TiC+Ti powders[J]. Transactions of Nonferrous Metals Society of China, 2010, 20 (11): 2192- 2197.
doi: 10.1016/S1003-6326(09)60441-6
9 SHAKTI K , AMITAVA M , DAS A K , et al. Parametric study and characterization of AlN-Ni-Ti6Al4V composite cladding on tita-nium alloy[J]. Surface and Coatings Technology, 2018, 349, 37- 49.
doi: 10.1016/j.surfcoat.2018.05.053
10 刘亚楠, 孙荣禄, 牛伟, 等. Ti811表面激光熔覆复合涂层的微观组织及摩擦磨损性能[J]. 中国激光, 2019, 46 (1): 157- 165.
10 LIU Y N , SUN R L , NIU W , et al. Microstructure and friction and wear resistance of laser cladding composite coating on Ti811 surface[J]. Chinese Journal of Lasers, 2019, 46 (1): 157- 165.
11 LIU Y B , LIU Y , TANG H P , et al. Fabrication and mechanical properties of in situ TiC/Ti metal matrix composites[J]. Journal of Alloys & Compounds, 2011, 509 (8): 3592- 3601.
12 杨玉玲, 张多, 陈浩, 等. 激光熔覆Ti/C混合粉末原位生成TiC的研究[J]. 应用激光, 2008, 28 (1): 6- 8.
12 YANG Y L , ZHANG D , CHEN H , et al. In situ formation of TiC by laser cladding Ti/C coatings[J]. Applied Laser, 2008, 28 (1): 6- 8.
13 谢亚东. 基于激光熔覆的高铁钢轨强化研究[D]. 乌鲁木齐: 新疆大学, 2017.
13 XIE Y D. Research on high speed rail strengthening based on laser cladding[D]. Urumqi: Xinjiang University, 2017.
14 林熙. TC4表面激光熔覆耐磨涂层组织结构及性能的研究[D]. 天津: 天津工业大学, 2018.
14 LIN X. Study on microstructure and properties of laser cladding wear-resistant coating on TC4 surface[D]. Tianjin: Tianjin Polytechnic University, 2018.
15 王红颖, 崔承云, 周杰. 工具钢表面激光熔覆Co基合金涂层的组织及性能[J]. 吉林大学学报(工学版), 2010, 40 (4): 1000- 1004.
15 WANG H Y , CUI C Y , ZHOU J . Microstructure and properties of cobalt-based alloy coating on tool steel surface prepared by laser cladding[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40 (4): 1000- 1004.
16 任超, 李铸国, 疏达, 等. 17-4PH不锈钢表面激光熔覆Stellite6涂层组织及耐水蚀性能[J]. 中国激光, 2017, 44 (4): 107- 114.
16 REN C , LI Z G , SHU D , et al. Microstructure and water erosion resistance property of Stellite6 of coating by laser cladding on 17-4PH stainless steel surface[J]. Chinese Journal of Lasers, 2017, 44 (4): 107- 114.
17 YU S , LIU D , ZHANG X , et al. Effects of combined plasma chromizing and shot peening on the fatigue properties of a Ti6Al4V alloy[J]. Applied Surface Science, 2015, 353, 995- 1002.
doi: 10.1016/j.apsusc.2015.07.038
18 WEI D B , ZHANG P Z , YAO Z J , et al. Oxidation of double-glow plasma chromising coating on TC4 titanium alloys[J]. Corrosion Science, 2013, 66, 43- 50.
doi: 10.1016/j.corsci.2012.08.063
19 王浩, 张天刚, 王涛. Ti811表面TC4激光熔覆层的β相变行为[J]. 金属热处理, 2019, 44 (1): 167- 171.
19 WANG H , ZHANG T G , WANG T . β phase transformation behavior of TC4 laser cladding on Ti811 surface[J]. Heat Treatment of Metals, 2019, 44 (1): 167- 171.
20 张志强, 杨凡, 张天刚, 等. 激光熔覆碳化钛增强钛基复合涂层研究进展[J]. 表面技术, 2020, 49 (10): 138- 151.
20 ZHANG Z Q , YANG F , ZHANG T G , et al. Research progress of laser cladding titanium carbide reinforced titanium-based composite coating[J]. Surface Technology, 2020, 49 (10): 138- 151.
21 陈帅, 陶凤和, 贾长治. 选区激光熔化4Cr5MoSiV1模具钢显微组织及显微硬度研究[J]. 中国激光, 2019, 46 (1): 132- 139.
21 CHEN S , TAO F H , JIA C Z . Microstructure and micro-hardness of 4Cr5MoSiV1 die steels fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2019, 46 (1): 132- 139.
22 姚亚丽, 张有凤, 任江伟, 等. 钛合金表面激光熔覆复合涂层的显微组织与性能[J]. 材料热处理学报, 2018, 39 (12): 91- 96.
22 YAO Y L , ZHANG Y F , REN J W , et al. Microstructure and properties of laser cladding composite coatings on titanium alloy surface[J]. Transactions of Materials and Heat Treatment, 2018, 39 (12): 91- 96.
23 JEITSCHKO W, POTTGEN R, HOFFMANN R. Handbook of ceramic hard materials[M]. Federal Republic of Germany: Wiley-VCH Verlag GmbH, 2000.
24 张天刚, 孙荣禄. Ti811表面原位生成纳米Ti3Al激光熔覆层的组织和性能[J]. 中国激光, 2018, 45 (1): 97- 104.
24 ZHANG T G , SUN R L . Microstructure and properties of nano-Ti3Al laser cladding layer prepared on Ti811 alloy surface[J]. Chinese Journal of Lasers, 2018, 45 (1): 97- 104.
25 STRAFFELINI G , MOLINARI A . Mild sliding wear of Fe-0.2%C, Ti-6%Al-4%V and Al-7072:a comparative study[J]. Tribo-logy Letters, 2011, 41 (1): 227- 238.
26 GARDOS M N . Magnéli phases of anion-deficient rutile as lubricious oxides.Part Ⅰ.Tribological behavior of single-crystal and polycrystalline rutile (TinO2n-1)[J]. Tribology Letters, 2000, 8 (2): 65- 78.
[1] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[2] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[3] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[4] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[5] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[6] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[7] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[8] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[9] 武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
[10] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
[11] 宁睿, 高智勇, 王海振, 蔡伟. TiNi基形状记忆合金的辐照效应[J]. 材料工程, 2021, 49(3): 14-19.
[12] 衣晓洋, 孟祥龙, 蔡伟, 王海振. Ti-Ni-Hf高温形状记忆合金的研究进展[J]. 材料工程, 2021, 49(3): 31-40.
[13] 杨璐, 曹敏, 曹玲飞, 廖斌, 王正安. 7B04包铝复合板热变形行为及其对组织演变的影响[J]. 材料工程, 2021, 49(3): 78-86.
[14] 薛彦庆, 郝启堂, 魏典, 李博. 原位自生TiB2/Al-4.5Cu复合材料微观组织和力学性能[J]. 材料工程, 2021, 49(2): 97-104.
[15] 覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn