Preparation of ZnO/g-C3N4 composite photocatalyst and photocatalytic reduction of U(Ⅵ)
Ming LEI1, Yuelin LIU2,3, Shuibo XIE1,2,*(), Yujie GE1, Yingjiu LIU1
1 School of Civil Engineering, University of South China, Hengyang 421001, Hunan, China 2 Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang 421001, Hunan, China 3 School of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, Hunan, China
Based on ZnO and melamine, the ZnO/g-C3N4 for photocatalytic U(Ⅵ) reduction was pre-pared by thermal polymerization methods. The surface morphology, lattice structure, element composition and photocatalytic efficiency were analyzed by SEM, XRD, XPS, PL and UV-Vis methods.The results show that the doping of ZnO reduces the recombination rate of photogenerated electrons and holes, expands the response range of the material to visible light, makes ZnO/g-C3N4 have higher photocatalytic activity. When pH=5 and dosage is 0.5 g/L, the highest U(Ⅵ) removal rate can reach 97% after dark reaction for 30 min and light reaction for 30 min. The U(Ⅵ) on the surface of the photocatalyst can be reduced to U(Ⅳ). The photoelectron e- is the main factor for reducing U(Ⅵ) to U(Ⅳ).
DAI Z R , SUN Y S , ZHANG H , et al. Highly efficient removal of uranium(Ⅵ) from wastewater by polyamidoxime/polyethyleneimine magnetic graphene oxide[J]. Journal of Chemical and Engineering Data, 2019, 64 (12): 5797- 5805.
doi: 10.1021/acs.jced.9b00759
ZHU A Q , XIE S B , SI Z Y , et al. Removal mechanism of U(Ⅵ) by β-cyclodextrin modified mesoporous silica material[J]. Atomic Energy Science and Technology, 2020, 54 (10): 1753- 1761.
JIANG S J , SONG S Q , LU C H , et al. Photocatalysts for degra-ding heavy metal chromium and uranium: a review[J]. Journal of East China University of Technology(Natural Science), 2017, 40 (1): 88- 92.
doi: 10.3969/j.issn.1674-3504.2017.01.015
4
LU C , CHEN R , WU X , et al. Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance[J]. Applied Surface Science, 2016, 360, 1016- 1022.
doi: 10.1016/j.apsusc.2015.11.112
LI X Y , CHEN C , LIU Y B , et al. Photocatalytic reduction of U(Ⅵ) in aqueous solution by CuO/BiFeO3 heterojunction under visible light irradiation[J]. The Chinese Journal of Nonferrous Metals, 2020, 30 (6): 1389- 1398.
6
CAI W , TANG J Y , SHI Y P , et al. Improved in situ synthesis of heterostructured 2d/2d BiOCl/g-C3N4 with enhanced dye photodeg-radation under visible-light illumination[J]. ACS Omega, 2019, 4 (26): 22187- 22196.
doi: 10.1021/acsomega.9b03471
7
LI Y , LI Z , GAO L . Construction of Z-scheme BiOI/g-C3N4 he-terojunction with enhanced photocatalytic activity and stability under visible light[J]. Journal of Materials Science: Materials in Electronics, 2019, 30 (13): 12769- 12782.
doi: 10.1007/s10854-019-01642-0
8
CHEN X , HU R . DFT-based study of single transition metal atom doped g-C3N4 as alternative oxygen reduction reaction catalysts[J]. International Journal of Hydrogen Energy, 2019, 44 (29): 15409- 15416.
doi: 10.1016/j.ijhydene.2019.04.057
9
QU X Y , HU S Z , BAI J , et al. A facile approach to synthesize oxygen doped g-C3N4 with enhanced visible light activity under anoxic conditions via oxygen-plasma treatment[J]. New Journal of Chemistry, 2018, 42 (7): 4998- 5004.
doi: 10.1039/C7NJ04760F
HU Y W , GAO H , WANG X F . Preparation and photocatalytic performance of g-C3N4/TiO2 nanotubes arrays[J]. Surface Technology, 2018, 47 (12): 113- 118.
11
DING X , XIAO D , JI L , et al. Simple fabrication of Fe3O4/C/g-C3N4 two-dimensional composite by hydrothermal carbonization approach with enhanced photocatalytic performance under visible light[J]. Catalysis Science & Technology, 2018, 8 (14): 3484- 3492.
12
LI G Y , WU Y H , ZHANG M , et al. Enhanced removal of toxic Cr(Ⅵ) in wastewater by synthetic TiO2/g-C3N4 microspheres/RGO photocatalyst under irradiation of visible light[J]. Indus-trial & Engineering Chemistry Research, 2019, 58 (21): 8979- 8989.
13
LV H L , JI G B , YANG Z H , et al. Enhancement photocatalytic activity of the graphite-like C3N4 coated hollow pencil-like ZnO[J]. Journal of Colloid and Interface Science, 2015, 450, 381- 387.
doi: 10.1016/j.jcis.2015.03.038
14
HE Y , WANG Y , ZHANG L , et al. High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst[J]. Applied Catalysis: B, 2015, 168, 1- 8.
ZHANG J J , YANG Z W , WANG L S , et al. Preparation of ZnO-BiOI composite catalysts and research on their performance in photocatalytic degradation of benzidine[J]. Modern Chemical Industry, 2020, 40 (6): 169- 174.
16
HUANG Y Z , LI R K , CHEN D P , et al. Synthesis and characterization of CNT/TiO2/ZnO composites with high photocataly-tic performance[J]. Catalysts, 2018, 8 (4): 151.
doi: 10.3390/catal8040151
17
KUMAR S , BARUAH A , TONDA S , et al. Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis[J]. Nanoscale, 2014, 6 (9): 4830- 4842.
doi: 10.1039/c3nr05271k
AN H , LIN B , XUE C , et al. Formation of BiOI/g-C3N4 nano-sheet composites with high visible-light-driven photocatalytic activity[J]. Chinese Journal of Catalysis, 2018, 39 (4): 654- 663.
19
MA H , ZHANG F , LI Q , et al. Preparation of ZnO nanoparticle loaded amidoximated wool fibers as a promising antibiofouling adsorbent for uranium(Ⅵ) recovery[J]. RSC Advances, 2019, 9 (32): 18406- 18414.
doi: 10.1039/C9RA03777B
20
LU C , ZHANG P , JIANG S , et al. Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst[J]. Applied Catalysis: B, 2017, 200, 378- 385.
doi: 10.1016/j.apcatb.2016.07.036
GUO Y D , JIANG H H , BU X Z , et al. Low-temperature synthesis and photocatalytic reduction of U(Ⅵ) of anatase TiO2[J]. Journal of Ceramics, 2016, 37 (3): 283- 288.
22
FENG J N , YANG Z Q , HE S , et al. Photocatalytic reduction of uranium(Ⅵ) under visible light with Sn-doped In2S3 microspheres[J]. Chemosphere, 2018, 212, 114- 123.
doi: 10.1016/j.chemosphere.2018.08.070
LI X Y , HE D W , LI G C , et al. Preparation and characterization of Bi2O3-Bi2WO6 direct Z-scheme heterojunction and photocatalytic reduction of U(Ⅵ) under visible light irradiation[J]. Acta Materiae Compositae Sinica, 2021, 38 (8): 2646- 2654.