Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (10): 157-164    DOI: 10.11868/j.issn.1001-4381.2020.001009
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
ZnO/g-C3N4复合光催化剂的制备及光催化还原U (Ⅵ)
雷铭1, 刘岳林2,3, 谢水波1,2,*(), 葛玉杰1, 刘迎九1
1 南华大学 土木工程学院, 湖南 衡阳 421001
2 南华大学 污染控制与资源化技术湖南省重点实验室, 湖南 衡阳 421001
3 湖南工业大学 土木工程学院, 湖南 株洲 412007
Preparation of ZnO/g-C3N4 composite photocatalyst and photocatalytic reduction of U(Ⅵ)
Ming LEI1, Yuelin LIU2,3, Shuibo XIE1,2,*(), Yujie GE1, Yingjiu LIU1
1 School of Civil Engineering, University of South China, Hengyang 421001, Hunan, China
2 Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang 421001, Hunan, China
3 School of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, Hunan, China
全文: PDF(6614 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以ZnO和三聚氰胺为原料,采用热聚合法制备ZnO/g-C3N4复合型光催化剂,并将其用于光催化还原U(Ⅵ)。通过SEM,XRD,XPS,PL,UV-Vis测试手段对样品的表面形貌、晶格结构、元素组成、光催化性能进行分析。结果表明:ZnO的掺杂降低光生电子与空穴的复合率,扩大材料对可见光的响应范围,使复合材料具有更高的光催化活性。在pH=5、投加量为0.5 g/L时,经过暗反应30 min和光反应30 min,对U(Ⅵ)的最高去除率可达97%。U(Ⅵ)可被还原为U(Ⅳ),光生电子e-是实现将U(Ⅵ)还原为U(Ⅳ)的主要因素。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷铭
刘岳林
谢水波
葛玉杰
刘迎九
关键词 光催化U(Ⅵ)石墨相氮化碳ZnO光生电子    
Abstract

Based on ZnO and melamine, the ZnO/g-C3N4 for photocatalytic U(Ⅵ) reduction was pre-pared by thermal polymerization methods. The surface morphology, lattice structure, element composition and photocatalytic efficiency were analyzed by SEM, XRD, XPS, PL and UV-Vis methods.The results show that the doping of ZnO reduces the recombination rate of photogenerated electrons and holes, expands the response range of the material to visible light, makes ZnO/g-C3N4 have higher photocatalytic activity. When pH=5 and dosage is 0.5 g/L, the highest U(Ⅵ) removal rate can reach 97% after dark reaction for 30 min and light reaction for 30 min. The U(Ⅵ) on the surface of the photocatalyst can be reduced to U(Ⅳ). The photoelectron e- is the main factor for reducing U(Ⅵ) to U(Ⅳ).

Key wordsphotocatalysis    U(Ⅵ)    g-C3N4    ZnO    photoelectron
收稿日期: 2020-11-02      出版日期: 2022-10-24
中图分类号:  TU99  
基金资助:国家自然科学基金(11475080);湖南省教育厅重点项目(19A421)
通讯作者: 谢水波     E-mail: xiesbmr@263.net
作者简介: 谢水波(1964—), 男, 教授, 博士, 研究方向为水处理理论与技术、环境模拟与污染控制, 联系地址: 湖南省衡阳市常胜西路28号南华大学土木工程学院(421001), E-mail: xiesbmr@263.net
引用本文:   
雷铭, 刘岳林, 谢水波, 葛玉杰, 刘迎九. ZnO/g-C3N4复合光催化剂的制备及光催化还原U (Ⅵ)[J]. 材料工程, 2022, 50(10): 157-164.
Ming LEI, Yuelin LIU, Shuibo XIE, Yujie GE, Yingjiu LIU. Preparation of ZnO/g-C3N4 composite photocatalyst and photocatalytic reduction of U(Ⅵ). Journal of Materials Engineering, 2022, 50(10): 157-164.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001009      或      http://jme.biam.ac.cn/CN/Y2022/V50/I10/157
Fig.1  ZnO,g-C3N4及ZnO/g-C3N4(0.1)的XRD谱图
Fig.2  ZnO(a),g-C3N4(b)及ZnO/g-C3N4(0.1)(c)的SEM图
Fig.3  ZnO/g-C3N4(0.1)的XPS谱图
(a)Zn2p;(b)O1s;(c)C1s;(d)N1s
Fig.4  ZnO,g-C3N4及ZnO/g-C3N4(0.1)的UV-Vis DRS谱图(a)和带隙计算图(b)
Fig.5  ZnO,g-C3N4及ZnO/g-C3N4(0.1)的PL谱图
Fig.6  不同光催化剂去除U(Ⅵ)的效果(a)及反应速率常数(b)
Material Light source Eg/eV k/min-1 Initial concentration/(mg·L-1) Maximum removal rate/% Illumination time/min
Bi2O3-Bi2WO6[23] 500 W MHI 2.18 0.016 10 95 100
S-g-C3N4[20] 350 W Xe 2.50 0.090 140 95 40
Anatase TiO2[21] Hg 3.14 2 99 120
Sn-In2S3[22] 500 W Xe 2.09 0.078 60 95 40
CuO/BiFeO3[5] 500 W Xe 2.00 0.032 5 96 100
ZnO/g-C3N4(this work) 500 W Xe 2.30 0.090 10 97 30
Table 1  不同光催化剂还原U(Ⅵ)比较
Fig.7  不同pH值下ZnO/g-C3N4(0.1)去除U(Ⅵ)的效果
Fig.8  N2对ZnO/g-C3N4(0.1)光催化还原U(Ⅵ)效果的影响
Fig.9  ZnO/g-C3N4(0.1)光催化还原U(Ⅵ)后表面的U4f XPS谱图
Fig.10  ZnO/g-C3N4在光照下还原U(Ⅵ)的机理示意图
Fig.11  ZnO/g-C3N4(0.1)光催化还原U(Ⅵ)的循环实验
1 DAI Z R , SUN Y S , ZHANG H , et al. Highly efficient removal of uranium(Ⅵ) from wastewater by polyamidoxime/polyethyleneimine magnetic graphene oxide[J]. Journal of Chemical and Engineering Data, 2019, 64 (12): 5797- 5805.
doi: 10.1021/acs.jced.9b00759
2 朱奥琦, 谢水波, 司子彦, 等. β-环糊精改性介孔二氧化硅材料对U(Ⅵ)的去除机制[J]. 原子能科学技术, 2020, 54 (10): 1753- 1761.
2 ZHU A Q , XIE S B , SI Z Y , et al. Removal mechanism of U(Ⅵ) by β-cyclodextrin modified mesoporous silica material[J]. Atomic Energy Science and Technology, 2020, 54 (10): 1753- 1761.
3 姜淑娟, 宋少青, 卢长海, 等. 光催化还原去除重金属铬Cr(Ⅵ)和铀U(Ⅵ)的研究进展[J]. 东华理工大学学报(自然科学版), 2017, 40 (1): 88- 92.
doi: 10.3969/j.issn.1674-3504.2017.01.015
3 JIANG S J , SONG S Q , LU C H , et al. Photocatalysts for degra-ding heavy metal chromium and uranium: a review[J]. Journal of East China University of Technology(Natural Science), 2017, 40 (1): 88- 92.
doi: 10.3969/j.issn.1674-3504.2017.01.015
4 LU C , CHEN R , WU X , et al. Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance[J]. Applied Surface Science, 2016, 360, 1016- 1022.
doi: 10.1016/j.apsusc.2015.11.112
5 李小燕, 陈超, 刘义保, 等. CuO/BiFeO3异质结光催化还原溶液中U(Ⅵ)的性能[J]. 中国有色金属学报, 2020, 30 (6): 1389- 1398.
5 LI X Y , CHEN C , LIU Y B , et al. Photocatalytic reduction of U(Ⅵ) in aqueous solution by CuO/BiFeO3 heterojunction under visible light irradiation[J]. The Chinese Journal of Nonferrous Metals, 2020, 30 (6): 1389- 1398.
6 CAI W , TANG J Y , SHI Y P , et al. Improved in situ synthesis of heterostructured 2d/2d BiOCl/g-C3N4 with enhanced dye photodeg-radation under visible-light illumination[J]. ACS Omega, 2019, 4 (26): 22187- 22196.
doi: 10.1021/acsomega.9b03471
7 LI Y , LI Z , GAO L . Construction of Z-scheme BiOI/g-C3N4 he-terojunction with enhanced photocatalytic activity and stability under visible light[J]. Journal of Materials Science: Materials in Electronics, 2019, 30 (13): 12769- 12782.
doi: 10.1007/s10854-019-01642-0
8 CHEN X , HU R . DFT-based study of single transition metal atom doped g-C3N4 as alternative oxygen reduction reaction catalysts[J]. International Journal of Hydrogen Energy, 2019, 44 (29): 15409- 15416.
doi: 10.1016/j.ijhydene.2019.04.057
9 QU X Y , HU S Z , BAI J , et al. A facile approach to synthesize oxygen doped g-C3N4 with enhanced visible light activity under anoxic conditions via oxygen-plasma treatment[J]. New Journal of Chemistry, 2018, 42 (7): 4998- 5004.
doi: 10.1039/C7NJ04760F
10 胡亚微, 高慧, 王晓芳. g-C3N4/TiO2纳米管阵列的制备及光催化性能的研究[J]. 表面技术, 2018, 47 (12): 113- 118.
10 HU Y W , GAO H , WANG X F . Preparation and photocatalytic performance of g-C3N4/TiO2 nanotubes arrays[J]. Surface Technology, 2018, 47 (12): 113- 118.
11 DING X , XIAO D , JI L , et al. Simple fabrication of Fe3O4/C/g-C3N4 two-dimensional composite by hydrothermal carbonization approach with enhanced photocatalytic performance under visible light[J]. Catalysis Science & Technology, 2018, 8 (14): 3484- 3492.
12 LI G Y , WU Y H , ZHANG M , et al. Enhanced removal of toxic Cr(Ⅵ) in wastewater by synthetic TiO2/g-C3N4 microspheres/RGO photocatalyst under irradiation of visible light[J]. Indus-trial & Engineering Chemistry Research, 2019, 58 (21): 8979- 8989.
13 LV H L , JI G B , YANG Z H , et al. Enhancement photocatalytic activity of the graphite-like C3N4 coated hollow pencil-like ZnO[J]. Journal of Colloid and Interface Science, 2015, 450, 381- 387.
doi: 10.1016/j.jcis.2015.03.038
14 HE Y , WANG Y , ZHANG L , et al. High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst[J]. Applied Catalysis: B, 2015, 168, 1- 8.
15 张晶晶, 杨竹苇, 王林山, 等. ZnO-BiOI复合催化剂的制备及其光催化降解联苯胺性能研究[J]. 现代化工, 2020, 40 (6): 169- 174.
15 ZHANG J J , YANG Z W , WANG L S , et al. Preparation of ZnO-BiOI composite catalysts and research on their performance in photocatalytic degradation of benzidine[J]. Modern Chemical Industry, 2020, 40 (6): 169- 174.
16 HUANG Y Z , LI R K , CHEN D P , et al. Synthesis and characterization of CNT/TiO2/ZnO composites with high photocataly-tic performance[J]. Catalysts, 2018, 8 (4): 151.
doi: 10.3390/catal8040151
17 KUMAR S , BARUAH A , TONDA S , et al. Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis[J]. Nanoscale, 2014, 6 (9): 4830- 4842.
doi: 10.1039/c3nr05271k
18 安华, 林波, 薛超, 等. 新型BiOI/g-C3N4纳米片复合光催化剂的制备及其可见光催化活性增强[J]. 催化学报, 2018, 39 (4): 654- 663.
18 AN H , LIN B , XUE C , et al. Formation of BiOI/g-C3N4 nano-sheet composites with high visible-light-driven photocatalytic activity[J]. Chinese Journal of Catalysis, 2018, 39 (4): 654- 663.
19 MA H , ZHANG F , LI Q , et al. Preparation of ZnO nanoparticle loaded amidoximated wool fibers as a promising antibiofouling adsorbent for uranium(Ⅵ) recovery[J]. RSC Advances, 2019, 9 (32): 18406- 18414.
doi: 10.1039/C9RA03777B
20 LU C , ZHANG P , JIANG S , et al. Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst[J]. Applied Catalysis: B, 2017, 200, 378- 385.
doi: 10.1016/j.apcatb.2016.07.036
21 郭亚丹, 江海鸿, 卜显忠, 等. 锐钛矿型TiO2的低温制备及其光催化还原六价铀活性研究[J]. 陶瓷学报, 2016, 37 (3): 283- 288.
21 GUO Y D , JIANG H H , BU X Z , et al. Low-temperature synthesis and photocatalytic reduction of U(Ⅵ) of anatase TiO2[J]. Journal of Ceramics, 2016, 37 (3): 283- 288.
22 FENG J N , YANG Z Q , HE S , et al. Photocatalytic reduction of uranium(Ⅵ) under visible light with Sn-doped In2S3 microspheres[J]. Chemosphere, 2018, 212, 114- 123.
doi: 10.1016/j.chemosphere.2018.08.070
23 李小燕, 何登武, 李冠超, 等. Bi2O3-Bi2WO6直接Z-scheme异质结的制备、表征及光催化还原U(Ⅵ)的性能[J]. 复合材料学报, 2021, 38 (8): 2646- 2654.
23 LI X Y , HE D W , LI G C , et al. Preparation and characterization of Bi2O3-Bi2WO6 direct Z-scheme heterojunction and photocatalytic reduction of U(Ⅵ) under visible light irradiation[J]. Acta Materiae Compositae Sinica, 2021, 38 (8): 2646- 2654.
[1] 刘源, 赵华, 李会鹏, 蔡天凤, 王禹程. 碳氯共掺杂介孔g-C3N4的气泡模板法制备及光催化性能[J]. 材料工程, 2022, 50(9): 70-77.
[2] 李思骏, 邵兰兴, 冯丽, 程琥, 庄金亮. 二维Ce-MOFs纳米片的合成及可见光介导脱羧氧化性能[J]. 材料工程, 2022, 50(9): 89-96.
[3] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[4] 赵卫峰, 郝宁, 张改, 钱慧锦, 马爱洁, 周宏伟, 陈卫星. 苝四羧酸二酰亚胺修饰增强g-C3N4光催化性能[J]. 材料工程, 2022, 50(3): 98-106.
[5] 张建民, 刘宇琦, 李红玑. 活化凹凸棒石合成多级孔钛硅分子筛及其光催化性能研究[J]. 材料工程, 2022, 50(10): 165-171.
[6] 张文娟, 寇苗. 二维材料MXene在水处理领域的应用[J]. 材料工程, 2021, 49(9): 14-26.
[7] 褚召冉, 陈功, 赵雪伶, 林东海, 陈诚. 光子晶体在光催化领域的研究进展[J]. 材料工程, 2021, 49(8): 43-53.
[8] 李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
[9] 晏秘, 薛云, 申妍铭, 程琥, 庄金亮. 分级结构苯并噻二唑聚合物应用于可见光诱导硫醚选择性氧化[J]. 材料工程, 2021, 49(7): 64-70.
[10] 葛玉杰, 吴姣, 何志强, 王国华, 刘金香. g-C3N4基异质耦合光催化剂制备及在环境污染物去除领域的研究进展[J]. 材料工程, 2021, 49(4): 23-33.
[11] 向小倩, 廖小刚, 李纲, 胡学步, 田甜. 分级微/纳结构ZnO的制备及其光催化性能[J]. 材料工程, 2021, 49(4): 150-158.
[12] 谢桂香, 龚朋, 吕芬芬, 胡志彪. 原位构建P-N结复合材料及其可见光光催化性能[J]. 材料工程, 2021, 49(3): 107-114.
[13] 司子彦, 谢水波, 朱奥琦, 王国华, 刘迎九, 莫官海. 蒙脱土/Fe3O4/腐殖酸复合材料对U(Ⅵ)的作用机制[J]. 材料工程, 2021, 49(3): 158-166.
[14] 周锋, 任向红, 强洪夫, 曾逸智, 樊苗苗. GO增强g-C3N4气凝胶的可见光响应及其光催化降解偏二甲肼废水[J]. 材料工程, 2021, 49(11): 171-178.
[15] 李鹏鹏, 苏复, 顾正桂. CeO2-Ag/AgBr复合微球的合成及光催化性能[J]. 材料工程, 2020, 48(9): 69-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn