Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (8): 81-88    DOI: 10.11868/j.issn.1001-4381.2020.001012
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
预弯曲变形对CP800复相钢力学性能的影响
孙昊飞1,2, 肖志1,2,*(), 韦凯2, 杨旭静2, 齐军3
1 汽车噪声振动和安全技术国家重点实验室, 重庆 401122
2 湖南大学 汽车车身先进设计及制造国家重点实验室, 长沙 410082
3 上海汇众汽车制造有限公司, 上海 201814
Effect of pre-bending deformation on mechanical properties of complex phase steel CP800
Hao-fei SUN1,2, Zhi XIAO1,2,*(), Kai WEI2, Xu-jing YANG2, Jun QI3
1 State Key Laboratory of Vehicle NVH and Safety Technology, Chongqing 401122, China
2 State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
3 Shanghai Huizhong Automobile Manufacturing Co., Ltd., Shanghai 201814, China
全文: PDF(18850 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

对CP800复相钢进行冲压成型,制备预弯曲试样,并利用EBSD、X射线残余应力分析仪、拉伸试验机、DIC技术等研究预弯曲变形对钢的微观组织、残余应力和力学性能的影响。结果表明:预弯曲后残余应力分布情况呈现为拉-压-拉-压交替分布,即内表面(压缩层)呈现拉应力而外表面(拉伸层)呈现压应力,这种特殊分布情况会导致预弯曲后材料的屈服应力降低16%。同时,由于冷变形导致的材料硬化和位错强化效果,预弯曲后材料伸长率降低25%而抗拉强度增大24%。此外,预弯曲后内表面由于存在拉伸残余应力而导致更大的塑性应变和损伤,并早于外表面发生断裂。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙昊飞
肖志
韦凯
杨旭静
齐军
关键词 复相钢预弯曲残余应力表面应变场力学性能    
Abstract

The pre-bending specimens were obtained by stamping with complex phase steel CP800, and the effect of pre-bending deformation on microstructure, residual stress and mechanical properties of the steel were studied by using EBSD, X-ray residual stress measurement system, tensile testing machine, DIC technique, etc. The results show that the distribution of residual stress of pre-bending specimens exhibits stress distribution of tension-compression-tension-compression, which means that the inside surface (compression layer) is tension stress and outside surface (tension layer) is compression stress. Such special distribution leads to a 16% reduction of yield stress of specimens after pre-bending. Meanwhile, due to the dislocation strengthening and hardening caused by cold deformation, the elongation of material decreases by 25% and the tensile strength increases by 24% after pre-bending. Furthermore, it is found that the inside surface produces greater plastic strain and is broken earlier than the outside surface due to the existence of tensile residual stress.

Key wordscomplex phase steel    pre-bending    residual stress    surface strain field    mechanical property
收稿日期: 2020-11-03      出版日期: 2021-08-12
中图分类号:  TG113.25  
基金资助:汽车噪声振动和安全技术国家重点实验室2019年度开放基金项目(NVHSKL-201901)
通讯作者: 肖志     E-mail: hnuxiao@163.com
作者简介: 肖志(1977-), 男, 副教授, 博士, 主要从事汽车碰撞安全技术、人体损伤防护结构设计等研究, 联系地址: 湖南省长沙市麓山南路2号湖南大学汽车车身先进设计及制造国家重点实验室(410082), E-mail: hnuxiao@163.com
引用本文:   
孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
Hao-fei SUN, Zhi XIAO, Kai WEI, Xu-jing YANG, Jun QI. Effect of pre-bending deformation on mechanical properties of complex phase steel CP800. Journal of Materials Engineering, 2021, 49(8): 81-88.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001012      或      http://jme.biam.ac.cn/CN/Y2021/V49/I8/81
C Si Mn Cr+Mo Ti Fe
0.07 0.4 1.6 < 1.0 0.1 Bal
Table 1  CP800复相钢的化学成分(质量分数/%)
Fig.1  预弯曲冲压机与“U形”冲压模具(a)以及预弯曲试样制备流程(b)
Fig.2  预弯曲试样微观组织观测位置
Fig.3  预弯曲后CP800内表面(1)和外表面(2)的EBSD图
(a)背散射电子图像;(b)反极图;(c)取向差角图
Fig.4  预弯曲试样的KAM图(1)和平均GND密度图(2)
(a)内表面;(b)外表面
Fig.5  预弯曲后板料内表面(a)和外表面(b)的等效应变分布以及减薄率分布(c)
Fig.6  板材弹塑性弯曲应力分布
(a)弯曲应力;(b)弹性卸载应力;(c)残余应力
Fig.7  残余应力测量位置
(a)厚度方向网格;(b)长度方向位置
Fig.8  冲压过程及网格划分
(a)冲压过程仿真装配图(缩减长度);(b)CP800钢板网格
Fig.9  仿真残余应力结果
Position Residual stress/MPa
Rolling direction (RD) Transverse direction (TD) Plane
Inside surface 77±12 264±13 275±24
Outside surface -320±21 -479±24 -576±32
Table 2  预弯曲试样D20内外表面实验残余应力分布
Fig.10  AR试样(a)与D20试样(b)的拉伸工程应力-应变曲线以及强度和伸长率的变化规律(c)
Specimen Repeated specimen number Yield strength/MPa Tensile strength/MPa Elongation/ %
AR specimen 1 702 797 17.9
2 705 791 16.8
3 713 793 17.5
Average value±s 707±6 794±3 17.4±0.6
D20 specimen 1 618 990 13.1
2 605 985 12.2
3 555 983 13.7
Average value±s 593±33 986±4 13.0±0.8
Table 3  CP800预弯曲前后拉伸性能
Fig.11  断裂前最后图像的DIC轴向RD方向表面应变场
(a)D20试样内表面;(b)D20试样外表面;(c)AR试样表面1;(d)AR试样表面2
Fig.12  含有残余应力的预弯曲试样拉伸过程中的应力分布
1 LI S C , ZHANG Y H , QI L , et al. Effect of single tensile overload on fatigue crack growth behavior in DP780 dual phase steel[J]. International Journal of Fatigue, 2018, 106, 49- 55.
doi: 10.1016/j.ijfatigue.2017.09.018
2 SHARIFIMEHR S , FATEMI A , CHA S C , et al. Fatigue behavior of AHSS lap shear and butt arc welds including the effect of periodic overloads and underloads[J]. International Journal of Fatigue, 2016, 87, 6- 14.
doi: 10.1016/j.ijfatigue.2015.12.009
3 De DIEGO-CALDERÓN I , SANTOFIMIA M J , MOLINA-ALDAREGUIA J M , et al. Deformation behavior of a high strength multiphase steel at macro- and micro-scales[J]. Materials Science and Engineering: A, 2014, 611, 201- 211.
doi: 10.1016/j.msea.2014.05.068
4 AYDIN H , ESSADIQI E , JUNG I H , et al. Development of 3rd generation AHSS with medium Mn content alloying compositions[J]. Materials Science and Engineering: A, 2013, 564, 501- 508.
doi: 10.1016/j.msea.2012.11.113
5 KARELOVA A , KREMPASZKY C , WERNER E , et al. Hole expansion of dual-phase and complex-phase AHS steels-effect of edge conditions[J]. Steel Research International, 2010, 80 (1): 71- 77.
6 ZHAO J , JIANG Z . Thermomechanical processing of advanced high strength steels[J]. Progress in Materials Science, 2018, 94, 174- 242.
7 李金许, 王伟, 周耀, 等. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56 (4): 444- 458.
7 LI J X , WANG W , ZHOU Y , et al. A review of research status of hydrogen embrittlement for automotive advanced high-strength steels[J]. Acta Metallurgica Sinica, 2020, 56 (4): 444- 458.
8 HELLER T , NUSS A . Effect of alloying elements on microstructure and mechanical properties of hot rolled multiphase steels[J]. Ironmaking & Steelmaking, 2005, 32 (4): 303- 308.
9 LI X , RAMAZANI A , PRAHL U , et al. Quantification of complex-phase steel microstructure by using combined EBSD and EPMA measurements[J]. Materials Characterization, 2018, 142, 179- 186.
doi: 10.1016/j.matchar.2018.05.038
10 ERICE B , ROTH C C , MOHR D . Stress-state and strain-rate dependent ductile fracture of dual and complex phase steel[J]. Mechanics of Materials, 2018, 116, 11- 32.
doi: 10.1016/j.mechmat.2017.07.020
11 SCHMITT J H , IUNG T . New developments of advanced high-strength steels for automotive applications[J]. Comptes Rendus Physique, 2018, 19 (8): 641- 656.
doi: 10.1016/j.crhy.2018.11.004
12 LAMBERS H G , RVSING C J , NIENDORF T , et al. On the low-cycle fatigue response of pre-strained austenitic Fe61Mn24Ni6.5Cr8.5 alloy showing TWIP effect[J]. International Journal of Fatigue, 2012, 40, 51- 60.
doi: 10.1016/j.ijfatigue.2012.01.002
13 ROBERTSON L T , HILDITCH T B , HODGSON P D . The effect of prestrain and bake hardening on the low-cycle fatigue properties of TRIP steel[J]. International Journal of Fatigue, 2008, 30 (4): 587- 594.
doi: 10.1016/j.ijfatigue.2007.06.002
14 SONG S W , LEE J H , LEE H J , et al. Enhancing high-cycle fatigue properties of cold-drawn Fe-Mn-C TWIP steels[J]. International Journal of Fatigue, 2016, 85, 57- 64.
doi: 10.1016/j.ijfatigue.2015.12.007
15 LY A L , FINDLEY K O . The effects of pre-straining conditions on fatigue behavior of a multiphase TRIP steel[J]. International Journal of Fatigue, 2016, 87, 225- 234.
doi: 10.1016/j.ijfatigue.2016.02.004
16 DAS B , SINGH A , PAUL S K . Low cycle fatigue performance of DP600 steel under various pre-straining paths[J]. International Journal of Fatigue, 2020, 132, 105331.
doi: 10.1016/j.ijfatigue.2019.105331
17 WANG B , ZHANG P , DUAN Q Q , et al. High-cycle fatigue properties and damage mechanisms of pre-strained Fe-30Mn-0.9C twinning-induced plasticity steel[J]. Materials Science and Engineering: A, 2017, 679, 258- 271.
doi: 10.1016/j.msea.2016.10.043
18 张显峰, 李国爱, 陆政, 等. 淬火后预拉伸对自然时效状态Al-Li合金组织和性能的影响[J]. 金属学报, 2016, 52 (12): 1497- 1502.
18 ZHANG X F , LI G A , LU Z , et al. Effect of preaged stretch after quenched on the properties and microstructure of a naturally aged Al-Li alloy[J]. Acta Metallurgica Sinica, 2016, 52 (12): 1497- 1502.
19 SUN H F , WEI K , YANG X J , et al. Effects of pre-strain and annealing on the fatigue properties of complex phase steel CP800[J]. International Journal of Fatigue, 2019, 131, 105364.
20 DAS B , SINGH A , ARORA K S , et al. Influence of pre-straining path on high cycle fatigue performance of DP 600 steel[J]. International Journal of Fatigue, 2019, 126, 369- 380.
doi: 10.1016/j.ijfatigue.2019.05.017
21 SUPPAN C , HEBESBERGER T , PICHLER A , et al. On the microstructure control of the bendability of advanced high strength steels[J]. Materials Science and Engineering: A, 2018, 735, 89- 98.
doi: 10.1016/j.msea.2018.07.080
22 HABIBNEJAD-KORAYEM M , JAIN M K , MISHRA R K . Large deformation of magnesium sheet at room temperature by preform annealing, part Ⅱ: "bending"[J]. Materials Science and Engineering: A, 2014, 619, 378- 383.
doi: 10.1016/j.msea.2014.09.096
23 MA Z , ZHAO H , HU X , et al. Influences of tensile pre-strain and bending pre-deflection on bending and tensile behaviors of an extruded AZ31B magnesium alloy[J]. Materials & Design, 2014, 64, 566- 572.
24 YAN Z , WANG D , HE X , et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect[J]. Materials Science and Engineering: A, 2018, 723, 212- 220.
doi: 10.1016/j.msea.2018.03.023
25 CALCAGNOTTO M , PONGE D , DEMIR E , et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD[J]. Materials Science and Engineering: A, 2010, 527 (10): 2738- 2746.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn