Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (8): 153-159    DOI: 10.11868/j.issn.1001-4381.2020.001042
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
多元施主掺杂对直流ZnO压敏陶瓷结构与电气性能的影响
程宽1, 赵洪峰1,*(), 周远翔2
1 新疆大学 电气工程学院 电力系统及大型发电设备安全控制和仿真国家重点实验室风光储分室,乌鲁木齐 830046
2 清华大学 电机工程与应用电子技术系 电力系统及发电设备控制和仿真国家重点实验室,北京 100084
Effect of multi-donor doping on structure and electrical properties of DC ZnO varistor ceramics
Kuan CHENG1, Hongfeng ZHAO1,*(), Yuanxiang ZHOU2
1 The Wind Solar Storage Division of State Key Laboratory of Control and Simulation of Power System and Generation Equipment, School of Electrical Engineering, Xinjiang University, Urumqi 830046, China
2 State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(837 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用传统的陶瓷烧结工艺制备B2O3,In2O3,Al2O3多元施主掺杂的直流ZnO压敏陶瓷样品,考察不同掺杂比(0.1%~0.4%,摩尔分数)的B2O3对直流ZnO压敏陶瓷样品微观结构和电气性能的影响。利用X射线衍射仪、扫描电子显微镜、能量色散X射线光谱及数字源表等分别对样品的物相、微观形貌、成分及电性能进行表征。结果表明,多元施主掺杂剂(Al2O3,In2O3和B2O3)的共掺杂明显改善直流ZnO压敏陶瓷的综合性能,其中,Al3+提高样品的电导率,降低样品的残压比;In3+通过钉扎效应限制晶粒的生长,改善样品的电压梯度;B3+的掺杂增加样品的表面态密度,提高势垒高度并有效抑制泄漏电流的增加。B2O3掺杂量为0.3%时,样品的综合性能最优:电压梯度为486 V/mm,泄漏电流密度为0.58 μA/cm2,非线性系数为85,残压比为1.55。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程宽
赵洪峰
周远翔
关键词 表面态密度晶粒电导率残压比    
Abstract

Direct-current ZnO varistor ceramic samples were prepared by traditional ceramic sintering process with B2O3, In2O3 and Al2O3multi-donor doping. The effects of B2O3 doping ratio (0.1%-0.4%, molar fraction) on the microstructure and electrical properties of direct-current ZnO varistor ceramics were investigated. The phase, morphology, composition and electrical properties of the samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and digital source meter. The results show that the co-doping of multi-donor dopants (Al2O3, In2O3 and B2O3) can significantly improve the comprehensive properties of direct-current ZnO varistor ceramics. Al3+ improves the conductivity of the samples and reduces the residual voltage ratio of the samples; In3+ restricts the growth of grains through pinning effect and improves the voltage gradient of the samples; the doping of B3+ improves the surface state density of the sample, increases the barrier height and effectively suppresses the increase in leakage current. When the doping amount of B2O3 is 0.3%, the comprehensive performance of the sample is the best: the voltage gradient is 486 V/mm, the leakage current density is 0.58 μA/cm2, the nonlinear coefficient is 85, and the residual voltage ratio is 1.55.

Key wordssurface state density    grain    conductivity    residual voltage ratio
收稿日期: 2020-11-11      出版日期: 2022-08-16
中图分类号:  TM862  
基金资助:国家自然科学基金资助项目(51762038)
通讯作者: 赵洪峰     E-mail: zhf_zhf@126.com
作者简介: 赵洪峰(1978—),男,副教授,博士,研究方向为高电压绝缘材料,联系地址:新疆乌鲁木齐市天山区延安路1230号新疆大学南校区电气工程学院(830046),E-mail: zhf_zhf@126.com
引用本文:   
程宽, 赵洪峰, 周远翔. 多元施主掺杂对直流ZnO压敏陶瓷结构与电气性能的影响[J]. 材料工程, 2022, 50(8): 153-159.
Kuan CHENG, Hongfeng ZHAO, Yuanxiang ZHOU. Effect of multi-donor doping on structure and electrical properties of DC ZnO varistor ceramics. Journal of Materials Engineering, 2022, 50(8): 153-159.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001042      或      http://jme.biam.ac.cn/CN/Y2022/V50/I8/153
Fig.1  不同B2O3掺杂浓度样品的X射线衍射图
Fig.2  不同B2O3掺杂浓度样品的SEM图像
(a)0.1%;(b)0.2%;(c)0.3%;(d)0.4%
Fig.3  掺杂0.3% B2O3浓度样品的能量色散X射线光谱图像
(a)测量路径;(b)元素强度
Fig.4  不同B2O3掺杂浓度样品的电场-电流密度(E-J)曲线
Molar fraction of B2O3/% d/μm Nd/1023 m-3 φb/eV Ni/1016 m-2 E1mA/(V·mm-1) JL/(μA·cm-2) α K
0.1 7.2 1.4 2.18 1.7 435 1.5 69 1.69
0.2 6.8 1.5 2.24 1.8 452 0.92 74 1.65
0.3 6.5 2.2 2.81 2.4 486 0.58 85 1.55
0.4 6.3 2.1 2.4 2.2 464 0.71 80 1.62
Table 1  不同B2O3掺杂浓度样品的微观结构,E-JC-V特征参数
Fig.5  不同B2O3掺杂浓度对样品的泄漏电流和非线性系数的影响
Fig.6  不同B2O3掺杂浓度样品的C-V曲线
Fig.7  不同B2O3掺杂浓度样品的交流阻抗谱
(a)样品在不同频率下的阻抗;(b)放大后靠近零点处的阻抗
1 LIU Z H , ZHANG F X , YU J , et al. Research on key technologies in ±1100 kV ultra-high voltage DC transmission[J]. High Voltage, 2018, 3 (4): 279- 288.
doi: 10.1049/hve.2018.5023
2 MATSUOKA M , MASUYAMA T , ⅡDA Y . Voltage nonlinearity of zinc oxide ceramics doped with alkali-earth metal oxide[J]. Japanese Journal of Applied Physics, 1996, 8 (10): 1275- 1276.
3 GUPTA T K . Effect of minor doping on the high current application of the ZnO varistor[J]. Ferroelectrics, 1990, 102 (1): 391- 396.
doi: 10.1080/00150199008221500
4 MENG P F , HU J , HE J L . Low-residual-voltage ZnO varistor ceramics improved by multiple doping with gallium and indium[J]. Materials Letters, 2017, 195 (15): 209- 212.
5 ZHAO H F , HE J L , HU J , et al. High nonlinearity and low residual-voltage ZnO varistor ceramics by synchronously doping Ga2O3 and Al2O3[J]. Materials Letters, 2016, 164 (1): 80- 83.
6 孟鹏飞, 胡军, 邬锦波, 等. 采用镓离子掺杂的高通流容量氧化锌压敏电阻[J]. 中国电机工程学报, 2017, 37 (24): 7377- 7383.
6 MENG P F , HU J , WU J B , et al. High impulse current discharge capability of ZnO varistors by doping gallium ions[J]. Proceedings of the CSEE, 2017, 37 (24): 7377- 7383.
7 孟鹏飞, 胡军, 邬锦波, 等. 氧化锌压敏电阻综合性能的多元掺杂综合调控[J]. 高电压技术, 2018, 44 (1): 241- 247.
7 MENG P F , HU J , WU J B , et al. Comprehensive performances of ZnO varistors tailored by multi-elements doping[J]. High Voltage Engineering, 2018, 44 (1): 241- 247.
8 何金良, 刘俊, 胡军, 等. 电力系统避雷器用ZnO压敏电阻研究进展[J]. 高电压技术, 2011, 37 (3): 634- 643.
8 HE J L , LIU J , HU J , et al. Development of ZnO varistors in metal oxide arrestors utilized in ultra high voltage systems[J]. High Voltage Engineering, 2011, 37 (3): 634- 643.
9 ZHAO H F , HE J L , HU J , et al. High nonlinearity and high voltage gradient ZnO varistor ceramics tailored by combining Ga2O3, Al2O3, and Y2O3 dopants[J]. Journal of American Ceramic Society, 2016, 99 (3): 769- 772.
doi: 10.1111/jace.14110
10 GUPTA T K . Microstructure engineering through donor and acceptor doping in the grain and grain boundary of a polycrystalline semiconducting ceramic[J]. Journal of Materials Research, 1992, 7 (12): 3280- 3295.
doi: 10.1557/JMR.1992.3280
11 MENG P F, ZHOU Y, WU J B, et al. Novel ZnO varistors for dramatically improving protective effect of surge arresters[C]//34th International Conference on Lightning Protection. Rzeszow, Poland: ICLP, 2018.
12 CHENG K , WANG W Q , LIU D J , et al. Improved direct-current aging stability and suppressed leakage current of zinc oxide varistors by co-doping with boron, gallium, and yttrium[J]. Journal of Ceramic Science and Technology, 2020, 11 (2): 111- 116.
13 王玉平, 李盛涛, 孙西昌. ZnO压敏电阻片的应用研究进展[J]. 电气技术, 2006, (10): 17- 24.
doi: 10.3969/j.issn.1673-3800.2006.10.004
13 WANG Y P , LI S T , SUN X C . Progress in development and application of ZnO varistors[J]. Electrical Engineering, 2006, (10): 17- 24.
doi: 10.3969/j.issn.1673-3800.2006.10.004
14 HE J L , LIU J , HU J , et al. AC ageing characteristics of Y2O3-doped ZnO varistors with high voltage gradient[J]. Materials Letters, 2011, 65 (17/18): 2595- 2597.
15 TU Y P , ZHENG Z H , LI X , et al. Grain-boundary and thermally stimulated current characteristics of Y2O3-doped ZnO varistor[J]. Journal of American Ceramic Society, 2013, 96 (11): 3518- 3522.
doi: 10.1111/jace.12517
16 CHENG L H , LI G R , YUAN K Y , et al. Improvement in nonlinear properties and electrical stability of ZnO varistors with B2O3 additives by nano-coating method[J]. Journal of American Ceramic Society, 2011, 95 (3): 1004- 1010.
17 CHEN Q H , HE J L , TAN K X , et al. Influence of grain size on distribution of temperature and thermal stress in ZnO varistor ceramics[J]. Science in China (Series E), 2002, 45 (4): 337- 347.
doi: 10.1007/BF02879344
18 NAHM C W . Degradation behavior by dc-accelerated and pulse-current stress in Co/Cr/Y/Al/Ni co-doped ZnO-PrO1.83-based varistors[J]. Microelectronics Reliability, 2015, 55 (3/4): 565- 571.
19 LEVINSON L M , PHILIPP H R . The physics of metal oxide varistors[J]. Journal of Applied Physics, 1975, 46 (3): 1332- 1341.
doi: 10.1063/1.321701
20 何金良, 邬锦波, 孟鹏飞, 等. 深度限制特高压系统操作过电压的可行性分析[J]. 高电压技术, 2018, 44 (1): 210- 217.
20 HE J L , WU J B , MENG P F , et al. Analysis on feasibility for deeply suppressing switching overvoltage in AC UHV systems[J]. High Voltage Engineering, 2018, 44 (1): 210- 217.
21 GUPTA T K . Application of zinc oxide varistors[J]. Journal of American Ceramic Society, 1990, 73 (7): 1817- 1840.
doi: 10.1111/j.1151-2916.1990.tb05232.x
22 MENG P F , YANG X , HU J , et al. Tailoring electrical properties of multiple dopant-based ZnO varistor by doping with yttrium, gallium, and indium[J]. Materials Letters, 2017, 209 (15): 413- 416.
23 LIU F H , XU G J , DUAN L , et al. Influence of B2O3 additives on microstructure and electrical properties of ZnO-Bi2O3-Sb2O3-based varistors[J]. Journal of Alloys and Compounds, 2011, 509 (5): 56- 58.
doi: 10.1016/j.jallcom.2010.10.074
24 LEE Y S , TSENG T Y . Phase identification and electrical properties in ZnO-glass varistors[J]. Journal of American Ceramic Society, 1992, 75 (6): 1636- 1640.
doi: 10.1111/j.1151-2916.1992.tb04236.x
25 WANG Q , PENG Z J , WANG Y , et al. Influence of thermal treatment temperature on high-performance varistors prepared by hot-dipping tin oxide thin films in Nb2O5 powder[J]. Applied Surface Science, 2018, 443 (15): 301- 310.
26 CARLSON W G , GUPTA T K . Improved varistor nonlinearity via donor impurity doping[J]. Journal of Applied Physics, 1982, 53 (8): 5746- 5753.
[1] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[2] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[3] 吕娜, 孙振, 胡雅琪, 李炳勤, 景圣皓, 张宗良, 蒋良兴, 贾明, 刘芳洋. 硫化物固态电解质Li6PS5Cl的球磨-固相烧结制备与性能[J]. 材料工程, 2022, 50(2): 103-110.
[4] 于长清, 余悠然, 赵英民, 谢宁. 石墨热压还原Cu/Cu2O金属陶瓷电导逾渗行为与微观结构分形表征[J]. 材料工程, 2022, 50(1): 154-160.
[5] 王敬枫, 康辉, 成中军, 谢志民, 王友善, 刘宇艳, 樊志敏. Ti3C2Tx MXene基电磁屏蔽材料的研究进展[J]. 材料工程, 2021, 49(6): 14-25.
[6] 冯靖凯, 张丁非, 陈霞, 赵阳, 蒋斌, 潘复生. 一种细化AZ31镁合金的固液两相区复合挤压工艺[J]. 材料工程, 2021, 49(4): 78-88.
[7] 廉恬柔, 卢玉晓, 吴冰, 石光跃, 马蕾, 刘磊, 娄建忠. 纳米级Li4Ti5O12负极材料的制备及其输运特性[J]. 材料工程, 2021, 49(3): 59-66.
[8] 乔士宾, 何西扣, 刘敬杰, 赵德利, 刘正东. SA508Gr.4N钢热变形过程微观组织演变及流变应力模型[J]. 材料工程, 2021, 49(3): 67-77.
[9] 杨璐, 曹敏, 曹玲飞, 廖斌, 王正安. 7B04包铝复合板热变形行为及其对组织演变的影响[J]. 材料工程, 2021, 49(3): 78-86.
[10] 于淞百, 闵凡路, 姚占虎, 张建峰. 烧结保温时间对超粗晶WC-10Co硬质合金微观结构及性能的影响[J]. 材料工程, 2021, 49(10): 89-95.
[11] 孙鹏, 李忠芳, 王传刚, 王燕, 崔伟慧, 裴洪昌, 尹晓燕. 燃料电池用高温质子交换膜的研究进展[J]. 材料工程, 2021, 49(1): 23-34.
[12] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[13] 刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
[14] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[15] 袁继慧, 陈辉明, 谢伟滨, 魏海根, 汪航, 杨斌. Cu-Cr-Ti-Si合金加工软化的机理[J]. 材料工程, 2020, 48(11): 140-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn