Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (7): 112-123    DOI: 10.11868/j.issn.1001-4381.2020.001065
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能
谷籽旺1,2, 郭文敏1,2,*(), 张弘鳞1,2, 李文娟1,2
1 邵阳学院 机械与能源工程学院, 湖南 邵阳 422000
2 邵阳学院 高效动力系统智能制造湖南省重点实验室, 湖南 邵阳 422000
Microstructure and anti-oxidation properties of CoNiCrAlY-Al2O3 composite coatings based on core-shell structured powder design
Zi-wang GU1,2, Wen-min GUO1,2,*(), Hong-lin ZHANG1,2, Wen-juan LI1,2
1 College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, Hunan, China
2 Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University, Shaoyang 422000, Hunan, China
全文: PDF(17286 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用核壳结构设计思想,成功将Al2O3包覆于CoNiCrAlY粉体表面制备核壳结构粉末,并通过正交实验设计优化核壳结构粉体的球磨制备工艺;探讨超音速火焰喷涂CoNiCrAlY-Al2O3涂层相结构与微观组织演变规律;对比研究CoNiCrAlY涂层和CoNiCrAlY-Al2O3复合涂层800℃的氧化行为。结果表明:各球磨工艺参数对核壳结构粉末的平均包覆率影响程度从大到小依次为:球磨转速、球料比与球磨时间。制备CoNiCrAlY-Al2O3核壳结构粉末最佳的球磨参数为:球磨转速180 r/min,球料比10∶1,球磨时间6 h。超音速火焰喷涂CoNiCrAlY涂层由γ-Co-Ni-Cr相组成。核壳结构粉末中高熔点Al2O3外壳显著抑制了CoNiCrAlY合金在喷涂过程中的氧化行为,导致CoNiCrAlY-Al2O3复合涂层β-NiAl相含量明显增加,涂层孔隙率升高,未熔颗粒增多。由于CoNiCrAlY-Al2O3涂层中的β-NiAl以及Al2O3含量较高,涂层表面在高温氧化过程中形成了致密的富Al2O3的保护层,抑制了非保护性氧化物的生长,使该涂层具有更优异的抗高温氧化性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谷籽旺
郭文敏
张弘鳞
李文娟
关键词 核壳结构超音速火焰喷涂涂层高温氧化微观组织    
Abstract

The core-shell structured CoNiCrAlY-Al2O3 powders were well-designed and fabricated with the Al2O3 as the shell. The ball milling preparation process of core-shell structured powders was optimized by orthogonal experiment design. The phase structure and microstructure evolution of the high velocity oxy-fuel sprayed(HVOF) CoNiCrAlY-Al2O3 coatings caused by using of core-shell structured powders were discussed. The oxidation behavior of HVOF CoNiCrAlY coating and CoNiCrAlY-Al2O3 composite coating at 800 ℃ was comparatively studied.The results show that the influence of the process parameters on the average coating rate of the core-shell structured powders in descending order are: ball milling rotation speed, mass ratio of ball to powder and ball milling time.The optimal ball milling parameters for preparing CoNiCrAlY-Al2O3 core-shell structured powders are: ball milling rotation speed of 180 r/min, mass ratio of ball to powder of 10∶1, and ball milling for 6 h. The HVOF CoNiCrAlY coating is mainly composed of γ-Co-Ni-Cr phase.The oxidation behavior of CoNiCrAlY alloy during spraying process is significantly inhibited by the using of core-shell structured raw powders. Due to the existence of the high melting point Al2O3 shell in the raw powders, the CoNiCrAlY-Al2O3 composite coating contains a high content of β-NiAl phase. In addition, the coating has high porosity and high content of un-melted particles.Compared with CoNiCrAlY coating, CoNiCrAlY-Al2O3 composite coating has excellent high temperature oxidation resistance. The high content of β-NiAl and Al2O3 in the composite coating leads to the formation of a dense Al2O3 rich protective layer on the surface of the coating during high temperature oxidation. The oxide film significantly inhibits the growth of non-protective oxides.

Key wordscore-shell structure    high velocity oxy-fuel spray    coating    high temperature oxidation    microstructure
收稿日期: 2020-11-16      出版日期: 2021-07-19
中图分类号:  TG178  
基金资助:湖南省自然科学基金青年基金(2018JJ3477);湖南省教育厅优秀青年基金(17B237);湖南省研究生科研创新项目(CX20190969)
通讯作者: 郭文敏     E-mail: wenminguo@hotmail.com
作者简介: 郭文敏(1986-), 男, 副教授, 研究方向为材料表面工程, 联系地址: 湖南省邵阳市大祥区七里坪邵阳学院机械与能源工程学院(422000), E-mail: wenminguo@hotmail.com
引用本文:   
谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
Zi-wang GU, Wen-min GUO, Hong-lin ZHANG, Wen-juan LI. Microstructure and anti-oxidation properties of CoNiCrAlY-Al2O3 composite coatings based on core-shell structured powder design. Journal of Materials Engineering, 2021, 49(7): 112-123.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001065      或      http://jme.biam.ac.cn/CN/Y2021/V49/I7/112
Co Ni Cr Al Y
38.5 32.0 21.0 8.0 0.5
Table 1  CoNiCrAlY粉末化学成分(质量分数/%)
Level Factor
Ball milling rotation speed (A)/ (r·min-1) Ball-milling time (B)/min Mass ratio of ball to powder (C)
1 120 240 5∶1
2 180 360 10∶1
3 240 480 15∶1
Table 2  正交实验因素水平
Fe C Mn P S Si Cr Ni
Bal 0.08 2 0.045 0.03 1 18-20 8-11
Table 3  304不锈钢化学成分(质量分数/%)
Parameter Value
Kerosene flow rate/(L·h-1) 25
Oxygen flow rate/(m3·h-1) 56.66
Powder feed rate/(r·min-1) 5.5
Carrier gas/(m3·h-1) 0.59
Distance/mm 300
Table 4  喷涂工艺参数
No Factor Result
Ball milling rotation speed (A)/(r·min-1) Ball-milling time (B)/min Mass ratio of ball to powder(C) Void Average of coating rate/%
1 1(120) 1(240) 1(5∶1) 1 48
2 1(120) 2(360) 2(10∶1) 2 30
3 1(120) 3(480) 3(15∶1) 3 65
4 2(180) 1(240) 2(10∶1) 3 44
5 2(180) 2(360) 3(15∶1) 1 64
6 2(180) 3(480) 1(5∶1) 2 37
7 3(240) 1(240) 3(15∶1) 2 74
8 3(240) 2(360) 1(5∶1) 3 55
9 3(240) 3(480) 2(10∶1) 1 83
Table 5  球磨工艺参数正交实验设计及核壳结构粉末包覆率的测试结果
Parameter Ball milling rotation speed(A)/ (r·min-1) Ball-milling time (B)/ min Mass ratio of ball to powder (C)
K1 143 166 140
K2 145 149 149
K3 212 185 203
k1 47.7 55.3 46.7
k2 48.3 49.7 49.7
k3 70.7 61.7 67.7
R 23 13 21
Optimal solution A3 B3 C3
Table 6  极差分析
Fig.1  各因子对核壳结构粉体平均包覆率的影响趋势
Factor Sum of squares of deviation Freedom degree F ration F critical value
Ball milling rotation speed (A)/(r·min-1) 1028 2 2.1 F0.05(2, 2)=19
Ball-milling time (B)/min 216.22 2 0.44 F0.01(2, 2)=99
Mass ratio of ball to powder (C) 708.22 2 1.44 F0.1(2, 2)=9
Error 489.55 2
Table 7  方差分析
Fig.2  CoNiCrAlY粉末与CoNiCrAlY-Al2O3核壳结构粉末形貌
(a)CoNiCrAlY粉末表面;(b)CoNiCrAlY粉末横截面;(c)CoNiCrAlY-Al2O3粉末表面;(d)CoNiCrAlY-Al2O3粉末横截面
Number Mass fraction/%
O Al Y Cr Co Ni
1 13.18 14.87 2.20 16.70 28.21 24.84
2 14.42 13.13 1.30 17.07 29.61 24.47
3 18.17 21.28 1.15 14.79 24.83 19.78
4 6.21 10.78 0.10 18.46 35.26 29.19
Table 8  图 2中的点扫描能谱分析结果
Fig.3  图 2(b), (d)中所标记位置的线扫描元素分布曲线
(a)图 2(b)中Al元素分布;(b)图 2(b)中O元素分布;(c)图 2(d)中Al元素分布;(d)图 2(d)中O元素分布
Fig.4  原料粉末与超音速火焰喷涂涂层的XRD图谱
Fig.5  CoNiCrAlY(a)与CoNiCrAlY-Al2O3(b)涂层的截面SEM形貌
Number Mass fraction/%
O Al Y Cr Co Ni
1 0.74 8.61 0.08 20.01 35.99 34.57
2 19.89 7.04 0.06 17.07 30.68 25.26
3 0.78 7.75 0.46 19.96 35.31 35.74
4 4.72 10.38 0.10 19.61 36.06 29.13
Table 9  图 5中所示位置的EDS分析结果
Fig.6  图 5中所标记位置的线扫描元素分布曲线
(a)图 5(a)中的Al元素分布;(b)图 5(a)中的O元素分布;(c)图 5(b)中的Al元素分布;(d)图 5(b)中的O元素分布
Fig.7  CoNiCrAlY涂层和CoNiCrAlY-Al2O3复合涂层
800 ℃时的高温氧化动力学曲线
Fig.8  涂层800 ℃氧化120 h后的XRD图谱
Fig.9  CoNiCrAlY涂层(a)与CoNiCrAlY-Al2O3涂层(b)在800 ℃氧化120 h后的表面形貌
Number Mass fraction/%
O Al Y Cr Co Ni
1 39.18 0.81 0.14 10.91 42.35 6.61
2 42.63 9.63 0.16 12.08 25.32 10.18
3 20.88 15.66 0.25 18.93 27.80 16.48
4 34.99 12.11 0.57 23.93 19.35 9.05
Table 10  图 9中所示位置的能谱分析结果
Fig.10  涂层800 ℃氧化120 h后的截面形貌(1)与线扫描分析结果(2)
(a)CoNiCrAlY涂层;(b)CoNiCrAlY-Al2O3复合涂层
1 袁佟, 邓畅光, 毛杰, 等. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程, 2017, 45 (7): 1- 6.
1 YUAN T , DENG C G , MAO J , et al. Preparation and thermal conductivity of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition[J]. Journal of Materials Engineering, 2017, 45 (7): 1- 6.
2 WEN W , JACKSON G A , LI H , et al. An experimental and numerical study of a CoNiCrAlY coating using miniature specimen testing techniques[J]. International Journal of Mechanical Sciences, 2019, 157/158, 348- 356.
doi: 10.1016/j.ijmecsci.2019.04.001
3 VENKADESAN G , MUTHUSAMY J . Experimental investigation of Al2O3/8YSZ and CeO2/8YSZ plasma sprayed thermal barrier coating on diesel engine[J]. Ceramics International, 2019, 45 (3): 3166- 3176.
doi: 10.1016/j.ceramint.2018.10.218
4 王逸群, 宋鹏, 季强, 等. H2O和Y(O)对NiCoCrAl热障涂层高温氧化的影响[J]. 材料工程, 2017, 45 (4): 65- 69.
4 WANG Y Q , SONG P , JI Q , et al. Effect of H2O and Y(O) on oxidation behavior of NiCoCrAl coating within thermal barrier coating[J]. Journal of Materials Engineering, 2017, 45 (4): 65- 69.
5 DESHPANDE S , SAMPATH S , ZHANG H . Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings-case study for Ni-Al[J]. Surface & Coatings Technology, 2006, 200 (18/19): 5395- 5406.
6 CHOI H , LEE S , KIM B , et al. Effect of in-flight particle oxidation on the phase evolution of HVOF NiTiZrSiSn bulk amorphous coating[J]. Journal of Materials Science, 2005, 40 (23): 6121- 6126.
doi: 10.1007/s10853-005-3169-z
7 ZHANG C , LIU L , CHAN K C , et al. Wear behavior of HVOF-sprayed Fe-based amorphous coatings[J]. Intermetallics, 2012, 29, 80- 85.
doi: 10.1016/j.intermet.2012.05.004
8 PENG Y , ZHANG C , ZHOU H , et al. On the bonding strength in thermally sprayed Fe-based amorphous coatings[J]. Surface & Coatings Technology, 2013, 218, 17- 22.
9 TANG F , AJDELSZTAJN L , KIM G E , et al. Effects of surface oxidation during HVOF processing on the primary stage oxidation of a CoNiCrAlY coating[J]. Surface & Coatings Technology, 2004, 185 (2/3): 228- 233.
10 JALOWICKA A , NAUMENKO D , ERNSBERGER M , et al. Alumina formation and microstructural changes of aluminized CoNiCrAlY coating during high temperature exposure in the temperature range 925℃-1075℃[J]. Materials at High Temperatures, 2018, 35 (1/3): 66- 77.
11 WENG W X , WANG Y M , LIAO Y M , et al. Comparison of microstructural evolution and oxidation behaviour of NiCoCrAlY and CoNiCrAlY as bond coats used for thermal barrier coatings[J]. Surface & Coatings Technology, 2018, 352, 285- 294.
12 FEIZABADI A , DOOLABI M S , SADRNEZHAAD S K , et al. Cyclic oxidation characteristics of HVOF thermal-sprayed NiCoCrAlY and CoNiCrAlY coatings at 1000℃[J]. Journal of Alloys and Compounds, 2018, 746, 509- 519.
doi: 10.1016/j.jallcom.2018.02.282
13 JONCA J , MALARD B , SOULIE J , et al. Oxidation behaviour of a CoNiCrAlY/h-BN based abradable coating[J]. Corrosion Science, 2019, 153, 170- 177.
doi: 10.1016/j.corsci.2019.02.030
14 HUANG T , BERGHOLZ J , MAUER G , et al. Effect of test atmosphere composition on high-temperature oxidation behaviour of CoNiCrAlY coatings produced from conventional and ODS powders[J]. Materials at High Temperatures, 2018, 35 (1/3): 97- 107.
15 VORKTTER C , HAGEN S P , PINTSUK G , et al. Oxide dispersion strengthened bond coats with higher alumina content: oxidation resistance and influence on thermal barrier coating lifetime[J]. Oxidation of Metals, 2019, 92 (3/4): 167- 194.
doi: 10.1007/s11085-019-09931-z
16 BABABDANI S M , NOGORANI F S . Overaluminizing of a CoNiCrAlY coating by inward and outward diffusion treatments[J]. Metallurgical and Materials Transactions A, 2014, 45 (4): 2116- 2122.
doi: 10.1007/s11661-013-2138-4
17 王记中. 超音速火焰喷涂纳米NiCrCoAlY-TiB2复合涂层粉体的制备与性能研究[D]. 广州: 华南理工大学, 2017.
17 WANG J Z. Preparation and properties of NiCrCoAlY-TiB2 nano-powders and its composite coating applied to HVOF[D]. Guangzhou: South China University of Technology, 2017.
18 欧阳卓. GH4169合金等离子喷涂(MoSi2-CoNiCrAlY)复合涂层及其高温氧化性能研究[D]. 广州: 华南理工大学, 2015.
18 OUYANG Z. Preparation and properties of MoSi2-CoNiCrAlY nano-composite coating on GH4169 alloy by plasma spraying[D]. Guangzhou: South China University of Technology, 2015.
19 HATAMI M , NAEIMI F , SHAMANIAN M , et al. High-temperature oxidation behavior of nano-structured CoNiCrAlY-YSZ coatings produced by HVOF thermal spray technique[J]. Oxidation of Metals, 2018, 90 (1/2): 153- 167.
20 CHEN H , RUSHWORTH A . Effects of oxide stringers on the β-phase depletion behaviour in thermally sprayed CoNiCrAlY coatings during isothermal oxidation[J]. Journal of Materials Science & Technology, 2020, 45, 108- 116.
21 KARAOGLANLI A C , OZGURLUK Y , DOLEKER K M . Comparison of microstructure and oxidation behavior of CoNiCrAlY coatings produced by APS, SSAPS, D-gun, HVOF and CGDS techniques[J]. Vacuum, 2020, 180, 109609.
doi: 10.1016/j.vacuum.2020.109609
22 CHEN H , BARMAN T . Thermo-Calc and DICTRA modelling of the β-phase depletion behaviour in CoNiCrAlY coating alloys at different Al contents[J]. Computational Materials Science, 2018, 147, 103- 114.
doi: 10.1016/j.commatsci.2018.02.013
23 UNOCIC K A , BERGHOLZ J , HUANG T , et al. High-temperature behavior of oxide dispersion strengthening CoNiCrAlY[J]. Materials at High Temperatures, 2018, 35 (1/3): 108- 119.
24 段佳林. GH99高温合金及其MCrAlY(Ta)(M=Ni, Co)涂层静态高温氧化行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
24 DUAN J L. Static oxidation behavior of superalloy GH99 and MCrAlY(Ta) (M=Ni, Co) coatings at high temperatures[D]. Harbin: Harbin Institute of Technology, 2011.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 孟倩, 李东阳, 杨江仁, 刘天增. 310S耐热钢的高温氧化行为[J]. 材料工程, 2022, 50(9): 137-149.
[3] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[4] 夏先朝, 冯学磊, 孙京丽, 聂敬敬, 庞松, 袁勇, 董泽华. 镁合金超疏水环氧复合涂层的制备与性能[J]. 材料工程, 2022, 50(8): 124-132.
[5] 王露, 陈雷雷, 徐凯, 娄明, 杜玉洁, 毛勇, 常可可. 前过渡族元素X对TiAlXN涂层结构与性能的作用[J]. 材料工程, 2022, 50(7): 69-79.
[6] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[7] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[8] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[9] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[10] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[11] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[12] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[13] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[14] 陈倩, 赵雪阳, 尤德强, 曾戎, 于振涛, 李卫, 王小健. 3D打印纯钛骨支架表面掺银介孔生物活性玻璃涂层的性能研究[J]. 材料工程, 2022, 50(11): 34-45.
[15] 陈维平, 陈焕达, 褚晨亮, 付志强. 粉末冶金(FeNiMnAlx)50Cu50中熵合金的微观组织与力学性能[J]. 材料工程, 2022, 50(10): 55-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn