Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (1): 109-116    DOI: 10.11868/j.issn.1001-4381.2020.001087
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
静电喷雾法/原位洗脱法结合制备电致变色薄膜
朱陈杰1,2, 陈海权1,2, 于有海2,*()
1 东华大学 材料科学与工程学院 纤维材料改性国家重点实验室, 上海 201620
2 东华大学 先进低维材料中心, 上海 201620
Preparation of electrochromic film by combination of electrostatic spray method/in-situ washing method
Chenjie ZHU1,2, Haiquan CHEN1,2, Youhai YU2,*()
1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
2 Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
全文: PDF(14229 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

电致变色材料在提倡低碳节能的发展理念下有很好的发展前景, 而探索一种高效简单且性能优异的制备工艺尤为重要。利用静电喷雾法结合原位洗脱法制备了聚合物电致变色薄膜。根据电解质盐的颜色适配性和溶解性, 选择四丁基高氯酸铵(TBAP)作为模板剂, 在易加工的TPA-OMe-PA溶液中添加不同比例的电解质盐, 然后利用静电喷雾技术在ITO玻璃表面沉积制备薄膜, 再通过原位洗脱法去除其中的模板剂-电解质盐, 最终制备出含有多层级孔结构的聚合物薄膜。采用电子扫描显微镜对其形貌进行分析, 利用电化学工作站结合紫外/可见/红外光谱仪研究了薄膜的电致变色性能。研究结果表明, 利用静电喷雾技术与原位洗脱法制备的聚合物薄膜具备多层级孔结构和良好的电致变色性能。其中电解质含量为33.3%(质量分数)时, 多层级孔隙率最高, 且电致变色性能最为优异, 漂白时间/着色时间缩减至0.6 s/1 s, 着色效率达到608.2 cm2·C-1, 为已报道基于相同材料的电致变色薄膜的最快响应速度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱陈杰
陈海权
于有海
关键词 电致变色薄膜静电喷雾沉积原位洗脱法多层级孔结构电化学性能    
Abstract

Electrochromic materials have good development prospect under the development concept of promoting low carbon and energy saving. In order to explore the efficient, simple and excellent preparation process, the polymer electrochromic film was prepared by the electrostatic spray method combined with the in-situ elution method. According to the color adaptability and solubility of the electrolyte salt, tetrabutylammonium perchlorate (TBAP) was selected as the template, and different proportions of electrolyte salt were added to the easy-to-process TPA-OMe-PA solution, then film was deposited on the surface of the ITO glass by electrostatic spray technology. After that, the electrolyte salt was precipitated by in-situ washing method. The morphology of the film was analyzed using scanning electron microscope, and the electrochromic properties of the film were studied using the electrochemical workstation combined with ultraviolet/visible/infrared spectrometer. The research results show that the polymer film prepared by electrostatic spray technology and in-situ elution method have multi-level pore structure and excellent electrochromic properties. Especially when the electrolyte content is 33.3%(mass fraction), the multi-layer porosity is the highest, and the electrochromic performance is the best. The bleaching time/coloration time is reduced to 0.6 s/1 s, and the coloration efficiency reaches 608.2 cm2·C-1, which is the best record for the polyamide based electrochromic film.

Key wordselectrochromic film    electrostatic spray deposition    in-situ washing method    multi-level pore structure    electrochemical performance
收稿日期: 2020-11-26      出版日期: 2022-01-19
中图分类号:  TQ150.7  
通讯作者: 于有海     E-mail: yuyouhai@dhu.edu.cn
作者简介: 于有海(1977—), 男, 研究员, 博士, 研究方向为电致变色、导电高分子等, 联系地址: 上海市松江区人民北路2999号东华大学民用航空复合材料协同创新中心B556(201620), E-mail: yuyouhai@dhu.edu.cn
引用本文:   
朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
Chenjie ZHU, Haiquan CHEN, Youhai YU. Preparation of electrochromic film by combination of electrostatic spray method/in-situ washing method. Journal of Materials Engineering, 2022, 50(1): 109-116.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001087      或      http://jme.biam.ac.cn/CN/Y2022/V50/I1/109
Fig.1  静电喷雾沉积法-原位洗脱法制备电致变色薄膜的流程示意图
Fig.2  不同含量TBAP及TBAP-33.3%未洗脱盐的薄膜的SEM图
(a)9.1%;(b)23.1%;(c)33.3%;(d):41.2%;(e)TBAP-33.3%未洗脱盐;(1)表面;(2)截面
Fig.3  不同TBAP含量的电致变色薄膜的循环伏安图
Material Epa/V Epc/V ΔE/V
TBAP-9.1% 0.90 0.70 0.20
TBAP-23.1% 0.90 0.73 0.17
TBAP-33.3% 0.90 0.70 0.20
TBAP-41.2% 0.89 0.73 0.16
Table 1  薄膜的循环伏安曲线图的氧化电位、还原电位及电位差
Fig.4  不同TBAP含量薄膜的交流阻抗图
Fig.5  电极反应过程的机理研究
(a)不同扫描速率下的CV曲线图;(b)阳极、阴极峰值电流与扫描速率的关系;(c)阳极、阴极峰值电流与扫描速率的平方根的关系
Fig.6  不同含量TBAP薄膜的光谱仪-电化学工作站联用测试图
(1)吸收光谱图;(2)电位在-0.25 V/0.95 V之间以40 s间隔振荡时792 nm处的光透射率随时间变化;(3)薄膜的切换速度;
(a)9.1%;(b)23.1%;(c)33.3%;(d)41.2%
Material/Method Wavelength/nm Tb /% Tc/% ΔT/% Tb/s Tc/s CE/(cm2·C-1)
TBAP-9.1% 792 93.4 38.3 55.1 2.4 1.8 527.6
TBAP-23.1% 792 99.1 36.7 62.4 2.6 1.0 588.7
TBAP-33.3% 792 92.1 48.5 42.6 0.6 1.0 608.2
TBAP-41.2% 792 99.3 78.3 21.0 2.2 1.4 146.0
Ultrasonic spray-coated[28] 787 >90.0 3.4 1.8 342.0
Spin- or dip-coating[26] 787 85.0 1.5 4.5 374.0
Washing salts out[25] 770 70.0 3.0 2.8 129.3
Table 2  不同TBAP含量薄膜的电致变色性能与文献中的性能参数比较
Fig.7  薄膜的着色效率图
(a)TBAP-9.1%;(b)TBAP-23.1%;(c)TBAP-33.3%;(d)TBAP-41.2%
1 WENG D , LI M , ZHENG J , et al. High-performance complementary electrochromic device based on surface-confined tungsten oxide and solution-phase n-methyl-phenothiazine with full spectrum absorption[J]. Journal of Materials Science, 2017, 52 (1): 86- 95.
doi: 10.1007/s10853-016-0297-6
2 WANG Z , WANG X , CONG S , et al. Fusing electrochromic technology with other advanced technologies: a new roadmap for future development[J]. Materials Science and Engineering: R, 2020, 140, 100524.
doi: 10.1016/j.mser.2019.100524
3 WU W , WANG M , MA J , et al. Electrochromic metal oxides: Recent progress and prospect[J]. Advanced Electronic Materials, 2018, 4 (8): 1800185.
doi: 10.1002/aelm.201800185
4 LI R , LI K , WANG G , et al. Ion-transport design for high-performance Na+-based electrochromics[J]. ACS Nano, 2018, 12 (4): 3759- 3768.
doi: 10.1021/acsnano.8b00974
5 KUNG C W , WANG T C , MONDLOCH J E , et al. Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism[J]. Chemistry of Materials, 2013, 25 (24): 5012- 5017.
doi: 10.1021/cm403726v
6 BEAUJUGE P M , REYNOLDS J R . Color control in π-conjugated organic polymers for use in electrochromic devices[J]. Chemical Reviews, 2010, 110 (1): 268- 320.
doi: 10.1021/cr900129a
7 KIM J , RÉMOND M , KIM D , et al. Electrochromic conjugated polymers for multifunctional smart windows with integrative functionalities[J]. Advanced Materials Technologies, 2020, 5 (6): 1900890.
doi: 10.1002/admt.201900890
8 LI X , PERERA K , HE J , et al. Solution-processable electrochromic materials and devices: Roadblocks and strategies towards large-scale applications[J]. Journal of Materials Chemistry C, 2019, 7 (41): 12761- 12789.
doi: 10.1039/C9TC02861G
9 RAI V , SINGH R S , BLACKWOOD D J , et al. A review on recent advances in electrochromic devices: a material approach[J]. Advanced Engineering Materials, 2020, 22 (8): 2000082.
doi: 10.1002/adem.202000082
10 MONDAL S , YOSHIDA T , RANA U , et al. Thermally stable electrochromic devices using Fe(Ⅱ)-based metallo-supramolecular polymer[J]. Solar Energy Materials and Solar Cells, 2019, 200, 110000.
doi: 10.1016/j.solmat.2019.110000
11 SINGH R , THARION J , MURUGAN S , et al. ITO-free solution-processed flexible electrochromic devices based on PEDOT: PSS as transparent conducting electrode[J]. ACS Applied Materials & Interfaces, 2017, 9 (23): 19427- 19435.
12 KIM K W , KIM Y M , LI X , et al. Various coating methodologies of WO3 according to the purpose for electrochromic devices[J]. Nanomaterials, 2020, 10 (5): 821.
doi: 10.3390/nano10050821
13 CAI G , CHENG X , LAYANI M , et al. Direct inkjet-patterning of energy efficient flexible electrochromics[J]. Nano Energy, 2018, 49, 147- 154.
doi: 10.1016/j.nanoen.2018.04.017
14 LI H , CHEN J , CUI M , et al. Spray coated ultrathin films from aqueous tungsten molybdenum oxide nanoparticle ink for high contrast electrochromic applications[J]. Journal of Materials Chemistry C, 2016, 4 (1): 33- 38.
doi: 10.1039/C5TC02802G
15 WANG H , BARRETT M , DUANE B , et al. Materials and processing of polymer-based electrochromic devices[J]. Materials Science and Engineering: B, 2018, 228, 167- 174.
doi: 10.1016/j.mseb.2017.11.016
16 HU C W , SATO T , ZHANG J , et al. Three-dimensional Fe(Ⅱ)-based metallo-supramolecular polymers with electrochromic properties of quick switching, large contrast, and high coloration efficiency[J]. ACS Applied Materials & Interfaces, 2014, 6 (12): 9118- 9125.
17 YANG H , YU J H , SEO H J , et al. Improved electrochromic properties of nanoporous NiO film by NiO flake with thickness controlled by aluminum[J]. Applied Surface Science, 2018, 461, 88- 92.
doi: 10.1016/j.apsusc.2018.05.231
18 成明, 杨继凯, 郝志旭, 等. TiO2基底对MoO3/TiO2复合薄膜电致变色性能的影响[J]. 材料工程, 2020, 48 (10): 163- 168.
18 CHENG M , YANG J K , HAO Z X , et al. Effect of TiO2 substrate on electrochromic properties of MoO3/TiO2 composite films[J]. Journal of Materials Engineering, 2020, 48 (10): 163- 168.
19 ZHU C , FU Y , YU Y . Designed nanoarchitectures by electrostatic spray deposition for energy storage[J]. Advanced Materials, 2019, 31 (1): 1803408.
doi: 10.1002/adma.201803408
20 KHAMIDY N I , LAURENCIN J , DJURADO E . Improving the electrochemical performance of laprnio4+δ as an oxygen electrode for intermediate temperature solid oxide cells by varying the architectural design[J]. Journal of Electroanalytical Chemistry, 2019, 849, 113373.
doi: 10.1016/j.jelechem.2019.113373
21 龚文正, 周晶晶, 阮诗伦, 等. 静电纺丝与静电喷雾技术共纺制备PPESK/PVDF复合锂电池隔膜[J]. 材料工程, 2018, 46 (3): 1- 6.
21 GONG W Z , ZHOU J J , RUAN S L , et al. PPESK/PVDF lithium-ion battery composite separators fabricated by combination of electrospinning and electrospraying techniques[J]. Journal of Materials Engineering, 2018, 46 (3): 1- 6.
22 GARCIA-LOBATO M A , GARCIA C R , MTZ-ENRIQUEZ A I , et al. Enhanced electrochromic performance of NiO-MWCNTs thin films deposited by electrostatic spray deposition[J]. Materials Research Bulletin, 2019, 114, 95- 100.
doi: 10.1016/j.materresbull.2019.02.025
23 GHIMBEU C M , Van LANDSCHOOT R C , SCHOONMAN J , et al. Tungsten trioxide thin films prepared by electrostatic spray deposition technique[J]. Thin Solid Films, 2007, 515 (13): 5498- 5504.
doi: 10.1016/j.tsf.2007.01.014
24 ZHANG S , SUN G , HE Y , et al. Preparation, characterization, and electrochromic properties of nanocellulose-based polyaniline nanocomposite films[J]. ACS Applied Materials & Interfaces, 2017, 9 (19): 16426- 16434.
25 PAN B C , CHEN W H , HSIAO S H , et al. A facile approach to prepare porous polyamide films with enhanced electrochromic performance[J]. Nanoscale, 2018, 10 (35): 16613- 16620.
doi: 10.1039/C8NR04823A
26 CHANG C W , LIOU G S , HSIAO S H . Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties[J]. Journal of Materials Chemistry, 2007, 17 (10): 1007- 1015.
doi: 10.1039/B613140A
27 WANG X , CHEN K , DE VASCONCELOS L S , et al. Mechanical breathing in organic electrochromics[J]. Nature Communications, 2020, 11 (1): 211.
doi: 10.1038/s41467-019-14047-8
28 LIU H S , CHANG W C , CHOU C Y , et al. Controllable electrochromic polyamide film and device produced by facile ultrasonic spray-coating[J]. Scientific Reports, 2017, 7 (1): 11982.
doi: 10.1038/s41598-017-11862-1
[1] 马锐, 张宇雨, 王菲菲, 刘琪瑶, 李嘉琪, 魏金枝. Ni-BTC/RGO复合材料的制备及其电化学性能[J]. 材料工程, 2022, 50(6): 124-130.
[2] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[3] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[4] 曾静, 武东政, 庄奕超, 赵金保. 镁电池正极材料性能提升策略的研究进展[J]. 材料工程, 2021, 49(2): 10-20.
[5] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
[6] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[7] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[8] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[9] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[10] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[11] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[12] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[13] 张国芳, 孙涵丰, 许剑轶, 张羊换. 具可变价态稀土氧化物对Mg2Ni合金储氢性能的催化作用[J]. 材料工程, 2019, 47(10): 90-96.
[14] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[15] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn