Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (6): 12-26    DOI: 10.11868/j.issn.1001-4381.2020.001091
  增材制造专栏 本期目录 | 过刊浏览 | 高级检索 |
增材制造智能材料研究现状及展望
耿鹏1, 陈道兵1, 周燕2,*(), 文世峰1, 闫春泽1, 史玉升1
1 华中科技大学 材料成形与模具技术国家重点实验室, 武汉 430074
2 中国地质大学(武汉) 工程学院,武汉 430074
Research status and prospect of additive manufacturing of intelligent materials
Peng GENG1, Daobing CHEN1, Yan ZHOU2,*(), Shifeng WEN1, Chunze YAN1, Yusheng SHI1
1 State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2 Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
全文: PDF(21335 KB)   HTML ( 4 )  
输出: BibTeX | EndNote (RIS)      
摘要 

增材制造技术自问世以来成为拓展多学科发展、实现多学科研究融合以及联结材料与产品的关键性技术, 该技术颠覆了传统加工设计和制造理念, 同时也是实现智能制造的重要方法。智能材料是对环境具有感知、可响应、自修复和自适应的一类材料。将智能材料与增材制造技术有机结合, 可实现具有感受外部刺激或环境激活的三维智能器件的一体化制造。智能材料增材制造技术被广泛应用于个性化医疗、柔性电子和软体机器人等领域。本文对增材制造中所涉及的智能材料进行综述, 介绍通过增材制造方法对金属类、高分子类和陶瓷类智能材料所带来的优势及面临的问题。增材制造技术作为实现设计、材料和结构有机融合的有效手段, 将成为推动智能材料发展的关键。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
耿鹏
陈道兵
周燕
文世峰
闫春泽
史玉升
关键词 增材制造智能材料4D打印智能器件    
Abstract

Additive manufacturing technology as revolutionary manufacturing technology has attracted much attention.This technology transformed traditional processing design and manufacturing concepts and promoted the development of intelligent manufacturing. Intelligent material is a kind of material that has the ability of self-perception, autonomous response, self-healing and adaptation. The combination of intelligent materials and additive manufacturing technology can realize the integrated manufacturing of three-dimensional smart devices with the ability to sense external stimuli or environmental activation. This technology has been widely used in fields such as biomedical devices, flexible electronics, soft robotics, and other fields.Additive manufactured intelligent materials, and the advantages and problems of additive manufactured intelligent materials of metals, polymers, and ceramics were reviewed.As a technical means to realize the organic integration of design, material and structure, additive manufacturing technology will become the key to promote the development of intelligent materials.

Key wordsadditive manufacturing    intelligent material    4D printing    intelligent device
收稿日期: 2020-11-29      出版日期: 2022-06-20
中图分类号:  TB381  
通讯作者: 周燕     E-mail: zhouyan@cug.edu.cn
作者简介: 周燕(1987—),女,副教授,博士,研究方向为增材制造,联系地址:湖北省武汉市中国地质大学(武汉)工程学院(430074),E-mail: zhouyan@cug.edu.cn
引用本文:   
耿鹏, 陈道兵, 周燕, 文世峰, 闫春泽, 史玉升. 增材制造智能材料研究现状及展望[J]. 材料工程, 2022, 50(6): 12-26.
Peng GENG, Daobing CHEN, Yan ZHOU, Shifeng WEN, Chunze YAN, Yusheng SHI. Research status and prospect of additive manufacturing of intelligent materials. Journal of Materials Engineering, 2022, 50(6): 12-26.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001091      或      http://jme.biam.ac.cn/CN/Y2022/V50/I6/12
Fig.1  BJ成形Ni-Mn-Ga铁磁形状记忆合金(a)及磁感生应变曲线(b)[36]
Material Intelligent metal Fabrication technology Reference
SMA NiTi SLM,LENS,WAAM [10-12, 14]
NiTi-Hf SLM [19]
NiTi-Cu LENS [20-21]
Cu-Al-Ni DMLF [27]
Cu-Al-Ni-Ti SLM [29-30]
Cu-Al-Ni-Mn SLM,DMLF [23-26]
Cu-Al-Mn-La SLM [28]
Fe-Mn-Al-Ni SLM [32]
FSMA Ni-Mn-Ga BJ [35-36]
Magnetostrictive Fe-Co-V SLM [38-39]
material FeGa-Al UAM [40-41]
Table 1  典型增材制造金属类智能材料
Fig.2  增材制造热致变形高分子材料
(a)FDM成形形状-颜色双响应结构[50];(b)DIW成形热-磁双响应软体智能器件[56];(c)SLA成形自主“排汗”柔性机械手[70];(d)Inkjet成形无需热机械训练的SMP和弹性体复合结构[77]
Fig.3  增材制造电致变形高分子材料
(a)FDM打印DE执行器[83];(b)PμSL打印电活性水凝胶及抓取演示[84]
Fig.4  增材制造磁致变形高分子材料
(a)FDM打印磁热效应驱动的变形结构[85];(b)SLA打印磁场诱导机械超材料结构[89]
Fig.5  增材制造光致变形高分子材料
(a)光热效应驱动变形的4D打印向日葵[91];(b)4D打印光敏官能团驱动变形的柔性薄膜驱动器[93]
Fig.6  增材制造pH响应和温度响应型水凝胶支架[98]
Material Intelligent polymer Fabrication technology Driving method Reference
SMP Thermochromic powder/PLA FDM Heat [50]
PCL/PLA FDM Heat [51]
SiC/PLA FDM Heat [52]
CNT/PLA FDM Heat/electricity [53]
GO/PLA/TPU FDM Heat [54]
CB/PLA FDM Heat/electricity [55]
Fe3O4/PLA FDM Heat/magnetism [85]
CB/TPU FDM Heat/light [91]
NdFeB/UV resin DIW Heat/magnetism [56]
CNT/PLMC DIW Heat/electricity [58]
Acrylate resin DLP Heat [64]
Acrylate resin SLA Heat [69]
Tangoblack+/VeroClear Inkjet Heat [75-77]
Tango+ Inkjet Heat/light [92]
SMH PEO-PU DIW Heat [59]
PNIPAm,PAAm SLA Heat [70]
Acrylate resin PμSL Electricity [84]
PVA/coumarin DIW Light [95]
Acrylate resin/Pluronic F127 SLA pH [98]
Piezoelectric polymer KNN/PVDF FDM Electricity [79]
BaTiO3/PVDF FDM/DIW Electricity [80, 82]
PVDF/UV resin SLA Electricity [81]
LCE LC242 DIW Heat [57]
DE TPU FDM Electricity [83]
Magnetism-driven polymer NdFeB/silicone DIW Magnetism [86]
NdFeB/TPU SLS Magnetism [87]
Carbonyl iron/silicone DIW Magnetism [88]
Magnetorheological fluid PμSL Magnetism [89]
Light-driven polymer Azobenzene/silicone DIW Light [93]
Azobenzene DIW Light [94]
Chemosensory polymer Acrylate resin Inkjet Water [96-97]
Alginate/PAAm CLIP Ca2+ [99]
Table 2  典型增材制造高分子类智能材料
Fig.7  增材制造陶瓷类智能材料
(a)多材料DIW共挤出压电-导电智能传感器[110];(b)4D打印陶瓷[111]
1 史玉升, 伍宏志, 闫春泽, 等. 4D打印——智能构件的增材制造技术[J]. 机械工程学报, 2020, 56 (15): 1- 25.
1 SHI Y S , WU H Z , YAN C Z , et al. Four-dimensional printing—the additive manufacturing technology of intelligent components[J]. Journal of Mechanical Engineering, 2020, 56 (15): 1- 25.
2 曾成均, 刘立武, 边文凤, 等. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48 (8): 1- 13.
2 ZENG C J , LIU L W , BIAN W F , et al. Progress in 4D printing of stimulus-responsive composites and its applications[J]. Journal of Materials Engineering, 2020, 48 (8): 1- 13.
3 TAKAGI T . A concept of intelligent materials[J]. Journal of Intelligent Material Systems and Structures, 1990, 1 (2): 149- 156.
doi: 10.1177/1045389X9000100201
4 ALI M H , ABILGAZIYEV A , ADAIR D . 4D printing: a critical review of current developments, and future prospects[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105 (1/4): 701- 717.
5 ELAHINIA M H , HASHEMI M , TABESH M , et al. Manufacturing and processing of NiTi implants: a review[J]. Progress in Materials Science, 2012, 57 (5): 911- 946.
doi: 10.1016/j.pmatsci.2011.11.001
6 黄海友, 王伟丽, 刘记立, 等. 高性能Cu基形状记忆合金组织设计研究进展[J]. 中国材料进展, 2016, 35 (11): 835- 842.
6 HUANG H Y , WANG W L , LIU J L , et al. Progress on microstructure design of high performance Cu-based shape memory alloys[J]. Materials China, 2016, 35 (11): 835- 842.
7 MARUYAMA T, KUBO H. Ferrous (Fe-based) shape memory alloys (SMAs): properties, processing and applications[M]// Woodhead Publishing Series in Metals and Surface Engineering. Shape Memory and Superelastic Alloys. Cambridge: Woodhead Publishing, 2011: 141-159.
8 LESTER B T , BAXEVANIS T , CHEMISKY Y , et al. Review and perspectives: shape memory alloy composite systems[J]. Acta Mechanica, 2015, 226 (12): 3907- 3960.
doi: 10.1007/s00707-015-1433-0
9 PARVIZI S , HASHEMI S M , ASGARINIA F , et al. Effective parameters on the final properties of NiTi-based alloys manufactured by powder metallurgy methods: a review[J]. Progress in Materials Science, 2021, 117, 100739.
doi: 10.1016/j.pmatsci.2020.100739
10 CLARE A T , CHALKER P R , DAVIES S , et al. Selective laser melting of high aspect ratio 3D nickel-titanium structures two way trained for MEMS applications[J]. International Journal of Mechanics and Materials in Design, 2008, 4 (2): 181- 187.
doi: 10.1007/s10999-007-9032-4
11 KRISHNA B V , BOSE S , BANDYOPADHYAY A . Laser processing of net-shape NiTi shape memory alloy[J]. Metallurgical and Materials Transactions A, 2007, 38 (5): 1096- 1103.
doi: 10.1007/s11661-007-9127-4
12 WANG J , PAN Z , YANG G , et al. Location dependence of microstructure, phase transformation temperature and mechanical properties on Ni-rich NiTi alloy fabricated by wire arc additive manufacturing[J]. Materials Science and Engineering: A, 2019, 749 (11): 218- 222.
13 ELAHINIA M , SHAYESTEH MOGHADDAM N , TAHERI ANDANI M , et al. Fabrication of NiTi through additive manufacturing: a review[J]. Progress in Materials Science, 2016, 83, 630- 663.
doi: 10.1016/j.pmatsci.2016.08.001
14 ZHANG Q , HAO S , LIU Y , et al. The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability[J]. Applied Materials Today, 2020, 19, 100547- 100559.
doi: 10.1016/j.apmt.2019.100547
15 尹燕, 徐仰涛, 沈婕, 等. 三元Ni-Ti基形状记忆合金的研究现状[J]. 材料导报, 2006, 20 (12): 70- 73.
doi: 10.3321/j.issn:1005-023X.2006.12.019
15 YIN Y , XU Y T , SHEN J , et al. Review on the research status of ternary NiTi shape memory alloy[J]. Materials Reports, 2006, 20 (12): 70- 73.
doi: 10.3321/j.issn:1005-023X.2006.12.019
16 UMALE T , SALAS D , TOMES B , et al. The effects of wide range of compositional changes on the martensitic transformation characteristics of NiTiHf shape memory alloys[J]. Scripta Materialia, 2019, 161, 78- 83.
doi: 10.1016/j.scriptamat.2018.10.008
17 NESPOLI A , PASSARETTI F , VILLA E . Phase transition and mechanical damping properties: a DMTA study of NiTiCu shape memory alloys[J]. Intermetallics, 2013, 32, 394- 400.
doi: 10.1016/j.intermet.2012.09.005
18 WANG M , JIANG M , LIAO G , et al. Martensitic transformation involved mechanical behaviors and wide hysteresis of NiTiNb shape memory alloys[J]. Progress in Natural Science: Materials International, 2012, 22 (2): 130- 138.
doi: 10.1016/j.pnsc.2012.03.010
19 ELAHINIA M , MOGHADDAM N S , AMERINATANZI A , et al. Additive manufacturing of NiTiHf high temperature shape memory alloy[J]. Scripta Materialia, 2018, 145, 90- 94.
doi: 10.1016/j.scriptamat.2017.10.016
20 SHIVA S , PALANI I A , MISHRA S K , et al. Influence of Cu addition to improve shape memory properties in NiTi alloys developed by laser rapid manufacturing[J]. Journal of Laser Micro Nanoengineering, 2016, 11 (2): 153- 157.
doi: 10.2961/jlmn.2016.02.0003
21 SHIVA S , YADAIAH N , PALANI I A , et al. Thermo mechanical analyses and characterizations of TiNiCu shape memory alloy structures developed by laser additive manufacturing[J]. Journal of Manufacturing Processes, 2019, 48, 98- 109.
doi: 10.1016/j.jmapro.2019.11.003
22 DASGUPTA R . A look into Cu-based shape memory alloys: present scenario and future prospects[J]. Journal of Materials Research, 2014, 29 (16): 1681- 1698.
doi: 10.1557/jmr.2014.189
23 MAZZER E , KIMINAMI C S , GARGARELLA P , et al. Atomization and selective laser melting of a Cu-Al-Ni-Mn shape memory alloy[J]. Materials Science Forum, 2014, 802, 343- 348.
doi: 10.4028/www.scientific.net/MSF.802.343
24 GARGARELLA P , KIMINAMI C S , MAZZER E M , et al. Phase formation, thermal stability and mechanical properties of a Cu-Al-Ni-Mn shape memory alloy prepared by selective laser melting[J]. Materials Research, 2015, 18, 35- 38.
doi: 10.1590/1516-1439.338914
25 GUSTMANN T , NEVES A , KVHN U , et al. Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting[J]. Additive Manufacturing, 2016, 11, 23- 31.
doi: 10.1016/j.addma.2016.04.003
26 GUSTMANN T , DOS SANTOS J M , GARGARELLA P , et al. Properties of Cu-based shape-memory alloys prepared by selective laser melting[J]. Shape Memory and Superelasticity, 2017, 3 (1): 24- 36.
doi: 10.1007/s40830-016-0088-6
27 DONOSO G R , WALCZAK M , MOORE E R , et al. Towards direct metal laser fabrication of Cu-based shape memory alloys[J]. Rapid Prototyping Journal, 2017, 23 (2): 329- 336.
doi: 10.1108/RPJ-02-2016-0017
28 党明珠, 朱文志, 田健, 等. 激光选区熔化成形Cu-Al-Mn-La形状记忆合金[J]. 电加工与模具, 2020, (1): 52- 54.
doi: 10.3969/j.issn.1009-279X.2020.01.012
28 DANG M Z , ZHU W Z , TIAN J , et al. Cu-Al-Mn-La shape memory alloy processed by selective laser melting[J]. Electromachining & Mould, 2020, (1): 52- 54.
doi: 10.3969/j.issn.1009-279X.2020.01.012
29 田健, 朱文志, 魏青松, 等. 激光选区熔化成形Cu-Al-Ni-Ti形状记忆合金材料研究[C]//中国机械工程学会特种加工分会、广东工业大学: 第17届全国特种加工学术会议论文集(下册). 北京: 中国机械工程学会, 2017: 6.
30 TIAN J , ZHU W Z , WEI Q S , et al. Process optimization, microstructures and mechanical properties of a Cu-based shape memory alloy fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2019, 785, 754- 764.
doi: 10.1016/j.jallcom.2019.01.153
31 邹芹, 党赏, 李艳国, 等. Fe-基形状记忆合金的研究进展[J]. 材料导报, 2019, 33 (23): 3955- 3962.
doi: 10.11896/cldb.18120204
31 ZOU Q , DANG S , LI Y G , et al. Research progress of iron-based shape memory alloys: a review[J]. Materials Reports, 2019, 33 (23): 3955- 3962.
doi: 10.11896/cldb.18120204
32 NIENDORF T , BRENNE F , KROOΒ P , et al. Microstructural evolution and functional properties of Fe-Mn-Al-Ni shape memory alloy processed by selective laser melting[J]. Metallurgical and Materials Transactions A, 2016, 47 (6): 2569- 2573.
doi: 10.1007/s11661-016-3412-z
33 FARAN E , SHILO D . Ferromagnetic shape memory alloys—challenges, applications, and experimental characterization[J]. Experimental Techniques, 2016, 40 (3): 1005- 1031.
doi: 10.1007/s40799-016-0098-5
34 BACHAGA T , ZHANG J , KHITOUNI M , et al. NiMn-based Heusler magnetic shape memory alloys: a review[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103 (5): 2761- 2772.
35 MOSTAFAEI A , KIMES K A , STEVENS E L , et al. Microstructural evolution and magnetic properties of binder jet additive manufactured Ni-Mn-Ga magnetic shape memory alloy foam[J]. Acta Materialia, 2017, 131, 482- 490.
doi: 10.1016/j.actamat.2017.04.010
36 CAPUTO M P , BERKOWITZ A E , ARMSTRONG A , et al. 4D printing of net shape parts made from Ni-Mn-Ga magnetic shape-memory alloys[J]. Additive Manufacturing, 2018, 21, 579- 588.
doi: 10.1016/j.addma.2018.03.028
37 NARITA F , FOX M . A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications[J]. Advanced Engineering Materials, 2018, 20 (5): 1700743.
doi: 10.1002/adem.201700743
38 YANG X S , LIU J , CUI X , et al. Effect of remelting on microstructure and magnetic properties of Fe-Co-based alloys produced by laser additive manufacturing[J]. Journal of Physics and Chemistry of Solids, 2019, 130, 210- 216.
doi: 10.1016/j.jpcs.2019.03.001
39 杨晓珊. 激光增材制造Fe-Co基合金的磁学及力学性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
39 YANG X S. Magnetic and mechanical properties of Fe-Co based alloys fabricated by laser additive manufacturing[D]. Harbin: Harbin Engineering University, 2019.
40 HAHNLEN R, DAPINO M J. Performance and modeling of active metal-matrix composites manufactured by ultrasonic additive manufacturing[C]// Proceedings of SPIE 7979: Industrial and Commercial Applications of Smart Structures Technologies 2011. Bellingham: SPIE-International Society for Optical Engineering, 2011: 797903.
41 SCHEIDLER J J, DAPINO M J. Stiffness tuning of FeGa structures manufactured by ultrasonic additive manufacturing[C]// Proceedings of SPIE 9059: Industrial and Commercial Applications of Smart Structures Technologies 2014. Bellingham: SPIE-The International Society for Optical Engineering, 2014: 905907.
42 XIA Y , HE Y , ZHANG F , et al. A review of shape memory polymers and composites: mechanisms, materials, and applications[J]. Advanced Materials, 2021, 33 (6): 2000713.
doi: 10.1002/adma.202000713
43 韩昕, 李孟宇, 肖航, 等. 水凝胶: 智能材料的新平台[J]. 应用化工, 2019, 48 (9): 2184- 2188.
doi: 10.3969/j.issn.1671-3206.2019.09.038
43 HAN X , LI M Y , XIAO H , et al. Hydrogel: a new platform for smart materials[J]. Applied Chemical Industry, 2019, 48 (9): 2184- 2188.
doi: 10.3969/j.issn.1671-3206.2019.09.038
44 CHEN C , WANG X , WANG Y , et al. Additive manufacturing of piezoelectric materials[J]. Advanced Functional Materials, 2020, 30 (52): 2005141.
doi: 10.1002/adfm.202005141
45 RASTOGI P , NJUGUNA J , KANDASUBRAMANIAN B . Exploration of elastomeric and polymeric liquid crystals with photothermal actuation: a review[J]. European Polymer Journal, 2019, 121, 109287.
doi: 10.1016/j.eurpolymj.2019.109287
46 YUAN C , ROACH D J , DUNN C K , et al. 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers[J]. Soft Matter, 2017, 13 (33): 5558- 5568.
doi: 10.1039/C7SM00759K
47 KOTIKIAN A , MCMAHAN C , DAVIDSON E C , et al. Untethered soft robotic matter with passive control of shape morphing and propulsion[J]. Science Robot, 2019, 4 (33): 7044.
doi: 10.1126/scirobotics.aax7044
48 巫金波, 温维佳. 场诱导软物质智能材料研究进展[J]. 物理学报, 2016, 65 (18): 112- 124.
48 WU J B , WEN W J . Research progress of field-induced soft smart materials[J]. Acta Physica Sinica, 2016, 65 (18): 112- 124.
49 KUANG X , ROACH D J , WU J , et al. Advances in 4D printing: materials and applications[J]. Advanced Functional Materials, 2019, 29 (2): 1805290.
doi: 10.1002/adfm.201805290
50 WANG J , WANG Z , SONG Z , et al. Biomimetic shape-color double-responsive 4D printing[J]. Advanced Materials Technologies, 2019, 4 (9): 1900293.
doi: 10.1002/admt.201900293
51 LIU H , HE H , HUANG B . Favorable thermoresponsive shape memory effects of 3D printed poly(lactic acid)/poly(ε-caprolactone) blends fabricated by fused deposition modeling[J]. Macromolecular Materials and Engineering, 2020, 35 (11): 2000295.
52 LIU W, WU N, POCHIRAJU K. Relationship between conductivities and shape memory performance of FDM composite filaments[C]//Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. Florida: American Society of Mechanical Engineers, 2017: 70452.
53 LIU Y , ZHANG W , ZHANG F , et al. Microstructural design for enhanced shape memory behavior of 4D printed composites based on carbon nanotube/polylactic acid filament[J]. Composites Science and Technology, 2019, 181 (8): 107692.
54 CHEN Q , MANGADLAO J D , WALLAT J , et al. 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties[J]. ACS Applied Materials & Interfaces, 2017, 9 (4): 4015- 4023.
55 CHEN D , LIU Q , HAN Z , et al. 4D printing strain self-sensing and temperature self-sensing integrated sensor-actuator with bioinspired gradient gaps[J]. Advanced Science, 2020, 7 (13): 2000584.
doi: 10.1002/advs.202000584
56 MA C , WU S , ZE Q , et al. Magnetic multimaterial printing for multimodal shape transformation with tunable properties and shiftable mechanical behaviors[J]. ACS Applied Materials & Interfaces, 2020, 13 (11): 12639- 12648.
57 KOTIKIAN A , TRUBY R L , BOLEY J W , et al. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order[J]. Advanced Materials, 2018, 30 (10): 1706164.
doi: 10.1002/adma.201706164
58 WAN X , ZHANG F , LIU Y , et al. CNT-based electro-responsive shape memory functionalized 3D printed nanocomposites for liquid sensors[J]. Carbon, 2019, 155, 77- 87.
doi: 10.1016/j.carbon.2019.08.047
59 NAFICY S , GATELY R , GORKIN Ⅲ R , et al. 4D printing of reversible shape morphing hydrogel structures[J]. Macromolecular Materials and Engineering, 2017, 302 (1): 1600212.
doi: 10.1002/mame.201600212
60 PINARGOTE N W S , SMIRNOV A , PERETYAGIN N , et al. Direct ink writing technology (3D printing) of graphene-based ceramic nanocomposites: a review[J]. Nanomaterials, 2020, 10 (7): 1300.
doi: 10.3390/nano10071300
61 BEKAS D G , HOU Y , LIU Y , et al. 3D printing to enable multifunctionality in polymer-based composites: a review[J]. Composites: Part B, 2019, 179, 107540.
doi: 10.1016/j.compositesb.2019.107540
62 RAFIEE M , FARAHANI R D , THERRIAULT D . Multi-material 3D and 4D printing: a survey[J]. Advanced Science, 2020, 7 (12): 1902307.
doi: 10.1002/advs.201902307
63 HAN D , LEE H . Recent advances in multi-material additive manufacturing: methods and applications[J]. Current Opinion in Chemical Engineering, 2020, 28, 158- 166.
doi: 10.1016/j.coche.2020.03.004
64 SHAN W , CHEN Y , HU M , et al. 4D printing of shape memory polymer via liquid crystal display (LCD) stereolithographic 3D printing[J]. Materials Research Express, 2020, 7 (10): 105305.
doi: 10.1088/2053-1591/abbd05
65 YANG Y , LI X , CHU M , et al. Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability[J]. Science advances, 2019, 5 (4): 9490.
doi: 10.1126/sciadv.aau9490
66 SAFAEE S , CHEN R . Investigation of a magnetic field-assisted digital-light-processing stereolithography for functionally graded materials[J]. Procedia Manufacturing, 2019, 34, 731- 737.
doi: 10.1016/j.promfg.2019.06.229
67 TUMBLESTON J R , SHIRVANYANTS D , ERMOSHKIN N , et al. Continuous liquid interface production of 3D objects[J]. Science, 2015, 347 (6228): 1349- 1352.
doi: 10.1126/science.aaa2397
68 KELLY B E , BHATTACHARYA I , HEIDARI H , et al. Volumetric additive manufacturing via tomographic reconstruction[J]. Science, 2019, 363 (6431): 1075- 1079.
doi: 10.1126/science.aau7114
69 CHOONG Y Y C , MALEKSAEEDI S , ENG H , et al. 4D printing of high performance shape memory polymer using stereolithography[J]. Materials & Design, 2017, 126, 219- 225.
70 MISHRA A K , WALLIN T J , PAN W , et al. Autonomic perspiration in 3D-printed hydrogel actuators[J]. Science Robotics, 2020, 5 (38): 3918.
doi: 10.1126/scirobotics.aaz3918
71 MU Q , WANG L , DUNN C K , et al. Digital light processing 3D printing of conductive complex structures[J]. Additive Manufacturing, 2017, 18, 74- 83.
doi: 10.1016/j.addma.2017.08.011
72 DUAN W , LI S , WANG G , et al. Thermal conductivities and mechanical properties of AlN ceramics fabricated by three dimensional printing[J]. Journal of the European Ceramic Society, 2020, 40 (10): 3535- 3540.
doi: 10.1016/j.jeurceramsoc.2020.04.004
73 ZUO Y , YAO Z , LIN H , et al. Digital light processing 3D printing of graphene/carbonyl iron/polymethyl methacrylate nanocomposites for efficient microwave absorption[J]. Composites: Part B, 2019, 179, 107533.
doi: 10.1016/j.compositesb.2019.107533
74 DIENEL K E G , VAN BOCHOVE B , SEPPÄLÄ J V . Additive manufacturing of bioactive poly(trimethylene carbonate)/β-tricalcium phosphate composites for bone regeneration[J]. Biomacromolecules, 2020, 21 (2): 366- 375.
doi: 10.1021/acs.biomac.9b01272
75 GE Q , QI H J , DUNN M L . Active materials by four-dimension printing[J]. Applied Physics Letters, 2013, 103 (13): 131901.
doi: 10.1063/1.4819837
76 GE Q , DUNN C K , QI H J , et al. Active origami by 4D printing[J]. Smart Materials and Structures, 2014, 23 (9): 094007.
doi: 10.1088/0964-1726/23/9/094007
77 DING Z , YUAN C , PENG X , et al. Direct 4D printing via active composite materials[J]. Science Advances, 2017, 3 (4): 1602890.
doi: 10.1126/sciadv.1602890
78 李允, 史礼君, 豆波, 等. 电致变形聚合物材料及其应用[J]. 高分子通报, 2020, (6): 1- 15.
78 LI Y , SHI L J , DOU B , et al. Electro-induced shape-changing polymer materials and its applications[J]. Chinese Polymer Bulletin, 2020, (6): 1- 15.
79 LI J , LONG Y , YANG F , et al. Multifunctional artificial artery from direct 3D printing with built-in ferroelectricity and tissue-matching modulus for real-time sensing and occlusion monitoring[J]. Advanced Functional Materials, 2020, 30 (39): 2002868.
doi: 10.1002/adfm.202002868
80 BODKHE S , TURCOT G , GOSSELIN F P , et al. One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures[J]. ACS Applied Materials & Interfaces, 2017, 9 (24): 20833- 20842.
81 KIM H , MANRIQUEZ L C D , ISLAM M T , et al. 3D printing of polyvinylidene fluoride/photopolymer resin blends for piezoelectric pressure sensing application using the stereolithography technique[J]. MRS Communications, 2019, 9 (3): 1115- 1123.
doi: 10.1557/mrc.2019.109
82 KIM H , FERNANDO T , LI M , et al. Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites[J]. Journal of Composite Materials, 2018, 52 (2): 197- 206.
doi: 10.1177/0021998317704709
83 ZHOU F , ZHANG M , CAO X , et al. Fabrication and modeling of dielectric elastomer soft actuator with 3D printed thermoplastic frame[J]. Sensors and Actuators A, 2019, 292, 112- 120.
doi: 10.1016/j.sna.2019.02.017
84 HAN D , FARINO C , YANG C , et al. Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel[J]. ACS Applied Materials & Interfaces, 2018, 10 (21): 17512- 17518.
85 ZHANG F , WANG L , ZHENG Z , et al. Magnetic programming of 4D printed shape memory composite structures[J]. Composites: Part A, 2019, 125, 105571.
doi: 10.1016/j.compositesa.2019.105571
86 KIM Y , YUK H , ZHAO R , et al. Printing ferromagnetic domains for untethered fast-transforming soft materials[J]. Nature, 2018, 558 (7709): 274- 279.
doi: 10.1038/s41586-018-0185-0
87 WU H , ZHANG X , MA Z , et al. A material combination concept to realize 4D printed products with newly emerging property/functionality[J]. Advanced Science, 2020, 7 (9): 1903208.
doi: 10.1002/advs.201903208
88 BASTOLA A K , PAUDEL M , LI L . Development of hybrid magnetorheological elastomers by 3D printing[J]. Polymer, 2018, 149, 213- 228.
doi: 10.1016/j.polymer.2018.06.076
89 JACKSON J A , MESSNER M C , DUDUKOVIC N A , et al. Field responsive mechanical metamaterials[J]. Science Advances, 2018, 4 (12): 6419.
doi: 10.1126/sciadv.aau6419
90 张纪雯, 白永康, 陈鑫. 光致形状记忆聚合物的研究进展[J]. 中国科学: 技术科学, 2020, 50 (12): 1546- 1562.
90 ZHANG J W , BAI Y K , CHEN X . Development of light-induced shape memory polymers[J]. Scientia Sinica Technologica, 2020, 50 (12): 1546- 1562.
91 YANG H , LEOW W R , WANG T , et al. 3D printed photoresponsive devices based on shape memory composites[J]. Advanced Materials, 2017, 29 (33): 1701627.
doi: 10.1002/adma.201701627
92 JEONG H Y , WOO B H , KIM N , et al. Multicolor 4D printing of shape-memory polymers for light-induced selective heating and remote actuation[J]. Scientific Reports, 2020, 10 (1): 6258.
doi: 10.1038/s41598-020-63020-9
93 HAGAMAN D E , LEIST S , ZHOU J , et al. Photoactivated polymeric bilayer actuators fabricated via 3D printing[J]. ACS Applied Materials & Interfaces, 2018, 10 (32): 27308- 27315.
94 CEAMANOS L , KAHVECI Z , LÓPEZ-VALDEOLIVAS M , et al. Four-dimensional printed liquid crystalline elastomer actuators with fast photoinduced mechanical response toward light-driven robotic functions[J]. ACS Applied Materials & Interfaces, 2020, 12 (39): 44195- 44204.
95 KABB C P , O'BRYAN C S , DENG C C , et al. Photoreversible covalent hydrogels for soft-matter additive manufacturing[J]. ACS Applied Materials & Interfaces, 2018, 10 (19): 16793- 16801.
96 TIBBITS S . 4D printing: multi-material shape change[J]. Architectural Design, 2014, 84 (1): 116- 121.
doi: 10.1002/ad.1710
97 RAVIV D , ZHAO W , MCKNELLY C , et al. Active printed materials for complex self-evolving deformations[J]. Scientific Reports, 2014, 4, 7422.
doi: 10.1038/srep07422
98 DUTTA S , COHN D . Temperature and pH responsive 3D printed scaffolds[J]. Journal of Materials Chemistry B, 2017, 5 (48): 9514- 9521.
doi: 10.1039/C7TB02368E
99 HUANG B , HU R , XUE Z , et al. Continuous liquid interface production of alginate/polyacrylamide hydrogels with supramolecular shape memory properties[J]. Carbohydrate Polymers, 2020, 231, 115736.
doi: 10.1016/j.carbpol.2019.115736
100 HE R , LIU W , WU Z , et al. Fabrication of complex-shaped zirconia ceramic parts via a DLP-stereolithography-based 3D printing method[J]. Ceramics International, 2018, 44 (3): 3412- 3416.
doi: 10.1016/j.ceramint.2017.11.135
101 SHAO H , ZHAO D , LIN T , et al. 3D gel-printing of zirconia ceramic parts[J]. Ceramics International, 2017, 43 (16): 13938- 13942.
doi: 10.1016/j.ceramint.2017.07.124
102 EBERT J , ÖZKOL E , ZEICHNER A , et al. Direct inkjet printing of dental prostheses made of zirconia[J]. Journal of dental research, 2009, 88 (7): 673- 676.
doi: 10.1177/0022034509339988
103 WANG W , YU H , LIU Y , et al. Trueness analysis of zirconia crowns fabricated with 3-dimensional printing[J]. The Journal of Prosthetic Dentistry, 2019, 121 (2): 285- 291.
doi: 10.1016/j.prosdent.2018.04.012
104 TRAVITZKY N , BONET A , DERMEIK B , et al. Additive manufacturing of ceramic-based materials[J]. Advanced Engineering Materials, 2014, 16 (6): 729- 754.
doi: 10.1002/adem.201400097
105 GUREEV D , RUZHECHKO R , SHISHKOVSKⅡ I . Selective laser sintering of PZT ceramic powders[J]. Technical Physics Letters, 2000, 26 (3): 262- 264.
doi: 10.1134/1.1262811
106 MACEDO Z , LENTE M , EIRAS J , et al. Dielectric and ferroelectric properties of Bi4Ti3O12 ceramics produced by a laser sintering method[J]. Journal of Physics, 2004, 16 (16): 2811.
107 QI F , CHEN N , WANG Q . Dielectric and piezoelectric properties in selective laser sintered polyamide11/BaTiO3/CNT ternary nanocomposites[J]. Materials & Design, 2018, 143, 72- 80.
108 CASTLES F , ISAKOV D , LUI A , et al. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites[J]. Scientific Reports, 2016, 6 (1): 22714.
doi: 10.1038/srep22714
109 KIM H , JOHNSON J , CHAVEZ L A , et al. Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing[J]. Ceramics International, 2018, 44 (8): 9037- 9044.
doi: 10.1016/j.ceramint.2018.02.107
110 BODKHE S , NOONAN C , GOSSELIN F P , et al. Coextrusion of multifunctional smart sensors[J]. Advanced Engineering Materials, 2018, 20 (10): 1800206.
doi: 10.1002/adem.201800206
111 LIU G , ZHAO Y , WU G , et al. Origami and 4D printing of elastomer-derived ceramic structures[J]. Science Advances, 2018, 4 (8): 0641.
112 LI Y Y , LI L T , LI B . Direct ink writing of 3-3 piezoelectric composite[J]. Journal of Alloys and Compounds, 2015, 620, 125- 128.
doi: 10.1016/j.jallcom.2014.09.124
113 LIM J , JUNG H , BAEK C , et al. All-inkjet-printed flexible piezoelectric generator made of solvent evaporation assisted BaTiO3 hybrid material[J]. Nano Energy, 2017, 41, 337- 343.
doi: 10.1016/j.nanoen.2017.09.046
114 CHEN W , WANG F , YAN K , et al. Micro-stereolithography of KNN-based lead-free piezoceramics[J]. Ceramics International, 2019, 45 (4): 4880- 4885.
doi: 10.1016/j.ceramint.2018.11.185
[1] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[2] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[3] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[4] 石磊, 李阳, 肖亦辰, 武传松, 刘会杰. 基于搅拌摩擦的金属固相增材制造研究进展[J]. 材料工程, 2022, 50(1): 1-14.
[5] 魏水淼, 马盼, 季鹏程, 马永超, 王灿, 赵健, 于治水. 高熵合金增材制造研究进展[J]. 材料工程, 2021, 49(10): 1-17.
[6] 刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12.
[7] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[8] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[9] 孙博, 夏铭, 张志彬, 梁秀兵, 沈宝龙. 难熔高熵合金性能调控与增材制造[J]. 材料工程, 2020, 48(10): 1-16.
[10] 赵梓钧, 杨新岐, 李胜利, 李冬晓. 工具形状及工艺过程对搅拌摩擦增材成形及缺陷的影响[J]. 材料工程, 2019, 47(9): 84-92.
[11] 陈勇, 陈辉, 姜亦帅, 汪倩, 吴影, 熊俊, 董世运. 高性能金属材料激光增材制造应力变形调控研究现状[J]. 材料工程, 2019, 47(11): 1-10.
[12] 沈自才, 夏彦, 丁义刚, 赵春晴, 杨艳斌. 4D打印及其关键技术[J]. 材料工程, 2019, 47(11): 11-18.
[13] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[14] 蒋建军, 胡毅, 陈星, 王林文, 任恩毅, 高新宇, 邓国力. 形状记忆智能复合材料的发展与应用[J]. 材料工程, 2018, 46(8): 1-13.
[15] 杨慧慧, 杨晶晶, 喻寒琛, 王泽敏, 曾晓雁. 激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8): 127-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn