1 Key Laboratory of Urban Storm Water System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China 2 Laboratory for Micro-sized Functional Materials College of Elementary Education, Capital Normal University, Beijing 100048, China
Photocatalytic technology is an effective way to solve the two major problems of environmental problems and energy crisis in today's human society. Semiconductor materials were favored in early research. However, a single semiconductor photocatalyst has disadvantages such as poor response to visible light and easy recombination of electron-hole pairs. Photocatalytic technology has low efficiency in the application of dye wastewater degradation. Therefore, researchers have conducted in-depth studies on the new composite nanomaterials as photocatalysts to degrade dye wastewater. The research progress and main results of three new composite nanomaterials of graphene, metal organic framework, and carbon quantum dots for photocatalytic degradation of pollutants in dye wastewater were introduced in this article. According to the idea of design and upgrading of composite nanomaterials, the preparation methods of some new composite nanomaterials were briefly described, and the degradation efficiency of target pollutants was analyzed. By summarizing the performance of different photocatalytic materials to degrade pollutants in water, the future development trend was prospected. The future development trend and research focus of new composite nanomaterials in the direction of photocatalysis are targeted treatment of wastewater and industrialization.
WEI H T , ZHANG D M , LV T P , et al. Research progress of visible light degradation catalysts for organic pollutants[J]. Functional Materials, 2019, 50 (5): 5033- 5041.
doi: 10.3969/j.issn.1001-9731.2019.05.007
2
ROY R . Ceramics by the solution-sol-gel route[J]. Science, 1987, 238 (4834): 1664- 1669.
doi: 10.1126/science.238.4834.1664
QIU Q L . Preparation of TiO2-based composite photocatalyst and its application in wastewater treatment[J]. Functional Materials, 2019, 50 (10): 10173- 10177.
doi: 10.3969/j.issn.1001-9731.2019.10.028
ZHAO W J , HOU H J , LIU P , et al. Application of supported TiO2 photocatalysis in sewage treatment[J]. Functional Materials, 2019, 50 (1): 1035- 1046.
doi: 10.3969/j.issn.1001-9731.2019.01.006
5
RAHUL S , VENUGOPAL J R , SEERAM R . Synthesis and applications of multifunctional composite nanomaterials[J]. International Journal of Mechanical & Materials Engineering, 2014, 9 (1): 25.
6
NIE Z , PETUKHOVA A , KUMACHEVA E . Properties and emerging applications of self-assembled structures made from inorganic nanoparticles[J]. Nature Nanotechnology, 2010, 5 (1): 15- 25.
doi: 10.1038/nnano.2009.453
LI X P . Research progress of photocatalytic treatment of dye wastewater[J]. Guangzhou Chemical Industry, 2020, 48 (1): 30- 32.
doi: 10.3969/j.issn.1001-9677.2020.01.015
HAN C , LI F , GUO F . Application of nano-TiO2 photocatalysis technology in environmental pollution control[J]. China Resources Comprehensive Utilization, 2019, 37 (8): 181- 183.
doi: 10.3969/j.issn.1008-9500.2019.08.054
9
PARUL , KAUR K , BADRU R , et al. Photodegradation of organic pollutants using heterojunctions: a review[J]. Journal of Environmental Chemical Engineering, 2020, 8 (2): 103666.
doi: 10.1016/j.jece.2020.103666
YU J G , ZHAO X J . The principle of semiconductor heterogeneous photocatalysis and its application in environmental protection[J]. Journal of Wuhan Polytechnic University, 2000, (4): 12- 15.
MO Q Y , ZENG F J , ZHANG S , et al. Overview of the principle and application of TiO2 photocatalysis[J]. Science and Technology Innovation, 2018, (30): 79- 80.
doi: 10.3969/j.issn.1673-1328.2018.30.044
REN C J , LI D C , ZHOU D L , et al. The principle and application of nano-TiO2 photocatalysis[J]. Sichuan Nonferrous Metals, 2004, (2): 19- 24.
doi: 10.3969/j.issn.1006-4079.2004.02.004
13
GIOVANNETTI R , ROMMOZZ E , ZANNOTTI M , et al. Recent advances in graphene based TiO2 nanocomposites (GTiO2 Ns) for photocatalytic degradation of synthetic dyes[J]. Catalysts, 2017, 7 (10): 305.
doi: 10.3390/catal7100305
ZHENG K , ZHANG Q Y , WANG L Y , et al. Research progress of graphene-based photocatalytic composites[J]. Industrial Catalysis, 2019, 27 (8): 36- 41.
doi: 10.3969/j.issn.1008-1143.2019.08.004
MOU M , GU B S , WANG S D , et al. Research progress of graphene and its composite materials in water treatment[J]. New Chemical Materials, 2019, 47 (12): 16- 21.
MENG L , SUN Y , GONG H , et al. Research progress of graphene-based materials in the field of water pollutant treatment[J]. New Carbon Materials, 2019, 34 (3): 220- 237.
HU Z L , LI X F , XI L J , et al. Research progress of graphene materials in water treatment[J]. Functional Materials, 2016, 47 (Suppl 1): 1- 6.
19
PRASAD C , LIU Q , TANG H , et al. An overview of graphene oxide supported semiconductors based photocatalysts: properties, synthesis and photocatalytic applications[J]. Journal of Molecular Liquids, 2019, 297, 111826.
20
HENNI A , HARFOUCHE N , KARAR A , et al. Synthesis of graphene-ZnO nanocomposites by a one-step electrochemical deposition for efficient photocatalytic degradation of organic pollutant[J]. Solid State Sciences, 2019, 98, 106039.
doi: 10.1016/j.solidstatesciences.2019.106039
21
AKHILA A K , VINITHA P S , RENUKA N K . Photocatalytic activity of graphene-titania nanocomposite[J]. Materials Today: Proceedings, 2018, 5 (8): 16085- 16093.
doi: 10.1016/j.matpr.2018.05.091
22
SHAKEEL A K , ZUNAIRA A , SAMMIA S , et al. Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin[J]. Composites Part B, 2019, 175, 107120.
doi: 10.1016/j.compositesb.2019.107120
23
RALIYA R , AVERY C , CHAKRABARTI S , et al. Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation[J]. Applied Nanoence, 2017, 7 (5): 253- 259.
24
HUO J W , YUAN C , WANG Y , et al. Nanocomposites of three-dimensionally ordered porous TiO2 decorated with Pt and reduced graphene oxide for the visible-light photocatalytic degradation of waterborne pollutants[J]. ACS Applied Nano Materials, 2019, 2 (5): 2713- 2724.
doi: 10.1021/acsanm.9b00215
25
MARJORIE L B , AMR H M , VAN Q N , et al. Eco-friendly synthesis of recyclable mesoporous zinc ferrite@reduced graphene oxide nanocomposite for efficient photocatalytic dye degradation under solar radiation[J]. Journal of Colloid and Interface Science, 2020, 561, 459- 469.
doi: 10.1016/j.jcis.2019.11.018
26
JENITA R , JOTHI R , GNANA K , et al. Reduced graphene oxide/ZnFe2O4 nanocomposite as an efficient catalyst for the photocatalytic degradation of methylene blue dye[J]. Research on Chemical Intermediates, 2016, 43 (4): 2669- 2690.
27
POTLE V D , SHIRSATH S R , BHANVASE B A , et al. Sonochemical preparation of ternary rGO-ZnO-TiO2 nanocomposite photocatalyst for efficient degradation of crystal violet dye[J]. Optik-International Journal for Light and Electron Optics, 2020, 208, 164555.
doi: 10.1016/j.ijleo.2020.164555
28
HARSHA B , MEENAKETAN S , SANDHYA S , et al. Porous graphene wrapped SrTiO3 nanocomposite: Sr-C bond as an effective coadjutant for high performance photocatalytic degradation of methylene blue[J]. ACS Applied Nano Materials, 2019, 2 (10): 6629- 6636.
doi: 10.1021/acsanm.9b01513
29
REDDY C , REDDY K R , HARISH V , et al. Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes[J]. International Journal of Hydrogen Energy, 2020, 45 (13): 7656- 7679.
doi: 10.1016/j.ijhydene.2019.02.144
30
WANG C C , YI X H , WANG P . Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance[J]. Applied Catalysis B, 2019, 247, 24- 48.
doi: 10.1016/j.apcatb.2019.01.091
31
ZHU J J , LI P Z , GUO W H , et al. Titanium-based metal-organic frameworks for photocatalytic applications[J]. Coordination Chemistry Reviews, 2018, 359, 80- 101.
doi: 10.1016/j.ccr.2017.12.013
32
WANG C C , WANG X , LIU W , et al. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: a state-of-the-art review[J]. Chemical Engineering Journal, 2019, 391, 123601.
33
WU T , LIU X J , LIU Y , et al. Application of QD-MOF composites for photocatalysis: energy production and environmental remediation[J]. Coordination Chemistry Reviews, 2020, 403, 213097.
doi: 10.1016/j.ccr.2019.213097
CUI J F , CUI W Q . Research progress in the application of metal organic framework materials in the field of photocatalysis[J]. Ceramics, 2019, (11): 65- 70.
doi: 10.3969/j.issn.1002-2872.2019.11.008
FU M Y , WANG H Y , CHEN J F , et al. Research progress in the preparation, characteristics and application of metal-organic framework materials in environmental governance[J]. Journal of Qufu Normal University (Natural Science Edition), 2019, 45 (4): 83- 90.
36
HARIGANESH S , VADIVEL S , MARUTHAMANI D , et al. Facile large scale synthesis of CuCr2O4/CuO nanocomposite using MOF route for photocatalytic degradation of methylene blue and tetracycline under visible light[J]. Applied Organometallic Chemistry, 2019, 34 (2): 5365.
37
CHEN Y , ZHAI B Y , LIANG Y N , et al. Preparation of CdS/g-C3N4/MOF composite with enhanced visible-light photocatalytic activity for dye degradation[J]. Journal of Solid State Chemistry, 2019, 274, 32- 39.
doi: 10.1016/j.jssc.2019.01.038
38
MIAN Z H , GOVINDER S P , ZHENG H , et al. Porous ZnO/carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications: a correlational study[J]. Carbon, 2019, 146, 348- 363.
doi: 10.1016/j.carbon.2019.02.013
39
NIYAZ M M , SAMANEH K , MINA O , et al. Metal-organic framework (ZIF-8)/inorganic nanofiber (Fe2O3) nanocomposite: green synthesis and photocatalytic degradation using LED irradiation[J]. Journal of Molecular Liquids, 2019, 291, 111333.
doi: 10.1016/j.molliq.2019.111333
40
HU C C , HU X X , LI R , et al. MOF derived ZnO/C nanocomposite with enhanced adsorption capacity and photocatalytic performance under sunlight[J]. Journal of Hazardous Materials, 2020, 385, 121599.
doi: 10.1016/j.jhazmat.2019.121599
41
LIN Y F , WAN H , CHEN F S , et al. Two-dimensional porous cuprous oxide nanoplatelets derived from metal-organic frameworks (MOFs) for efficient photocatalytic dye degradation under visible light[J]. Dalton Transactions, 2018, 47 (23): 7694.
doi: 10.1039/C8DT01117F
42
QIAN X F , XU H , ZHANG X , et al. Enhanced visible-light-driven photocatalytic activity of Ag3PO4/metal-organic framework composite[J]. Polyhedron, 2019, 163, 1- 6.
doi: 10.1016/j.poly.2019.02.005
WANG C L , LI F , YANG K , et al. Research progress of carbon quantum dot-titania composite photocatalyst[J]. Materials Reports, 2018, 32 (19): 3348- 3357.
doi: 10.11896/j.issn.1005-023X.2018.19.009
JIANG T T , SHI Y , KE J , et al. Modification of TiO2 based on carbon quantum dots and the performance of degrading pollutants[J]. Journal of Northeastern University (Natural Science Edition), 2018, 39 (1): 138- 142.
45
SHEETAL S , VISHAL D , PARDEEP S , et al. Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review[J]. Journal of Cleaner Production, 2019, 228, 755- 769.
doi: 10.1016/j.jclepro.2019.04.292
46
CHU K , LEE S L , CHANG C J , et al. Recent progress of carbon dot precursors and photocatalysis applications[J]. Polymers, 2019, 11 (4): 689.
doi: 10.3390/polym11040689
47
WANG J J , TANG L , ZENG G M , et al. 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight[J]. Applied Catalysis B, 2018, 222, 115- 123.
doi: 10.1016/j.apcatb.2017.10.014
48
MIAO R , LUO Z , ZHONG W , et al. Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst[J]. Applied Catalysis, 2016, 189, 26- 38.
doi: 10.1016/j.apcatb.2016.01.070
49
JIAO C , JUAN S , ZHANG A Q , et al. Synthesis of carbon quantum dots/TiO2 nanocomposite for photo-degradation of Rhodamine B and cefradine[J]. Diamond and Related Materials, 2016, 70, 137- 144.
doi: 10.1016/j.diamond.2016.10.023
50
XU N , HUANG H Q , WANG H G , et al. Preparation of the heterojunction catalyst N-doping carbon quantum dots/P25 and its visible light photocatalytic activity[J]. Scientific Reports, 2019, 9 (1): 1- 10.
doi: 10.1038/s41598-018-37186-2
51
MEHDI R , MERAAT M , MOHSEN B , et al. S, N co-doped carbon quantum dots/TiO2 nanocomposite as highly efficient visible light photocatalyst[J]. Nanotechnology, 2019, 30 (50): 505702.
doi: 10.1088/1361-6528/ab40dc
52
GUO Y M , CAO F P , LI Y B , et al. Solid phase synthesis of nitrogen and phosphor co-doped carbon quantum dots for sensing Fe3+ and the enhanced photocatalytic degradation of dyes[J]. Sensors and Actuators B: Chemical, 2018, 255, 1105- 1111.
doi: 10.1016/j.snb.2017.08.104
53
CHEN J B , CHE H N , HUANG K , et al. Fabrication of a ternary plasmonic photocatalyst CQDs/Ag/Ag2O to harness charge flow for photocatalytic elimination of pollutants[J]. Applied Catalysis B, 2016, 192, 134- 144.
doi: 10.1016/j.apcatb.2016.03.056