Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (7): 59-68    DOI: 10.11868/j.issn.1001-4381.2020.001102
  综述 本期目录 | 过刊浏览 | 高级检索 |
新型复合纳米材料用于光催化降解染料废水的研究进展
张铭泰1, 余少彬1, 李希成1, 冯萃敏1, 石梦童1, 汪长征1,*(), 王强2
1 北京建筑大学 城市雨水系统与水环境教育部重点实验室, 北京 100044
2 首都师范大学 初等教育学院 微尺度功能材料实验室, 北京 100048
Research progress of new composite nanomaterials for photocatalytic degradation in dye wastewater
Mingtai ZHANG1, Shaobin YU1, Xicheng LI1, Cuimin FENG1, Mengtong SHI1, Changzheng WANG1,*(), Qiang WANG2
1 Key Laboratory of Urban Storm Water System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2 Laboratory for Micro-sized Functional Materials College of Elementary Education, Capital Normal University, Beijing 100048, China
全文: PDF(11646 KB)   HTML ( 4 )  
输出: BibTeX | EndNote (RIS)      
摘要 

光催化技术是解决当今人类社会中环境问题和能源危机两大问题的有效途径,半导体材料在早期的研究中备受青睐。然而,单一半导体光催化剂存在可见光响应程度差、电子空穴对易复合等缺点,光催化技术在降解染料废水的应用中有效率较低,因此研究者对新型复合纳米材料作为光催化剂降解染料废水进行了深入的研究。本文介绍了石墨烯、金属有机骨架、碳量子点三种新型复合纳米材料用于光催化降解染料废水中污染物的研究进展和主要研究结果,按照复合纳米材料设计升级的思路,简述了部分新型复合纳米材料的制备方法,对目标污染物的降解率进行了分析。通过总结新型光催化材料降解水中污染物的性能,对未来发展趋势进行了展望,指出新型复合纳米材料在光催化方向今后的发展趋势和研究重点是有针对性的处理废水,并实现工业化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张铭泰
余少彬
李希成
冯萃敏
石梦童
汪长征
王强
关键词 光催化复合纳米材料石墨烯金属有机骨架碳量子点    
Abstract

Photocatalytic technology is an effective way to solve the two major problems of environmental problems and energy crisis in today's human society. Semiconductor materials were favored in early research. However, a single semiconductor photocatalyst has disadvantages such as poor response to visible light and easy recombination of electron-hole pairs. Photocatalytic technology has low efficiency in the application of dye wastewater degradation. Therefore, researchers have conducted in-depth studies on the new composite nanomaterials as photocatalysts to degrade dye wastewater. The research progress and main results of three new composite nanomaterials of graphene, metal organic framework, and carbon quantum dots for photocatalytic degradation of pollutants in dye wastewater were introduced in this article. According to the idea of design and upgrading of composite nanomaterials, the preparation methods of some new composite nanomaterials were briefly described, and the degradation efficiency of target pollutants was analyzed. By summarizing the performance of different photocatalytic materials to degrade pollutants in water, the future development trend was prospected. The future development trend and research focus of new composite nanomaterials in the direction of photocatalysis are targeted treatment of wastewater and industrialization.

Key wordsphotocatalysis    composite nanomaterial    graphene    metal organic framework    carbon quan-tum dot
收稿日期: 2020-12-03      出版日期: 2022-07-18
中图分类号:  X703  
基金资助:水体污染控制与治理国家科技重大专项(2018ZX07110-008);北京建筑大学基本科研业务费项目(X18005)
通讯作者: 汪长征     E-mail: changzhwang@163.com
作者简介: 汪长征(1981—), 男, 教授, 博士, 研究方向为纳米材料用于水处理, 联系地址: 北京市西城区展览馆路1号北京建筑大学环境与能源工程学院(100044), E-mail: changzhwang@163.com
引用本文:   
张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
Mingtai ZHANG, Shaobin YU, Xicheng LI, Cuimin FENG, Mengtong SHI, Changzheng WANG, Qiang WANG. Research progress of new composite nanomaterials for photocatalytic degradation in dye wastewater. Journal of Materials Engineering, 2022, 50(7): 59-68.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001102      或      http://jme.biam.ac.cn/CN/Y2022/V50/I7/59
Fig.1  光催化反应机理示意图
Fig.2  常用的新型光催化材料
(a)片状石墨烯;(b)金属有机骨架;(c)MOF@石墨烯;(d)碳量子点
Fig.3  TiO2(a),GO(b)和TiO2/GO纳米复合材料(c)的SEM图像及TiO2/GO纳米复合材料光催化降解亚甲基蓝机理图(d)[22]
Nanocomposite material Degraded pollutant Degradation rate/% Degradation time/min Reference
ZnO/graphene MB 100 180 [20]
TiO2/graphene CV 98.17 105 [21]
TiO2/GO MB 98.67 45 [22]
GO-TiO2-ZnO MO 44.2 165 [23]
ZnFe2O4@rGO MB 94.2 60 [25]
rGO/ZnFe2O4 MB 100 120 [26]
rGO-ZnO-TiO2 CV 87.06 20 [27]
Porous graphene-SrTiO3 MB 92 120 [28]
Table 1  石墨烯新型复合纳米材料的光催化性能
Fig.4  MOF-5(a),MOF-74(b),ZIF-8(c),ZnO/CMOF-5(d),ZnO/CMOF-74(e)和ZnO/CZIF-8(f)的SEM图像[38]
Nanocomposite material Degraded pollutant Degradation rate/% Degradation time/min Reference
CuCr2O4/CuO MB 95 120 [36]
CdS/g-C3N4/MOF RhB 90 90 [37]
ZnO/CMOF-5 MB 99 360 [38]
ZIF-8/Fe2O3 nanofibers RR198 94 90 [39]
ZnO/C MB 100 100 [40]
N-doped Cu2O/C MO 90 180 [41]
Ag3PO4/Fe-MIL-88-NH2 RhB 100 120 [42]
Table 2  MOFs新型复合纳米材料的光催化性能
Fig.5  TiO2(a)和NP-CQDs/TiO2(b)的TEM图像以及NP-CQDs/TiO2,TiO2和NP-CQDs的光催化性能(c)[52]
Nanocomposite material Degraded pollutant Degradation rate/% Degradation time/min Reference
CQDs/Bi2WO6 MO 94.10 120 [47]
5%CQDs/meso-Ti-450 MB 98.00 60 [48]
CQDs/TiO2 RhB 74.08 120 [49]
N-CDs/P25 RhB 100.00 90 [50]
S, N-CQDs/TiO2 AR88 77.29 180 [51]
NP-CQDs/TiO2 MB 100.00 15 [52]
CQDs/Ag/Ag2O MB 95.00 80 [53]
Table 3  CQDs新型复合纳米材料的光催化性能
Fig.6  部分新型复合纳米材料的光催化降解性能
1 位海棠, 张洞铭, 吕天平, 等. 可见光降解有机污染物催化剂研究进展[J]. 功能材料, 2019, 50 (5): 5033- 5041.
doi: 10.3969/j.issn.1001-9731.2019.05.007
1 WEI H T , ZHANG D M , LV T P , et al. Research progress of visible light degradation catalysts for organic pollutants[J]. Functional Materials, 2019, 50 (5): 5033- 5041.
doi: 10.3969/j.issn.1001-9731.2019.05.007
2 ROY R . Ceramics by the solution-sol-gel route[J]. Science, 1987, 238 (4834): 1664- 1669.
doi: 10.1126/science.238.4834.1664
3 邱庆龄. TiO2基复合光催化剂的制备及其在污水处理中的应用研究[J]. 功能材料, 2019, 50 (10): 10173- 10177.
doi: 10.3969/j.issn.1001-9731.2019.10.028
3 QIU Q L . Preparation of TiO2-based composite photocatalyst and its application in wastewater treatment[J]. Functional Materials, 2019, 50 (10): 10173- 10177.
doi: 10.3969/j.issn.1001-9731.2019.10.028
4 赵文金, 侯慧杰, 刘萍, 等. 负载型TiO2光催化在污水处理中的应用[J]. 功能材料, 2019, 50 (1): 1035- 1046.
doi: 10.3969/j.issn.1001-9731.2019.01.006
4 ZHAO W J , HOU H J , LIU P , et al. Application of supported TiO2 photocatalysis in sewage treatment[J]. Functional Materials, 2019, 50 (1): 1035- 1046.
doi: 10.3969/j.issn.1001-9731.2019.01.006
5 RAHUL S , VENUGOPAL J R , SEERAM R . Synthesis and applications of multifunctional composite nanomaterials[J]. International Journal of Mechanical & Materials Engineering, 2014, 9 (1): 25.
6 NIE Z , PETUKHOVA A , KUMACHEVA E . Properties and emerging applications of self-assembled structures made from inorganic nanoparticles[J]. Nature Nanotechnology, 2010, 5 (1): 15- 25.
doi: 10.1038/nnano.2009.453
7 李锡鹏. 光催化处理染料废水研究进展[J]. 广州化工, 2020, 48 (1): 30- 32.
doi: 10.3969/j.issn.1001-9677.2020.01.015
7 LI X P . Research progress of photocatalytic treatment of dye wastewater[J]. Guangzhou Chemical Industry, 2020, 48 (1): 30- 32.
doi: 10.3969/j.issn.1001-9677.2020.01.015
8 韩聪, 李峰, 郭芳. 纳米TiO2光催化技术在环境污染控制中的应用[J]. 中国资源综合利用, 2019, 37 (8): 181- 183.
doi: 10.3969/j.issn.1008-9500.2019.08.054
8 HAN C , LI F , GUO F . Application of nano-TiO2 photocatalysis technology in environmental pollution control[J]. China Resources Comprehensive Utilization, 2019, 37 (8): 181- 183.
doi: 10.3969/j.issn.1008-9500.2019.08.054
9 PARUL , KAUR K , BADRU R , et al. Photodegradation of organic pollutants using heterojunctions: a review[J]. Journal of Environmental Chemical Engineering, 2020, 8 (2): 103666.
doi: 10.1016/j.jece.2020.103666
10 余家国, 赵修建. 半导体多相光催化原理及其在环境保护中的应用[J]. 武汉工业大学学报, 2000, (4): 12- 15.
10 YU J G , ZHAO X J . The principle of semiconductor heterogeneous photocatalysis and its application in environmental protection[J]. Journal of Wuhan Polytechnic University, 2000, (4): 12- 15.
11 莫秋燕, 曾凡菊, 张颂, 等. TiO2光催化原理及其应用综述[J]. 科学技术创新, 2018, (30): 79- 80.
doi: 10.3969/j.issn.1673-1328.2018.30.044
11 MO Q Y , ZENG F J , ZHANG S , et al. Overview of the principle and application of TiO2 photocatalysis[J]. Science and Technology Innovation, 2018, (30): 79- 80.
doi: 10.3969/j.issn.1673-1328.2018.30.044
12 任成军, 李大成, 周大利, 等. 纳米TiO2的光催化原理及其应用[J]. 四川有色金属, 2004, (2): 19- 24.
doi: 10.3969/j.issn.1006-4079.2004.02.004
12 REN C J , LI D C , ZHOU D L , et al. The principle and application of nano-TiO2 photocatalysis[J]. Sichuan Nonferrous Metals, 2004, (2): 19- 24.
doi: 10.3969/j.issn.1006-4079.2004.02.004
13 GIOVANNETTI R , ROMMOZZ E , ZANNOTTI M , et al. Recent advances in graphene based TiO2 nanocomposites (GTiO2 Ns) for photocatalytic degradation of synthetic dyes[J]. Catalysts, 2017, 7 (10): 305.
doi: 10.3390/catal7100305
14 郑凯, 张启彦, 王路瑶, 等. 石墨烯基光催化复合材料研究进展[J]. 工业催化, 2019, 27 (8): 36- 41.
doi: 10.3969/j.issn.1008-1143.2019.08.004
14 ZHENG K , ZHANG Q Y , WANG L Y , et al. Research progress of graphene-based photocatalytic composites[J]. Industrial Catalysis, 2019, 27 (8): 36- 41.
doi: 10.3969/j.issn.1008-1143.2019.08.004
15 牟铭, 顾宝珊, 王仕东, 等. 石墨烯及其复合材料在水处理中的研究进展[J]. 化工新型材料, 2019, 47 (12): 16- 21.
15 MOU M , GU B S , WANG S D , et al. Research progress of graphene and its composite materials in water treatment[J]. New Chemical Materials, 2019, 47 (12): 16- 21.
16 孟亮, 孙阳, 公晗, 等. 石墨烯基材料应用于水污染物治理领域的研究进展[J]. 新型炭材料, 2019, 34 (3): 220- 237.
16 MENG L , SUN Y , GONG H , et al. Research progress of graphene-based materials in the field of water pollutant treatment[J]. New Carbon Materials, 2019, 34 (3): 220- 237.
17 路福叶, 肖淑艳. 石墨烯基TiO2光催化剂的制备及其研究进展[J]. 云南化工, 2020, 47 (1): 16- 18.
17 LU F Y , XIAO S Y . Preparation and research progress of graphene-based TiO2 photocatalyst[J]. Yunnan Chemical Industry, 2020, 47 (1): 16- 18.
18 胡忠良, 李雪锋, 席柳江, 等. 石墨烯材料在水处理方面的研究进展[J]. 功能材料, 2016, 47 (增刊1): 1- 6.
18 HU Z L , LI X F , XI L J , et al. Research progress of graphene materials in water treatment[J]. Functional Materials, 2016, 47 (Suppl 1): 1- 6.
19 PRASAD C , LIU Q , TANG H , et al. An overview of graphene oxide supported semiconductors based photocatalysts: properties, synthesis and photocatalytic applications[J]. Journal of Molecular Liquids, 2019, 297, 111826.
20 HENNI A , HARFOUCHE N , KARAR A , et al. Synthesis of graphene-ZnO nanocomposites by a one-step electrochemical deposition for efficient photocatalytic degradation of organic pollutant[J]. Solid State Sciences, 2019, 98, 106039.
doi: 10.1016/j.solidstatesciences.2019.106039
21 AKHILA A K , VINITHA P S , RENUKA N K . Photocatalytic activity of graphene-titania nanocomposite[J]. Materials Today: Proceedings, 2018, 5 (8): 16085- 16093.
doi: 10.1016/j.matpr.2018.05.091
22 SHAKEEL A K , ZUNAIRA A , SAMMIA S , et al. Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin[J]. Composites Part B, 2019, 175, 107120.
doi: 10.1016/j.compositesb.2019.107120
23 RALIYA R , AVERY C , CHAKRABARTI S , et al. Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation[J]. Applied Nanoence, 2017, 7 (5): 253- 259.
24 HUO J W , YUAN C , WANG Y , et al. Nanocomposites of three-dimensionally ordered porous TiO2 decorated with Pt and reduced graphene oxide for the visible-light photocatalytic degradation of waterborne pollutants[J]. ACS Applied Nano Materials, 2019, 2 (5): 2713- 2724.
doi: 10.1021/acsanm.9b00215
25 MARJORIE L B , AMR H M , VAN Q N , et al. Eco-friendly synthesis of recyclable mesoporous zinc ferrite@reduced graphene oxide nanocomposite for efficient photocatalytic dye degradation under solar radiation[J]. Journal of Colloid and Interface Science, 2020, 561, 459- 469.
doi: 10.1016/j.jcis.2019.11.018
26 JENITA R , JOTHI R , GNANA K , et al. Reduced graphene oxide/ZnFe2O4 nanocomposite as an efficient catalyst for the photocatalytic degradation of methylene blue dye[J]. Research on Chemical Intermediates, 2016, 43 (4): 2669- 2690.
27 POTLE V D , SHIRSATH S R , BHANVASE B A , et al. Sonochemical preparation of ternary rGO-ZnO-TiO2 nanocomposite photocatalyst for efficient degradation of crystal violet dye[J]. Optik-International Journal for Light and Electron Optics, 2020, 208, 164555.
doi: 10.1016/j.ijleo.2020.164555
28 HARSHA B , MEENAKETAN S , SANDHYA S , et al. Porous graphene wrapped SrTiO3 nanocomposite: Sr-C bond as an effective coadjutant for high performance photocatalytic degradation of methylene blue[J]. ACS Applied Nano Materials, 2019, 2 (10): 6629- 6636.
doi: 10.1021/acsanm.9b01513
29 REDDY C , REDDY K R , HARISH V , et al. Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes[J]. International Journal of Hydrogen Energy, 2020, 45 (13): 7656- 7679.
doi: 10.1016/j.ijhydene.2019.02.144
30 WANG C C , YI X H , WANG P . Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance[J]. Applied Catalysis B, 2019, 247, 24- 48.
doi: 10.1016/j.apcatb.2019.01.091
31 ZHU J J , LI P Z , GUO W H , et al. Titanium-based metal-organic frameworks for photocatalytic applications[J]. Coordination Chemistry Reviews, 2018, 359, 80- 101.
doi: 10.1016/j.ccr.2017.12.013
32 WANG C C , WANG X , LIU W , et al. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: a state-of-the-art review[J]. Chemical Engineering Journal, 2019, 391, 123601.
33 WU T , LIU X J , LIU Y , et al. Application of QD-MOF composites for photocatalysis: energy production and environmental remediation[J]. Coordination Chemistry Reviews, 2020, 403, 213097.
doi: 10.1016/j.ccr.2019.213097
34 崔继方, 崔文权. 金属有机骨架材料在光催化领域的应用研究进展[J]. 陶瓷, 2019, (11): 65- 70.
doi: 10.3969/j.issn.1002-2872.2019.11.008
34 CUI J F , CUI W Q . Research progress in the application of metal organic framework materials in the field of photocatalysis[J]. Ceramics, 2019, (11): 65- 70.
doi: 10.3969/j.issn.1002-2872.2019.11.008
35 付梦雨, 王宏莹, 陈峻峰, 等. 金属有机骨架材料制备、特性及其在环境治理方面应用的研究进展[J]. 曲阜师范大学学报(自然科学版), 2019, 45 (4): 83- 90.
35 FU M Y , WANG H Y , CHEN J F , et al. Research progress in the preparation, characteristics and application of metal-organic framework materials in environmental governance[J]. Journal of Qufu Normal University (Natural Science Edition), 2019, 45 (4): 83- 90.
36 HARIGANESH S , VADIVEL S , MARUTHAMANI D , et al. Facile large scale synthesis of CuCr2O4/CuO nanocomposite using MOF route for photocatalytic degradation of methylene blue and tetracycline under visible light[J]. Applied Organometallic Chemistry, 2019, 34 (2): 5365.
37 CHEN Y , ZHAI B Y , LIANG Y N , et al. Preparation of CdS/g-C3N4/MOF composite with enhanced visible-light photocatalytic activity for dye degradation[J]. Journal of Solid State Chemistry, 2019, 274, 32- 39.
doi: 10.1016/j.jssc.2019.01.038
38 MIAN Z H , GOVINDER S P , ZHENG H , et al. Porous ZnO/carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications: a correlational study[J]. Carbon, 2019, 146, 348- 363.
doi: 10.1016/j.carbon.2019.02.013
39 NIYAZ M M , SAMANEH K , MINA O , et al. Metal-organic framework (ZIF-8)/inorganic nanofiber (Fe2O3) nanocomposite: green synthesis and photocatalytic degradation using LED irradiation[J]. Journal of Molecular Liquids, 2019, 291, 111333.
doi: 10.1016/j.molliq.2019.111333
40 HU C C , HU X X , LI R , et al. MOF derived ZnO/C nanocomposite with enhanced adsorption capacity and photocatalytic performance under sunlight[J]. Journal of Hazardous Materials, 2020, 385, 121599.
doi: 10.1016/j.jhazmat.2019.121599
41 LIN Y F , WAN H , CHEN F S , et al. Two-dimensional porous cuprous oxide nanoplatelets derived from metal-organic frameworks (MOFs) for efficient photocatalytic dye degradation under visible light[J]. Dalton Transactions, 2018, 47 (23): 7694.
doi: 10.1039/C8DT01117F
42 QIAN X F , XU H , ZHANG X , et al. Enhanced visible-light-driven photocatalytic activity of Ag3PO4/metal-organic framework composite[J]. Polyhedron, 2019, 163, 1- 6.
doi: 10.1016/j.poly.2019.02.005
43 王春来, 李钒, 杨焜, 等. 碳量子点-二氧化钛复合光催化剂的研究进展[J]. 材料导报, 2018, 32 (19): 3348- 3357.
doi: 10.11896/j.issn.1005-023X.2018.19.009
43 WANG C L , LI F , YANG K , et al. Research progress of carbon quantum dot-titania composite photocatalyst[J]. Materials Reports, 2018, 32 (19): 3348- 3357.
doi: 10.11896/j.issn.1005-023X.2018.19.009
44 姜婷婷, 石勇, 柯军, 等. 基于碳量子点的TiO2改性及降解污染物性能[J]. 东北大学学报(自然科学版), 2018, 39 (1): 138- 142.
44 JIANG T T , SHI Y , KE J , et al. Modification of TiO2 based on carbon quantum dots and the performance of degrading pollutants[J]. Journal of Northeastern University (Natural Science Edition), 2018, 39 (1): 138- 142.
45 SHEETAL S , VISHAL D , PARDEEP S , et al. Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review[J]. Journal of Cleaner Production, 2019, 228, 755- 769.
doi: 10.1016/j.jclepro.2019.04.292
46 CHU K , LEE S L , CHANG C J , et al. Recent progress of carbon dot precursors and photocatalysis applications[J]. Polymers, 2019, 11 (4): 689.
doi: 10.3390/polym11040689
47 WANG J J , TANG L , ZENG G M , et al. 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight[J]. Applied Catalysis B, 2018, 222, 115- 123.
doi: 10.1016/j.apcatb.2017.10.014
48 MIAO R , LUO Z , ZHONG W , et al. Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst[J]. Applied Catalysis, 2016, 189, 26- 38.
doi: 10.1016/j.apcatb.2016.01.070
49 JIAO C , JUAN S , ZHANG A Q , et al. Synthesis of carbon quantum dots/TiO2 nanocomposite for photo-degradation of Rhodamine B and cefradine[J]. Diamond and Related Materials, 2016, 70, 137- 144.
doi: 10.1016/j.diamond.2016.10.023
50 XU N , HUANG H Q , WANG H G , et al. Preparation of the heterojunction catalyst N-doping carbon quantum dots/P25 and its visible light photocatalytic activity[J]. Scientific Reports, 2019, 9 (1): 1- 10.
doi: 10.1038/s41598-018-37186-2
51 MEHDI R , MERAAT M , MOHSEN B , et al. S, N co-doped carbon quantum dots/TiO2 nanocomposite as highly efficient visible light photocatalyst[J]. Nanotechnology, 2019, 30 (50): 505702.
doi: 10.1088/1361-6528/ab40dc
52 GUO Y M , CAO F P , LI Y B , et al. Solid phase synthesis of nitrogen and phosphor co-doped carbon quantum dots for sensing Fe3+ and the enhanced photocatalytic degradation of dyes[J]. Sensors and Actuators B: Chemical, 2018, 255, 1105- 1111.
doi: 10.1016/j.snb.2017.08.104
53 CHEN J B , CHE H N , HUANG K , et al. Fabrication of a ternary plasmonic photocatalyst CQDs/Ag/Ag2O to harness charge flow for photocatalytic elimination of pollutants[J]. Applied Catalysis B, 2016, 192, 134- 144.
doi: 10.1016/j.apcatb.2016.03.056
[1] 马锐, 张宇雨, 王菲菲, 刘琪瑶, 李嘉琪, 魏金枝. Ni-BTC/RGO复合材料的制备及其电化学性能[J]. 材料工程, 2022, 50(6): 124-130.
[2] 吴乾鑫, 刘磊, 孙晋蒙, 李一帆, 刘宇航, 杜洪方, 艾伟, 杜祝祝, 王科. 磺酸基修饰石墨烯复合材料的储钠性能研究[J]. 材料工程, 2022, 50(4): 36-43.
[3] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[4] 赵卫峰, 郝宁, 张改, 钱慧锦, 马爱洁, 周宏伟, 陈卫星. 苝四羧酸二酰亚胺修饰增强g-C3N4光催化性能[J]. 材料工程, 2022, 50(3): 98-106.
[5] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[6] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[7] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[8] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[9] 张文娟, 寇苗. 二维材料MXene在水处理领域的应用[J]. 材料工程, 2021, 49(9): 14-26.
[10] 褚召冉, 陈功, 赵雪伶, 林东海, 陈诚. 光子晶体在光催化领域的研究进展[J]. 材料工程, 2021, 49(8): 43-53.
[11] 李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
[12] 李金磊, 邓凌峰, 张淑娴, 谭洁慧, 覃榕荣, 王壮. 化学镀制备纳米银-石墨烯复合材料及其电化学性能[J]. 材料工程, 2021, 49(8): 127-138.
[13] 晏秘, 薛云, 申妍铭, 程琥, 庄金亮. 分级结构苯并噻二唑聚合物应用于可见光诱导硫醚选择性氧化[J]. 材料工程, 2021, 49(7): 64-70.
[14] 李颖, 雷蕊, 徐文凯, 朱小雪, 黄艳凤. 磁性氧化石墨烯基17β-雌二醇分子印迹复合膜的制备与性能[J]. 材料工程, 2021, 49(6): 170-177.
[15] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn