Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (1): 145-153    DOI: 10.11868/j.issn.1001-4381.2020.001116
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响
刘龙, 梁森(), 王得盼, 周越松, 郑长升
青岛理工大学 机械与汽车工程学院, 山东 青岛 266520
Effect of secondary modification of silane coupling agent and graphene oxide on interfacial properties of aramid fiber
Long LIU, Sen LIANG(), Depan WANG, Yuesong ZHOU, Changsheng ZHENG
School of Mechanical and Automotive Engineering, Qingdao Technological University, Qingdao 266520, Shandong, China
全文: PDF(12078 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为改善芳纶纤维(PPTA)与丁腈橡胶(NBR)复合材料之间的界面强度, 采用硅烷偶联剂A172和氧化石墨烯(GO)对芳纶纤维表面进行接枝改性处理, 并对处理前后的芳纶纤维进行化学结构、表面形貌及H抽出力分析。利用SEM对抽出纤维表面和橡胶基芳纶纤维复合材料截面进行微观结构分析。结果表明: 硅烷偶联剂和氧化石墨烯对芳纶纤维进行二次表面改性后, 纤维表面含氧基团增加, 化学活性提高, 处理后表面存在明显的表层附着物, 纤维结构未发生明显损伤且表面粗糙度得到明显改善。每个处理阶段后H抽出力均有提高, 且氧化石墨烯二次改性后的芳纶纤维H抽出力提高效果最佳, 从18.192 MPa提高到48.748 MPa, 芳纶纤维与丁腈橡胶的界面结合力得到了显著提升, 从而证实了硅烷偶联剂和氧化石墨烯二次改性芳纶纤维的有效性, 为橡胶基芳纶纤维复合材料性能的研究提供了参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘龙
梁森
王得盼
周越松
郑长升
关键词 芳纶纤维氧化石墨烯硅烷偶联剂表面改性界面强度    
Abstract

To improve the interface strength between aramid fiber (PPTA) and NBR composites, the silane coupling agent (A172) and graphene oxide (GO) were used to have the graft modification treatment to the aramid fiber surface and analyze the chemical construction, surface topography and H-pull test of aramid fiber before and after treatment. The microstructure of the pull out fiber surface and section of the rubber-based aramid fiber reinforced polymer(AFRP) was analyzed by SEM. The results show that the oxygen-containing groups on the fiber surface are increased and the chemical activity is improved after the secondary surface modification to the aramid fiber is conducted with the silane coupling agent and GO. The obvious attachments can be found on the surface after treatment. The fiber structure has no obvious damage and its surface roughness is improved substantially. The H-pull test after treatment increases with an optimal effect of aramid fiber H-pull test after the secondary modification with GO (improved to 48.748 MPa from 18.192 MPa). The interface bonding strength between the aramid fiber and NBR is improved dramatically, thus confirming the effectiveness of the silane coupling agent and GO in the secondary modification to the aramid fiber, which provides reference for the study of the performance of the rubber-based AFRP.

Key wordsaramid fiber    graphene oxide    silane coupling agent    surface modification    interface strength
收稿日期: 2020-12-03      出版日期: 2022-01-19
中图分类号:  TB332  
基金资助:国家自然科学基金项目(52075280);山东省自然科学基金项目(ZR2019ME088)
通讯作者: 梁森     E-mail: 183847094@qq.com
作者简介: 梁森(1962—),男,教授,博士,从事结构与功能复合材料研究,联系地址:山东省青岛市黄岛区青岛理工大学机械与汽车工程学院(266520),E-mail: 183847094@qq.com
引用本文:   
刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
Long LIU, Sen LIANG, Depan WANG, Yuesong ZHOU, Changsheng ZHENG. Effect of secondary modification of silane coupling agent and graphene oxide on interfacial properties of aramid fiber. Journal of Materials Engineering, 2022, 50(1): 145-153.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001116      或      http://jme.biam.ac.cn/CN/Y2022/V50/I1/145
Fig.1  H抽出实验示意图(a)及实验装置(b)
Fig.2  PPTA结构式
Fig.3  芳纶纤维改性步骤图解
(a)络合反应; (b)接枝反应; (c)表面功能化
Fig.4  芳纶纤维各处理阶段FTIR谱图
Fig.5  芳纶纤维表面形貌SEM照片
(a)PPTA; (b)LiCl-PPTA; (c)A172-LiCl-PPTA; (d)GO-A172-LiCl-PPTA
Fig.6  芳纶纤维的EDS能谱
(a)point A; (b)point B; (c)point C; (d)point D
Fig.7  H抽出实验的SEM照片
(a)芳纶纤维抽出后; (b)芳纶纤维抽出后橡胶试件; (1)未处理; (2)GO改性处理
Treatment reagent Drawing force/N Increase rate/%
PPTA 18.192
LiCl 18.942 4.12
LiCl+A171 33.897 83.01
LiCl+A172 36.025 98.03
LiCl+KH550 22.847 25.59
LiCl+KH560 34.189 87.93
LiCl+Si69 23.127 27.13
LiCl+A172+GO 48.748 167.96
LiCl+A172+CNTs 43.226 137.61
Table 1  不同试剂改性处理后芳纶纤维H抽出实验情况
Factor Reaction timeA/h Reaction temperatureB/℃ ConcentrationC/% Drawing force/N
1 1 30 3 35.145
2 1 45 6 42.757
3 1 60 9 34.542
4 2 30 6 33.497
5 2 45 9 48.748
6 2 60 3 42.630
7 3 30 9 35.233
8 3 45 6 41.852
9 3 60 3 28.794
K1 112.444 103.875 106.569
K2 124.875 133.357 118.106
K3 105.879 105.966 118.523
k1 37.481 34.625 35.523
k2 41.625 44.452 39.369
k3 35.293 35.322 39.508
R 6.332 9.827 3.985
Optimal case B2A2C3
Table 2  改性芳纶纤维的正交实验
Fig.8  橡胶基复合材料横截面形貌SEM照片
(a)未处理; (b)改性后
1 朱德举, 张晓彤, 张怀安. 动态拉伸载荷下应变率和温度对Kevlar 49芳纶纤维布增强环氧树脂复合材料力学性能的影响[J]. 复合材料学报, 2016, 33 (3): 459- 468.
1 ZHU D J , ZHANG X T , ZHANG H A . Effects of strain rate and temperature on mechanical properties of Kevlar 49 aramid fabric reinforced epoxy polymers under dynamic tensile loading[J]. Acta Materiae Compositae Sinica, 2016, 33 (3): 459- 468.
2 陈虹, 虎龙, 吴中伟, 等. 芳纶防弹材料阻燃性能的开发[J]. 高科技纤维与应用, 2019, 44 (5): 61- 64.
2 CHEN H , HU L , WU Z W , et al. Development of flame retardant properties of aramid bulletpro of material[J]. Hi-Tech Fiber and Application, 2019, 44 (5): 61- 64.
3 LV J , CHENG Z , WU H , et al. In-situ polymerization and covalent modification on aramid fiber surface via direct fluorination for interfacial enhancement[J]. Composites: Part B, 2019, 182, 107608.
4 LU Z , DANG W , ZHAO Y , et al. Toward high-performance poly(para-phenylene terephthalamide) (PPTA)-based composite paper via hot-pressing: the key role of partial fibrillation and surface activation[J]. RSC Advances, 2017, 7 (12): 7293- 7302.
doi: 10.1039/C7RA00052A
5 张佐光, 李岩, 殷立新, 等. 防弹芳纶复合材料实验研究[J]. 北京航空航天大学学报, 1995, 21 (3): 1- 5.
5 ZHANG Z G , LI Y , YIN L X , et al. Experimental research on ballstic properties of aramide composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 1995, 21 (3): 1- 5.
6 凌新龙, 周艳, 黄继伟, 等. 芳纶纤维表面改性研究进展[J]. 天津工业大学学报, 2011, 30 (3): 13- 20.
6 LING X L , ZHOU Y , HUANG J W , et al. Progress in surface modification of aramid fibers[J]. Journal of Tiangong University, 2011, 30 (3): 13- 20.
7 张美玲, 沈忆文, 王瑞, 等. 芳纶纤维的冷等离子体处理及其老化性能[J]. 纺织学报, 2018, 39 (11): 73- 78.
7 ZHANG M L , SHEN Y W , WANG R , et al. Cold plasma treatment and aging properties of aramid fiber[J]. Journal of Textile Research, 2018, 39 (11): 73- 78.
8 LU Z , HU W , XIE F , et al. Argon low-temperature plasma modification of chopped aramid fiber and its effect on paper performance of aramid sheets[J]. Journal of Applied Polymer Science, 2017, 134 (14): 1097- 4628.
9 XI M , LI Y L , SHANG S Y , et al. Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line processing[J]. Surface and Coatings Technology, 2009, 202 (24): 6029- 6033.
10 XING L , LIU L , HUANG Y , et al. Enhanced interfacial properties of domestic aramid fiber-12 via high energy gamma ray irradiation[J]. Composites: Part B, 2015, 69, 50- 57.
doi: 10.1016/j.compositesb.2014.09.027
11 XING L X , LIU L , HE M , et al. Effect of different graft polymerization systems on surface modification of aramid fibers with Γ-ray radiation[J]. Advanced Materials Research, 2013, 658, 80- 84.
doi: 10.4028/www.scientific.net/AMR.658.80
12 LIU L , HUANG Y D , ZHANG Z Q , et al. Ultrasonic modification of aramid fiber-epoxy interface[J]. Journal of Applied Polymer Science, 2010, 81 (11): 2764- 2768.
13 刘丽, 张翔, 黄玉东, 等. 超声作用对芳纶纤维表面性质的影响[J]. 复合材料学报, 2003, 20 (2): 35- 40.
13 LIU L , ZHANG X , HUANG Y D , et al. Effect of ultrasonic treatment on surface characteristics of aramid[J]. Acta Materiae Compositae Sinica, 2003, 20 (2): 35- 40.
14 PENG T , CAI R Q , CHEN C F , et al. Surface modification of para-aramid fiber by direct fluorination and its effect on the interface of aramid/epoxy composites[J]. Journal of Macromolecular Science: Part B, 2012, 51 (3): 538- 550.
doi: 10.1080/00222348.2011.609777
15 李雅泊, 曹宁宁, 郑玉婴, 等. 表面改性芳纶纤维/R-PET复合材料的制备及性能[J]. 材料工程, 2018, 46 (6): 113- 119.
15 LI Y B , CAO N N , ZHENG Y Y , et al. Preparation and properties of composites of R-PET and surface modified aramid fiber[J]. Journal of Materials Engineering, 2018, 46 (6): 113- 119.
16 DENG T , ZHANG G , DAI F , et al. Mild surface modification of para-aramid fiber by dilute sulfuric acid under microwave irradiation[J]. Textile Research Journal, 2017, 87 (7): 799- 806.
doi: 10.1177/0040517516639831
17 王倩, 熊玉竹, 戴骏, 等. 芳纶纤维的紫外辐照改性及硅烷偶联剂二次改性[J]. 高分子材料科学与工程, 2018, 34 (7): 78- 83.
17 WANG Q , XIONG Y Z , DAI J , et al. Modification of aramid fiber using UV irradiation and silane coupling agent[J]. Polymeric Materials Science and Engineering, 2018, 34 (7): 78- 83.
18 刘洋, 梁国正. 生物酶催化接枝芳纶纤维和复合材料的界面性能[J]. 材料研究学报, 2015, 29 (10): 794- 800.
18 LIU Y , LIANG G Z . Surface modification and interface properties of enzyme-mediated grafting Kevlar fibers[J]. Chinese Journal of Materials Research, 2015, 29 (10): 794- 800.
19 金仲, 夏忠林, 罗筑, 等. 接枝改性对芳纶纤维增强天然橡胶复合材料性能的影响[J]. 高分子材料科学与工程, 2015, 31 (8): 56- 61.
19 JIN Z , XIA Z L , LUO Z , et al. Grafting modification of aramid fiber on aramid fiber reinforced natural rubber composites[J]. Polymer Materials Science and Engineering, 2015, 31 (8): 56- 61.
20 杨凯, 王鑫, 赵雄燕, 等. 丁腈橡胶复合材料的研究进展[J]. 应用化工, 2018, 47 (9): 2005- 2009.
20 YANG K , WANG X , ZHAO X Y , et al. Research progress in nitrile rubber NBR composites[J]. Applied Chemical Industry, 2018, 47 (9): 2005- 2009.
21 蒋诗才, 石峰晖. 芳纶纤维表面分析及其对双马来酰亚胺树脂复合材料界面性能的影响[J]. 材料工程, 2012, (9): 54- 57.
21 JIANG S C , SHI F H . Effect of surface properties on Interfacial properties of aramid fiber reinforced bismaleimide resin matrix composites[J]. Journal of Materials Engineering, 2012, (9): 54- 57.
22 杨永岗, 陈成猛, 温月芳, 等. 氧化石墨烯及其与聚合物的复合[J]. 新型炭材料, 2008, 23 (3): 193- 200.
22 YANG Y G , CHEN C M , WEN Y F , et al. Oxidized graphene and graphene based polymer composites[J]. New Carbon Mater, 2008, 23 (3): 193- 200.
23 侯永刚, 吕生华, 张佳, 等. 氧化石墨烯复合材料研究进展[J]. 化工新型材料, 2019, 47 (10): 20- 26.
23 HOU Y G , LV S H , ZHANG J , et al. Research progress of graphene oxide composite[J]. New Chemical Materials, 2019, 47 (10): 20- 26.
24 王君, 李诚, 郑强, 等. LiCl处理对芳纶纤维表面结构与性能的影响[J]. 复合材料学报, 2016, 33 (4): 704- 713.
24 WANG J , LI C , ZHENG Q , et al. Effects of LiCl treatment on surface structure and properties of Kevlar fibers[J]. Acta Materiae Compositae Sinica, 2016, 33 (4): 704- 713.
25 GABRIEL C , LINHARES F N , SOUSA A D , et al. Vulcanization kinetic study of different nitrile rubber (NBR) compounds[J]. Macromolecular Symposia, 2014, 344 (1): 22- 27.
doi: 10.1002/masy.201300209
26 熊祖江, 李小宁, 贾清秀, 等. PA6/CaCl2复合物的络合机理研究[J]. 高分子学报, 2010, (8): 1003- 1008.
26 XIONG Z J , LI X N , JIA Q X , et al. Complexation mechanism of polyamide 6/calcium chloride[J]. Acta Polymerica Sinica, 2010, (8): 1003- 1008.
27 王蓓娣. 氧化石墨烯的功能化改性及应用研究[D]. 上海: 复旦大学, 2012.
27 WANG B D. Functional modification and application of graphene oxide[D]. Shanghai: Fudan University, 2012.
28 严岩. 芳纶纤维表面改性及其与橡胶粘合性能研究[D]. 北京: 北京化工大学, 2014.
28 YAN Y. Study on surface modification and adhesive properties of aramid fiber[D]. Beijing: Beijing University of Technology, 2014.
[1] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[2] 李晴, 钱付平, 董伟, 韩云龙, 鲁进利. 硅烷偶联剂KH570改性TiO2超疏水滤料的制备与性能[J]. 材料工程, 2022, 50(2): 144-152.
[3] 王大伟, 李晔, 巨乐章, 朱安安. 氧气等离子体处理对CFRP表面特性及胶接界面力学性能的影响[J]. 材料工程, 2022, 50(10): 118-127.
[4] 李颖, 雷蕊, 徐文凯, 朱小雪, 黄艳凤. 磁性氧化石墨烯基17β-雌二醇分子印迹复合膜的制备与性能[J]. 材料工程, 2021, 49(6): 170-177.
[5] 杜娟, 曹翔宇, 宋海鹏, 魏子明, 李香云, 杨涵清, 杨梓铭, 李伯阳, 李海龙. 氧化石墨烯在金属表面的应用及其机理研究进展[J]. 材料工程, 2021, 49(2): 32-41.
[6] 毛龙, 刘小超, 谢斌, 吴慧青, 刘跃军. 植酸-金属离子螯合物改性层状黏土及其在聚己内酯中的增强与抗菌效应研究[J]. 材料工程, 2021, 49(2): 127-135.
[7] 陈燕宁, 吴量, 陈勇花, 程苓, 姚文辉, 潘复生. 镁合金表面氧化石墨烯复合涂层的研究现状[J]. 材料工程, 2021, 49(12): 1-13.
[8] 汪荣香, 洪立鑫, 章晓波. 生物医用镁合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(12): 14-27.
[9] 周锋, 任向红, 强洪夫, 曾逸智, 樊苗苗. GO增强g-C3N4气凝胶的可见光响应及其光催化降解偏二甲肼废水[J]. 材料工程, 2021, 49(11): 171-178.
[10] 李虎, 范王腾飞, 王敏涓, 黄旭, 黄浩. SiCf/TC17复合材料界面剪切强度测试与有限元分析[J]. 材料工程, 2021, 49(1): 160-167.
[11] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[12] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[13] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[14] 宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
[15] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn