Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (7): 128-138    DOI: 10.11868/j.issn.1001-4381.2020.001122
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能
杨新岐1,*(), 元惠新1, 孙转平1, 闫新中1, 赵慧慧2
1 天津大学 材料科学与工程学院, 天津 300350
2 上海航天设备制造总厂有限公司, 上海 200245
Microstructure and properties of stationary shoulder friction stir welded joints for aluminum alloy thick-plate
Xinqi YANG1,*(), Huixin YUAN1, Zhuanping SUN1, Xinzhong YAN1, Huihui ZHAO2
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
2 Shanghai Aerospace Equipments Manufacturer Co., Ltd., Shanghai 200245, China
全文: PDF(39685 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用8.5 mm厚度2A14-T4铝合金和自主研制搅拌工具进行静止轴肩搅拌摩擦焊(stationary shoulder friction stir welding,SSFSW)实验,探讨焊接工艺参数对接头组织和力学性能的影响规律。结果表明:只有在低转速工艺参数范围内(转速ω=400~600 r/min与焊接速率v=60~120 mm/min)可获得焊缝表面光滑、无缺陷厚板铝合金SSFSW焊接接头。SSFSW焊缝区主要由焊核区(NZ)组成,周围热力影响区(TMAZ)及热影响区(HAZ)宽度明显减小,焊核区与搅拌针形状类似且由两种不同尺寸细小等轴晶构成,前进侧NZ晶粒比后退侧NZ更为细小。接头显微硬度呈"W"状分布,NZ硬度值可达到母材硬度80%~90%,TMAZ与HAZ交界处存在软化区,硬度最低为母材硬度72%左右。在给定ω=500 r/min,v=140 mm/min焊接参数下,SSFSW接头抗拉强度可达到母材的88%,断裂位置多位于后退侧TMAZ与HAZ交界处软化区,具有韧性断裂特征。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨新岐
元惠新
孙转平
闫新中
赵慧慧
关键词 2A14-T4铝合金厚板静止轴肩搅拌摩擦焊组织特征力学性能    
Abstract

The stationary shoulder friction stir welding (SSFSW) processes for 2A14-T4 aluminum alloy with the thickness of 8.5 mm were performed by using the self-developed tools, and the influences of welding process parameters on the microstructure and mechanical properties of SSFSW welded joints were investigated. The results show that the SSFSW joints with smooth weld surface and defect-free for aluminum alloy thick-plate can only be obtained under the process parameter condition of lower rotational speed (rotational speed ω=400-600 r/min and welding speed v=60-120 mm/min).The weld zone of SSFSW joints mainly consists of nugget zone (NZ), and the widths of thermo-mechanically affected zone (TMAZ) and the heat affected zone (HAZ) around the NZ are obviously reduced; the NZ is similar with the shape of tool pin and it is composed of two kinds of fine equiaxed grains with different sizes, the grains on the advancing side are more finer than that of retreating side. The profiles of microhardness across the weld section present the "W" shape, the hardness values of NZ reach the 80%-90% of the base metal of hardness value, the softened region is produced between interfaces of TMAZ and HAZ, and its hardness is the lowest with the 72% of the base metal of hardness value. The tensile strengths of SSFSW joints reach the 88% of base metal under the welding parameters of ω=500 r/min, v=140 mm/min, and the fractured sites are always located at the softened zones between TMAZ and HAZ on the retreating side, exhibiting the toughness fracture features.

Key words2A14-T4 aluminum alloy thick-plate    SSFSW    microstructure characteristic    mechanical property
收稿日期: 2020-12-08      出版日期: 2022-07-18
中图分类号:  TG453+.9  
通讯作者: 杨新岐     E-mail: xqyang@tju.edu.cn
作者简介: 杨新岐(1962—), 男, 教授, 博士, 主要从事固相摩擦焊接技术及焊接结构完整性评定研究工作, 联系地址: 天津市天津大学材料科学与工程学院(300350), E-mail: xqyang@tju.edu.cn
引用本文:   
杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
Xinqi YANG, Huixin YUAN, Zhuanping SUN, Xinzhong YAN, Huihui ZHAO. Microstructure and properties of stationary shoulder friction stir welded joints for aluminum alloy thick-plate. Journal of Materials Engineering, 2022, 50(7): 128-138.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001122      或      http://jme.biam.ac.cn/CN/Y2022/V50/I7/128
Mg Si Cu Fe Mn Zn Ti Al
0.64 1 4.3 0.2 0.64 0.08 0.04 Bal
Table 1  2A14-T4铝合金的化学成分(质量分数/%)
Sample number ω/(r·min-1) v/(mm·min-1) (ω/v)/(r·mm-1) Have defect or not
A1 400 100 4.00 No defect
A2 400 120 3.33 No defect
A3 400 140 2.86 No defect
B1 500 60 8.33 No defect
B2 500 80 6.25 No defect
B3 500 100 5.00 No defect
B4 500 120 4.17 No defect
B5 500 140 3.57 No defect
C1 600 60 10.00 No defect
C2 600 80 7.50 No defect
C3 600 100 6.00 No defect
C4 600 120 5.00 No defect
C5 600 140 4.28 Defects
D1 700 60 11.70 No defect
E1 800 60 13.30 Defects
E2 800 80 10.00 Defects
F1 1000 80 12.50 Defects
Table 2  SSFSW焊接工艺参数
Fig.1  拉伸试样尺寸
Fig.2  SSFSW对接接头典型表面形貌
Fig.3  不同焊接参数下SSFSW焊缝截面宏观形貌
(a)v=60 mm/min; (b)v=80 mm/min; (c)v=100 mm/min; (d)v=120 mm/min; (1)ω=500 r/min; (2)ω=600 r/min
Fig.4  SSFSW焊缝截面宏观形貌
(ω=500 r/min, v=140 mm/min)
Fig.5  焊缝各区晶粒微观组织
(a)NZ;(b)前进侧TMAZ;(c)后退侧TMAZ-1;(d)后退侧TMAZ-2;(e)前进侧HAZ;(f)后退侧HAZ
Fig.6  NZ晶粒组织
(a)NZ; (b)B区域放大形貌; (c)C区域放大形貌; (d)D区域放大形貌
Fig.7  不同焊接参数下SSFSW焊缝截面微观形貌
(a)ω=500 r/min, v=60 mm/min; (b)ω=500 r/min, v=120 mm/min; (c)ω=600 r/min, v=60 mm/min; (d)ω=600 r/min, v=120 mm/min; (1)焊缝前进侧组织; (2)焊缝后退侧组织; (3)焊缝中心区域组织
Fig.8  SSFW焊缝各区第二相分布
(a)NZ; (b)TMAZ, HAZ; (c)母材
Fig.9  SSFSW接头硬度分布曲线
Fig.10  NZ第二相分布
(a)顶部; (b)中部; (c)底部
Fig.11  ω=500 r/min, v=60~140 mm/min 时焊缝硬度分布
(a)顶部;(b)中部;(c)底部
Fig.12  接头拉伸测试结果
(a)ω=500 r/min; (b)ω=600 r/min
Fig.13  典型断裂试样宏观形貌
(a)ω=500 r/min, v=60 mm/min; (b)ω=600 r/min, v=60 mm/min; (c)ω=500 r/min, v=120 mm/min; (d)ω=600 r/min, v=120 mm/min
Fig.14  拉伸试样断口SEM图
(a)ω=500 r/min, v=60 mm/min; (b)ω=600 r/min, v=60 mm/min; (c)ω=500 r/min, v=120 mm/min; (d)ω=600 r/min, v=120 mm/min
1 WU H , CHEN Y C , STRONG D , et al. Systematic evaluation of the advantages of static shoulder FSW for joining aluminum[J]. Materials Science Forum, 2014, 794/796, 407- 412.
doi: 10.4028/www.scientific.net/MSF.794-796.407
2 RUSSELL M J , BLIGNAULT C , HORREX N L , et al. Recent developments in the friction stir welding of titanium alloys[J]. Welding in the World, 2008, 52 (9/10): 12- 15.
3 SUN T , ROY M J , STRONG D , et al. Comparison of residual stress distributions in conventional and stationary shoulder high-strength aluminum alloy friction stir welds[J]. Journal of Mate-rials Processing Technology, 2017, 242, 92- 100.
doi: 10.1016/j.jmatprotec.2016.11.015
4 HE W , LI M , SONG Q , et al. Efficacy of external stationary shoulder for controlling residual stress and distortion in friction stir welding[J]. Transactions of the Indian Institute of Metals, 2019, 72 (5): 1349- 1359.
doi: 10.1007/s12666-019-01630-2
5 JI S D , MENG X C , LI Z W , et al. Experimental study of stationary shoulder friction stir welded 7N01-T4 aluminum alloy[J]. Journal of Materials Engineering and Performance, 2016, 25 (3): 1228- 1236.
doi: 10.1007/s11665-016-1954-2
6 LI D , YANG X , CUI L , et al. Fatigue property of stationary shoulder friction stir welded additive and non-additive T joints[J]. Science and Technology of Welding and Joining, 2015, 20 (8): 650- 654.
doi: 10.1179/1362171815Y.0000000045
7 SUN T , ROY M J , STRONG D , et al. Weld zone and residual stress development in AA7050 stationary shoulder friction stir T-joint weld[J]. Journal of Materials Processing Technology, 2019, 263, 256- 265.
doi: 10.1016/j.jmatprotec.2018.08.022
8 JIANG X , WYNNE B P , MARTIN J . Variant selection in statio-nary shoulder friction stir welded Ti-6Al-4V alloy[J]. Journal of Materials Science & Technology, 2018, 34 (1): 198- 208.
9 JI S , LI Z , ZHOU Z , et al. Microstructure and mechanical property differences between friction stir lap welded joints using rotating and stationary shoulders[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90 (9/12): 3045- 3053.
10 ZHOU Z , YUE Y , JI S , et al. Effect of rotating speed on joint morphology and lap shear properties of stationary shoulder friction stir lap welded 6061-T6 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88 (5/8): 2135- 2141.
11 LI D , YANG X , CUI L , et al. Effect of welding parameters on microstructure and mechanical properties of AA6061-T6 butt welded joints by stationary shoulder friction stir welding[J]. Materials & Design, 2014, 64, 251- 260.
12 SINGH V P , PATEL S K , RANJAN A , et al. Recent research progress in solid state friction-stir welding of aluminium-magnesium alloys: a critical review[J]. Journal of Materials Research and Technology, 2020, 9 (3): 6217- 6256.
13 LI D X , YANG X Q , CUI L , et al. Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-T651[J]. Journal of Materials Processing Technology, 2015, 222, 391- 398.
doi: 10.1016/j.jmatprotec.2015.03.036
14 何方舟, 杨新岐, 李冬晓, 等. 铝合金静止轴肩搅拌摩擦焊组织非均质性对接头力学性能的影响[J]. 焊接学报, 2017, 38 (8): 115- 118.
14 HE F Z , YANG X Q , LI D X , et al. Effect of microstructural inhomogeneity on mechanical properties of stationary shoulder friction stir welded joints for 6061-T6 aluminum alloy[J]. Transactions of the China Welding Institution, 2017, 38 (8): 115- 118.
15 WU H , CHEN Y C , STRONG D , et al. Stationary shoulder FSW for joining high strength aluminum alloys[J]. Journal of Mate-rials Processing Technology, 2015, 221, 187- 196.
doi: 10.1016/j.jmatprotec.2015.02.015
16 GHAHREMANI-MOGHADAM D , FARHANGDOOST K . Influence of welding parameters on fracture toughness and fatigue crack growth rate in friction stir welded nugget of 2024-T351 aluminum alloy joints[J]. Transactions of Nonferrous Metals Society of China, 2016, 26 (10): 2567- 2585.
doi: 10.1016/S1003-6326(16)64383-2
17 申浩, 杨新岐, 李冬晓, 等. 6061-T6铝合金的静止轴肩搅拌摩擦焊工艺及组织性能[J]. 焊接学报, 2016, 37 (5): 119- 123.
17 SHEN H , YANG X Q , LI D X , et al. Microstructures and mechanical properties of 6061-T6 aluminum alloy welded by stationary shoulder friction stir welding process[J]. Transactions of the China Welding Institution, 2016, 37 (5): 119- 123.
[1] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[2] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[3] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[4] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[5] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[6] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[7] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[8] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[9] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[10] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[11] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[12] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[13] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[14] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[15] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn