Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (7): 1-9    DOI: 10.11868/j.issn.1001-4381.2020.001127
  综述 本期目录 | 过刊浏览 | 高级检索 |
单晶高温合金雀斑研究进展
王志成, 李嘉荣(), 刘世忠, 赵金乾, 史振学, 王效光, 杨万鹏, 岳晓岱
中国航发北京航空材料研究院 先进高温结构材料重点实验室, 北京 100095
Research progress in freckles of single crystal superalloys
Zhi-cheng WANG, Jia-rong LI(), Shi-zhong LIU, Jin-qian ZHAO, Zhen-xue SHI, Xiao-guang WANG, Wan-peng YANG, Xiao-dai YUE
Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(8017 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为满足先进航空发动机发展需求,航空发动机涡轮叶片的结构日趋复杂,并且作为涡轮叶片首选材料的单晶高温合金中高熔点合金元素含量不断增加,由此导致单晶高温合金涡轮叶片制备过程中结晶缺陷形成倾向增大,直接影响单晶涡轮叶片的质量。本文以单晶高温合金定向凝固过程中出现的一种晶体缺陷——雀斑为讨论对象,综述了近年来雀斑形成机制、判据模型及其控制方法相关研究工作,分析了合金成分、叶片结构、定向凝固工艺和结晶取向对雀斑形成机制的影响,指出考虑不同合金体系中的合金元素与定向凝固过程的参数对雀斑形成的影响,进一步研究复杂结构单晶涡轮叶片雀斑形成规律,建立雀斑预测与控制的有效方法是未来的研究方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志成
李嘉荣
刘世忠
赵金乾
史振学
王效光
杨万鹏
岳晓岱
关键词 单晶高温合金雀斑晶体缺陷元素偏析    
Abstract

To meet the development needs of advanced aeroengines, the structure of aeroengine turbine blades is becoming increasingly complex, and the content of refractory elements is increasing in single crystal superalloys, which are the preferred materials for turbine blades. As a result, the tendency to form the grain defects increases during the preparation of single crystal turbine blades, which directly affects the quality of single crystal turbine blades. In this paper, a kind of grain defect that appears in the directional solidification process of single crystal superalloys—freckle was discussed. The research works on the formation mechanism, the criterion model and the control method of freckles formation during the directional solidification of single crystal superalloys in recent years was reviewed. The influence of the alloy composition, blade structure, directional solidification process and crystal orientation of single crystal castings on the formation of freckles was analyzed. Considering the influence of the alloying elements in different alloy systems and the parameters of the directional solidification process on the freckle formation, further studying the freckle formation mechanism of the single crystal turbine blade with complex structures, establishing an effective method for prediction and control of freckles are the future research directions.

Key wordssingle crystal superalloy    freckle    grain defect    element segregation
收稿日期: 2020-12-08      出版日期: 2021-07-19
中图分类号:  TG245  
基金资助:国家科技重大专项(2017-VI-0001-0070)
通讯作者: 李嘉荣     E-mail: jrli126@126.com
作者简介: 李嘉荣(1962-), 男, 研究员, 博士, 长期从事单晶高温合金研究, 联系地址: 北京市81信箱8分箱(100095), E-mail: jrli126@126.com
引用本文:   
王志成, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光, 杨万鹏, 岳晓岱. 单晶高温合金雀斑研究进展[J]. 材料工程, 2021, 49(7): 1-9.
Zhi-cheng WANG, Jia-rong LI, Shi-zhong LIU, Jin-qian ZHAO, Zhen-xue SHI, Xiao-guang WANG, Wan-peng YANG, Xiao-dai YUE. Research progress in freckles of single crystal superalloys. Journal of Materials Engineering, 2021, 49(7): 1-9.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001127      或      http://jme.biam.ac.cn/CN/Y2021/V49/I7/1
Fig.1  雀斑宏观形貌[11]
Fig.2  雀斑形成及合金液相流动模式示意图[24]
Fig.3  合金元素Ta对雀斑形成的影响[13]
Fig.4  合金元素C对雀斑形成的影响[39]
fs P/10-6
Al Cr Co Re Ta Hf W Mo
0.1 -27.8 -1.4 0.2 -36.0 27.8 32.0 -5.0 1.7
0.5 -146.6 -7.4 0.9 -142.5 184.8 261.5 -24.0 8.9
0.9 -278.8 -13.6 1.6 -212.5 495.4 1285.5 -41.7 16.8
Table 1  各元素在不同的凝固分数fs下的P值大小[40]
Element Influence trend
Ta
C
Re
W
Mo
Table 2  各合金元素对雀斑形成的影响[10, 12-13, 39-40]
Fig.5  温度梯度和凝固速率对雀斑形成的影响[31]
Fig.6  阶梯试样对雀斑形成的影响[49]
1-实际铸件结构示意图;2-雀斑组织放大图;3-铸件雀斑形成位置示意图
(a)沿着凝固方向横截面积增大的阶梯试样;(b)沿着凝固方向横截面积减小的阶梯试样
Fig.7  铸件形状对雀斑形成的影响[51]
(a)陶瓷型壳; (b)定向凝固炉示意图; (c)铸件结构
Fig.8  单晶试样晶体取向及其雀斑形成情况[52]
Fig.9  试样宏观腐蚀表面[43]  1-未插入石墨导热块;2-插入石墨导热块
(a)试样1;(b)试样2
1 CETEL A D, DUHL D N. Second generation nickel-base single crystal superalloy[C]//Superalloys 1988, Proceedings of the 6th International Symposium on Superalloys. Pennsylvania: TMS, 1988: 235-244.
2 HARRIS K, ERICKSON G L, SIKKENGA S L, et al. Development of the rhenium containing superalloys CMSX-4 and CM186LC for single crystal blade and directionally solidified vane applications in advanced turbine engines[C]//Superalloys 1992, Proceedings of the 7th International Symposium on Superalloys. Pennsylvania: TMS, 1992: 297-306.
3 WALSTON W S, OHARA K S, ROSS E W, et al. RenéN6: third generation single crystal superalloy[C]//Superalloys 1996, Proceedings of the 8th International Symposium on Superalloys. Pennsylvania: TMS, 1996: 27-34.
4 LI J R, LIU S Z, WANG X G, et al. Development of a low-cost third generation single crystal superalloy DD9[C]//Superalloys 2016, Proceedings of the 13th International Symposium on Superalloys. Pennsylvania: TMS, 2016: 57-63.
5 张军, 黄太文, 刘林, 等. 单晶高温合金凝固特性与典型凝固缺陷研究[J]. 金属学报, 2015, 51 (10): 1163- 1178.
5 ZHANG J , HUANG T W , LIU L , et al. Advances in solidification characteristics and typical casting defects in nickel-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2015, 51 (10): 1163- 1178.
6 赵金乾, 李嘉荣, 刘世忠, 等. 小角度晶界对DD6单晶合金980℃拉伸性能的影响[J]. 稀有金属材料与工程, 2007, 36 (12): 2232- 2235.
doi: 10.3321/j.issn:1002-185x.2007.12.038
6 ZHAO J Q , LI J R , LIU S Z , et al. Effect of low angle grain boundaries on tensile properties of single crystal superalloy DD6 at 980℃[J]. Rare Metal Materials and Engineering, 2007, 36 (12): 2232- 2235.
doi: 10.3321/j.issn:1002-185x.2007.12.038
7 ZHOU Y Z, GREEN N R. Competitive grain growth in directional solidification of a nickel-base superalloy[C]//Superalloys 2008, Proceedings of the 11th International Symposium on Superalloys. Pennsylvania: TMS, 2008: 317-324.
8 LI J R, ZHAO J Q, LIU S Z, et al. Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6[C]//Superalloys 2008, Proceedings of the 11th International Symposium on Superalloys. Pennsylvania: TMS, 2008: 443-451.
9 YANG W P , LI J R , LIU S Z , et al. Orientation dependence of transverse tensile properties of nickel-based third generation single crystal superalloy DD9 from 760℃ to 1100℃[J]. Transactions of Nonferrous Metals Society of China, 2019, 29 (3): 558- 568.
doi: 10.1016/S1003-6326(19)64964-2
10 TIN S , POLLOCK T M , MURPHY W . Stabilization of thermosolutal convective instabilities in nickle-based single-crystal superalloys: carbon additions and freckle formation[J]. Metallurgical and Materials Transactions A, 2001, 32 (7): 1743- 1753.
doi: 10.1007/s11661-001-0151-5
11 ELLIOTT A J. Directional solidification of large cross-section nickel-base superalloy castings via liquid-metal cooling[D]. Ann Arbor, Michigan State: The University of Michigan, 2005.
12 POLLOCK T M, MURPHY W H, GOLDMAN E H, et al. Grain defect formation during directional solidification of nickel base single crystals superalloys[C]//Superalloys 1992, Proceedings of the 7th International Symposium on Superalloys. Pennsylvania: TMS, 1992: 125-134.
13 POLLOCK T M , MURPHY W H . The breakdown of single-crystal solidification in high refractory nickel-base alloys[J]. Metallurgical and Materials Transactions A, 1996, 27, 1081- 1094.
doi: 10.1007/BF02649777
14 COPLEY S M , GIAMEI A F , JOHNSON S M , et al. The origin of freckles in unidirectionally solidified castings[J]. Metallurgical Transactions, 1970, 1, 2193- 2204.
doi: 10.1007/BF02643435
15 FRUEH C , POIRIER D R , FELICELLI S D . Predicting freckle-defects in directionally solidified Pb-Sn alloys[J]. Materials Science and Engineering: A, 2002, 328, 245- 255.
doi: 10.1016/S0921-5093(01)01700-2
16 SARAZIN J R , HELLAWELL A . Channel formation in Pb-Sn, Pb-Sb, and Pb-Sn-Sb alloy ingots and comparison with the system NH4Cl-H2O[J]. Metallurgical and Matenials Transactions A, 1988, 19 (7): 1861- 1871.
doi: 10.1007/BF02645156
17 FELICELLI S D , HEINRICH J C , POIRIER D R . Three-dimensional simulations of freckles in binary alloys[J]. Journal of Crystal Growth, 1998, 191, 879- 888.
doi: 10.1016/S0022-0248(98)00357-1
18 SAAD A , GANDIN C A , BELLET M , et al. Simulation of channel segregation during directional solidification of in-75 wt pct Ga qualitative comparison with in-situ observations[J]. Metallurgical and Materials Transactions A, 2015, 46 (11): 4886- 4897.
doi: 10.1007/s11661-015-2963-8
19 FELICELLI S D , POIRIER D R , HEINRICH J C . Modeling freckle formation in three dimensions during solidification of multicomponent alloys[J]. Metallurgical and Materials Transactions B, 1998, 29 (4): 847- 855.
doi: 10.1007/s11663-998-0144-5
20 SCHNEIDER M C , GU J P , BECKERMANN C , et al. Modeling of micro- and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification[J]. Metallurgical and Materials Transactions A, 1997, 28, 1517- 1531.
doi: 10.1007/s11661-997-0214-3
21 KARAGADDE S , YUAN L , SHEVCHENKO N , et al. 3-D microstructural model of freckle formation validated using in situ experiments[J]. Acta Materialia, 2014, 79, 168- 180.
doi: 10.1016/j.actamat.2014.07.002
22 YUAN L , LEE P D . A new mechanism for freckle initiation based on microstructural level simulation[J]. Acta Materialia, 2012, 60 (12): 4917- 4926.
doi: 10.1016/j.actamat.2012.04.043
23 AUBURTIN P, COCKCROFT S L, MITCHELL A. Liquid density inversions during the solidification of superalloys and their relationship to freckle formation in castings[C]//Superalloys 1996, Proceedings of the 8th International Symposium on Superalloys. Pennsylvania: TMS, 1996: 443-450.
24 AUBURTIN P , WANG T , COCKCROFT S L , et al. Freckle formation and freckle criterion in superalloy castings[J]. Metallurgical and Materials Transactions A, 2000, 31 (4): 801- 811.
doi: 10.1007/s11663-000-0117-9
25 SUN Q Y , REN Y , LIU D R . Numerical investigations of freckles in directionally solidified nickel-based superalloy casting with abrupt contraction in cross section[J]. Results in Physics, 2019, 12, 1547- 1558.
doi: 10.1016/j.rinp.2019.01.056
26 AUBURTIN P, COCKCROFT S L, MITCHELL A, et al. Freckle formation in superalloys[C]//Superalloys 2000, Proceedings of the 9th International Symposium on Superalloys. Pennsylvania: TMS, 2000: 255-261.
27 TIN S , POLLOCK T M . Predicting freckle formation in single crystal Ni-base superalloys[J]. Journal of Materials Science, 2004, 39, 7199- 7205.
doi: 10.1023/B:JMSC.0000048732.02111.ee
28 YANG W, CHEN W, CHANG K M. Segregation and solid evolution during the solidification of niobium-containing superalloys[C]//Superalloys 2000, Proceedings of the 9th International Symposium on Superalloys. Pennsylvania: TMS, 2000: 75-84.
29 QIN L , SHEN J , LI Q , et al. Effects of convection patterns on freckle formation of directionally solidified nickel-based superalloy casting with abruptly varying cross-sections[J]. Journal of Crystal Growth, 2017, 466, 45- 55.
doi: 10.1016/j.jcrysgro.2017.03.021
30 CHMIELA B , SOZAŃSKA M , CWAJNA J . Identification and evaluation of freckles in directionally solidified casting made of PWA 1426 nickel-based superalloy[J]. Archives of Metallurgy and Materials, 2012, 57 (2): 559- 564.
doi: 10.2478/v10172-012-0059-7
31 SCHADT R, WAGNER I, PREUHS J, et al. New aspects of freckle formation during single crystal solidification of CMSX-4[C]//Superalloys 2000, Proceedings of the 9th International Symposium on Superalloys. Pennsylvania: TMS, 2000: 211-218.
32 MEHRABIAN R , KEANE M , FLEMINGS M C . Interdendritic fluid flow and macrosegregation; influence of gravity[J]. Metallurgical Transactions, 1970, 1, 1209- 1220.
doi: 10.1007/BF02900233
33 LI Q D , SHEN J , XIONG Y , et al. Prediction of freckle formation in directionally solidified CMSX-4 superalloy[J]. Materials Letters, 2018, 228, 281- 284.
doi: 10.1016/j.matlet.2018.06.002
34 BECKERMANN C , GU J P , BOETTINGER W J . Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings[J]. Metallurgical and Materials Transactions A, 2000, 31 (10): 2545- 2557.
doi: 10.1007/s11661-000-0199-7
35 YANG W , CHEN W , CHANG K M , et al. Freckle criteria for the upward directional solidification of alloys[J]. Metallurgical and Materials Transactions A, 2001, 32 (2): 397- 406.
doi: 10.1007/s11661-001-0271-y
36 WANG L , DONG J , TIAN Y , et al. Microsegregation and Rayleigh number variation during the solidification of superalloy Inconel 718[J]. Journal of University of Science and Technology Beijing, 2008, 15 (5): 594- 599.
doi: 10.1016/S1005-8850(08)60111-5
37 GIAMEI A F , KEAR B H . On the nature of freckles in nickel base superalloys[J]. Metallurgical Transactions, 1970, 1, 2185- 2192.
doi: 10.1007/BF02643434
38 TIN S, POLLOCK T M, KING W T. Carbon additions and grain defect formation in high refractory nickel-base single crystal[C]//Superalloys 2000, Proceedings of the 9th International Symposium on Superalloys. Pennsylvania: TMS, 2000: 201-210.
39 TIN S , POLLOCK T M . Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys carbide precipitation and Rayleigh numbers[J]. Metallurgical and Materials Transactions A, 2003, 34, 1953- 1967.
doi: 10.1007/s11661-003-0160-7
40 包超君, 李振锋, 刘锋, 等. 一种基于镍基高温合金成分的雀斑预测模型[J]. 中国有色金属学报, 2019, 29 (5): 998- 1107.
40 BAO C J , LI Z F , LIU F , et al. Modeling of constituent-based freckle predictor for nickel-base superalloys[J]. The Chinese Journal of Nonferrous Metals, 2019, 29 (5): 998- 1107.
41 MA D X , ZHOU B , POLACZEK A B . Investigation of freckle formation under various solidification conditions[J]. Advanced Materials Research, 2011, 278, 428- 433.
doi: 10.4028/www.scientific.net/AMR.278.428
42 陈晶阳, 吴文津, 李青, 等. 采用低温度梯度HRS工艺制备的镍基单晶高温合金雀斑组织[J]. 中国有色金属学报, 2018, 28 (12): 2494- 2498.
42 CHEN J Y , WU W J , LI Q , et al. Freckle of Ni-based single crystal superalloy prepared by low thermal gradient HRS process[J]. The Chinese Journal of Nonferrous Metals, 2018, 28 (12): 2494- 2498.
43 LI Q D , SHEN J , QIN L , et al. Investigation on local cooling in reducing freckles for directionally solidified superalloy specimens with abruptly varying cross-sections[J]. Materials Characterization, 2017, 130, 139- 148.
doi: 10.1016/j.matchar.2017.05.032
44 HAN D Y , JIANG W G , XIAO J H , et al. Investigation on freckle formation and evolution of single-crystal nickel-based superalloy specimens with different thicknesses and abrupt cross-section changes[J]. Journal of Alloys and Compounds, 2019, 805, 218- 228.
doi: 10.1016/j.jallcom.2019.07.045
45 任莹. 镍基高温合金雀斑数值模拟研究[D]. 哈尔滨: 哈尔滨理工大学, 2019.
45 REN Y. Numerical simulation of freckle defects in nickel-based superalloys[D]. Harbin: Harbin University of Science and Technology, 2019.
46 马德新. 定向凝固的复杂形状高温合金铸件中的雀斑形成[J]. 金属学报, 2016, 52 (4): 426- 436.
46 MA D X . Freckle formation during directionalsolidification of complex castings of superalloys[J]. Acta Metallurgica Sinica, 2016, 52 (4): 426- 436.
47 MA D X , POLACZEK A B . The influence of surface roughness on freckle formation in directionally solidified superalloy samples[J]. Metallurgical and Materials Transactions B, 2012, 43 (4): 671- 677.
doi: 10.1007/s11663-012-9691-x
48 MA D X , POLACZEK A B . The geometrical effect on freckle formation in the directionally solidified superalloy CMSX-4[J]. Metallurgical Materials Transactions A, 2014, 45 (3): 1435- 1444.
doi: 10.1007/s11661-013-2088-x
49 MA D X , WU Q , POLACZEK A B . Some new observations on freckle formation in directionally solidified superalloy components[J]. Metallurgical and Materials Transactions B, 2012, 43 (2): 344- 353.
doi: 10.1007/s11663-011-9608-0
50 HONG J P , MA D X , WANG J , et al. Freckle defect formation near the casting interfaces of directionally solidified superalloys[J]. Materials, 2016, 9 (11): 45- 61.
51 HONG J P , MA D X , WANG J , et al. Geometrical effect of freckle formation on directionally solidified superalloy CM247 LC components[J]. Journal of Alloys and Compounds, 2015, 648, 1076- 1082.
doi: 10.1016/j.jallcom.2015.07.016
52 MA D X , MATHES M , ZHOU B , et al. Influence of crystal orientation on the freckle formation in directionally solidified superalloys[J]. Advanced Materials Research, 2011, 278, 114- 119.
doi: 10.4028/www.scientific.net/AMR.278.114
53 TAN F L . An experimental study on channels formation during solidification of aqueous ammonium chloride[J]. Applied Thermal Engineering, 2015, 25, 2169- 2192.
54 SHIH Y C , TU S M , CHIU C C . Suppressing freckles during solidification due to periodic motionof top liquid layer[J]. Applied Thermal Engineering, 2013, 50, 1055- 1069.
doi: 10.1016/j.applthermaleng.2012.08.059
55 WANG F , MA D X , ZHANG J , et al. Investigation of segregation and density profiles in the mushy zone of CMSX-4 superalloys solidified during downward and upward directional solidification processes[J]. Journal of Alloys and Compounds, 2015, 620, 24- 30.
56 LU Y Z , XIH J , SHEN J , et al. Experimental and simulation study of directional solidification process for industrial gas turbine blades prepared by liquid metal cooling[J]. Acta Metallurgica Sinica, 2015, 51 (5): 603- 611.
[1] 赵云松, 杨昭, 陈瑞志, 张剑, 骆宇时, 刘丽荣. Ru对第四代镍基单晶高温合金DD22长期时效组织演化的影响[J]. 材料工程, 2022, 50(9): 127-136.
[2] 薛燕鹏, 王效光, 赵金乾, 史振学, 刘世忠, 李嘉荣. 两种型壳温度对DD9单晶涡轮叶片凝固组织的影响[J]. 材料工程, 2022, 50(7): 80-87.
[3] 曹凯莉, 杨文超, 屈鹏飞, 黄太文, 郭敏, 苏海军, 张军, 刘林. Ru对镍基单晶高温合金凝固特性、TCP相析出及蠕变性能影响的研究进展[J]. 材料工程, 2022, 50(1): 80-92.
[4] 刘维维, 刘世忠, 李影, 李嘉荣. 长期时效对DD6单晶高温合金组织和力学性能的影响[J]. 材料工程, 2021, 49(6): 94-99.
[5] 岳晓岱, 李嘉荣, 刘世忠, 史振学, 王效光, 董建民. 钌和铼对先进单晶高温合金组织稳定性的协同影响[J]. 材料工程, 2021, 49(4): 63-70.
[6] 杨万鹏, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光. 一种第三代单晶高温合金中高温横向持久性能[J]. 材料工程, 2020, 48(7): 139-145.
[7] 黄敏, 张功, 王栋, 李辉, 董加胜, 楼琅洪. 复杂镍基单晶铸件显微孔洞的形成机理[J]. 材料工程, 2020, 48(2): 123-132.
[8] 董建民, 李嘉荣, 韩梅. 检验腐蚀对镍基单晶高温合金高周疲劳性能的影响[J]. 材料工程, 2020, 48(1): 77-83.
[9] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
[10] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[11] 史振学, 刘世忠, 赵金乾, 王效光, 李嘉荣. 基于不同原始组织预设变形第四代单晶高温合金的再结晶行为[J]. 材料工程, 2019, 47(5): 107-114.
[12] 赵云松, 郭媛媛, 赵敬轩, 张晓铁, 刘砚飞, 杨岩, 姜华, 张剑, 骆宇时. 微量Hf对大角度晶界含Re双晶合金高温持久性能的影响[J]. 材料工程, 2019, 47(2): 76-83.
[13] 刘丽玉, 高翔宇, 杨宪锋, 何玉怀. DD6单晶高温合金振动疲劳性能及断裂机理[J]. 材料工程, 2018, 46(2): 128-133.
[14] 胡春燕, 刘新灵, 陶春虎, 曹春晓. 气膜孔分布对DD6单晶高温合金高周疲劳断裂行为的影响[J]. 材料工程, 2017, 45(4): 84-89.
[15] 胡春燕, 刘新灵, 陶春虎, 曹春晓. 气膜孔分布对DD6单晶高温合金持久性能及断裂行为的影响[J]. 材料工程, 2016, 44(5): 93-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn