Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
To meet the development needs of advanced aeroengines, the structure of aeroengine turbine blades is becoming increasingly complex, and the content of refractory elements is increasing in single crystal superalloys, which are the preferred materials for turbine blades. As a result, the tendency to form the grain defects increases during the preparation of single crystal turbine blades, which directly affects the quality of single crystal turbine blades. In this paper, a kind of grain defect that appears in the directional solidification process of single crystal superalloys—freckle was discussed. The research works on the formation mechanism, the criterion model and the control method of freckles formation during the directional solidification of single crystal superalloys in recent years was reviewed. The influence of the alloy composition, blade structure, directional solidification process and crystal orientation of single crystal castings on the formation of freckles was analyzed. Considering the influence of the alloying elements in different alloy systems and the parameters of the directional solidification process on the freckle formation, further studying the freckle formation mechanism of the single crystal turbine blade with complex structures, establishing an effective method for prediction and control of freckles are the future research directions.
CETEL A D, DUHL D N. Second generation nickel-base single crystal superalloy[C]//Superalloys 1988, Proceedings of the 6th International Symposium on Superalloys. Pennsylvania: TMS, 1988: 235-244.
2
HARRIS K, ERICKSON G L, SIKKENGA S L, et al. Development of the rhenium containing superalloys CMSX-4 and CM186LC for single crystal blade and directionally solidified vane applications in advanced turbine engines[C]//Superalloys 1992, Proceedings of the 7th International Symposium on Superalloys. Pennsylvania: TMS, 1992: 297-306.
3
WALSTON W S, OHARA K S, ROSS E W, et al. RenéN6: third generation single crystal superalloy[C]//Superalloys 1996, Proceedings of the 8th International Symposium on Superalloys. Pennsylvania: TMS, 1996: 27-34.
4
LI J R, LIU S Z, WANG X G, et al. Development of a low-cost third generation single crystal superalloy DD9[C]//Superalloys 2016, Proceedings of the 13th International Symposium on Superalloys. Pennsylvania: TMS, 2016: 57-63.
ZHANG J , HUANG T W , LIU L , et al. Advances in solidification characteristics and typical casting defects in nickel-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2015, 51 (10): 1163- 1178.
ZHAO J Q , LI J R , LIU S Z , et al. Effect of low angle grain boundaries on tensile properties of single crystal superalloy DD6 at 980℃[J]. Rare Metal Materials and Engineering, 2007, 36 (12): 2232- 2235.
doi: 10.3321/j.issn:1002-185x.2007.12.038
7
ZHOU Y Z, GREEN N R. Competitive grain growth in directional solidification of a nickel-base superalloy[C]//Superalloys 2008, Proceedings of the 11th International Symposium on Superalloys. Pennsylvania: TMS, 2008: 317-324.
8
LI J R, ZHAO J Q, LIU S Z, et al. Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6[C]//Superalloys 2008, Proceedings of the 11th International Symposium on Superalloys. Pennsylvania: TMS, 2008: 443-451.
9
YANG W P , LI J R , LIU S Z , et al. Orientation dependence of transverse tensile properties of nickel-based third generation single crystal superalloy DD9 from 760℃ to 1100℃[J]. Transactions of Nonferrous Metals Society of China, 2019, 29 (3): 558- 568.
doi: 10.1016/S1003-6326(19)64964-2
10
TIN S , POLLOCK T M , MURPHY W . Stabilization of thermosolutal convective instabilities in nickle-based single-crystal superalloys: carbon additions and freckle formation[J]. Metallurgical and Materials Transactions A, 2001, 32 (7): 1743- 1753.
doi: 10.1007/s11661-001-0151-5
11
ELLIOTT A J. Directional solidification of large cross-section nickel-base superalloy castings via liquid-metal cooling[D]. Ann Arbor, Michigan State: The University of Michigan, 2005.
12
POLLOCK T M, MURPHY W H, GOLDMAN E H, et al. Grain defect formation during directional solidification of nickel base single crystals superalloys[C]//Superalloys 1992, Proceedings of the 7th International Symposium on Superalloys. Pennsylvania: TMS, 1992: 125-134.
13
POLLOCK T M , MURPHY W H . The breakdown of single-crystal solidification in high refractory nickel-base alloys[J]. Metallurgical and Materials Transactions A, 1996, 27, 1081- 1094.
doi: 10.1007/BF02649777
14
COPLEY S M , GIAMEI A F , JOHNSON S M , et al. The origin of freckles in unidirectionally solidified castings[J]. Metallurgical Transactions, 1970, 1, 2193- 2204.
doi: 10.1007/BF02643435
15
FRUEH C , POIRIER D R , FELICELLI S D . Predicting freckle-defects in directionally solidified Pb-Sn alloys[J]. Materials Science and Engineering: A, 2002, 328, 245- 255.
doi: 10.1016/S0921-5093(01)01700-2
16
SARAZIN J R , HELLAWELL A . Channel formation in Pb-Sn, Pb-Sb, and Pb-Sn-Sb alloy ingots and comparison with the system NH4Cl-H2O[J]. Metallurgical and Matenials Transactions A, 1988, 19 (7): 1861- 1871.
doi: 10.1007/BF02645156
17
FELICELLI S D , HEINRICH J C , POIRIER D R . Three-dimensional simulations of freckles in binary alloys[J]. Journal of Crystal Growth, 1998, 191, 879- 888.
doi: 10.1016/S0022-0248(98)00357-1
18
SAAD A , GANDIN C A , BELLET M , et al. Simulation of channel segregation during directional solidification of in-75 wt pct Ga qualitative comparison with in-situ observations[J]. Metallurgical and Materials Transactions A, 2015, 46 (11): 4886- 4897.
doi: 10.1007/s11661-015-2963-8
19
FELICELLI S D , POIRIER D R , HEINRICH J C . Modeling freckle formation in three dimensions during solidification of multicomponent alloys[J]. Metallurgical and Materials Transactions B, 1998, 29 (4): 847- 855.
doi: 10.1007/s11663-998-0144-5
20
SCHNEIDER M C , GU J P , BECKERMANN C , et al. Modeling of micro- and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification[J]. Metallurgical and Materials Transactions A, 1997, 28, 1517- 1531.
doi: 10.1007/s11661-997-0214-3
21
KARAGADDE S , YUAN L , SHEVCHENKO N , et al. 3-D microstructural model of freckle formation validated using in situ experiments[J]. Acta Materialia, 2014, 79, 168- 180.
doi: 10.1016/j.actamat.2014.07.002
22
YUAN L , LEE P D . A new mechanism for freckle initiation based on microstructural level simulation[J]. Acta Materialia, 2012, 60 (12): 4917- 4926.
doi: 10.1016/j.actamat.2012.04.043
23
AUBURTIN P, COCKCROFT S L, MITCHELL A. Liquid density inversions during the solidification of superalloys and their relationship to freckle formation in castings[C]//Superalloys 1996, Proceedings of the 8th International Symposium on Superalloys. Pennsylvania: TMS, 1996: 443-450.
24
AUBURTIN P , WANG T , COCKCROFT S L , et al. Freckle formation and freckle criterion in superalloy castings[J]. Metallurgical and Materials Transactions A, 2000, 31 (4): 801- 811.
doi: 10.1007/s11663-000-0117-9
25
SUN Q Y , REN Y , LIU D R . Numerical investigations of freckles in directionally solidified nickel-based superalloy casting with abrupt contraction in cross section[J]. Results in Physics, 2019, 12, 1547- 1558.
doi: 10.1016/j.rinp.2019.01.056
26
AUBURTIN P, COCKCROFT S L, MITCHELL A, et al. Freckle formation in superalloys[C]//Superalloys 2000, Proceedings of the 9th International Symposium on Superalloys. Pennsylvania: TMS, 2000: 255-261.
27
TIN S , POLLOCK T M . Predicting freckle formation in single crystal Ni-base superalloys[J]. Journal of Materials Science, 2004, 39, 7199- 7205.
doi: 10.1023/B:JMSC.0000048732.02111.ee
28
YANG W, CHEN W, CHANG K M. Segregation and solid evolution during the solidification of niobium-containing superalloys[C]//Superalloys 2000, Proceedings of the 9th International Symposium on Superalloys. Pennsylvania: TMS, 2000: 75-84.
29
QIN L , SHEN J , LI Q , et al. Effects of convection patterns on freckle formation of directionally solidified nickel-based superalloy casting with abruptly varying cross-sections[J]. Journal of Crystal Growth, 2017, 466, 45- 55.
doi: 10.1016/j.jcrysgro.2017.03.021
30
CHMIELA B , SOZAŃSKA M , CWAJNA J . Identification and evaluation of freckles in directionally solidified casting made of PWA 1426 nickel-based superalloy[J]. Archives of Metallurgy and Materials, 2012, 57 (2): 559- 564.
doi: 10.2478/v10172-012-0059-7
31
SCHADT R, WAGNER I, PREUHS J, et al. New aspects of freckle formation during single crystal solidification of CMSX-4[C]//Superalloys 2000, Proceedings of the 9th International Symposium on Superalloys. Pennsylvania: TMS, 2000: 211-218.
32
MEHRABIAN R , KEANE M , FLEMINGS M C . Interdendritic fluid flow and macrosegregation; influence of gravity[J]. Metallurgical Transactions, 1970, 1, 1209- 1220.
doi: 10.1007/BF02900233
33
LI Q D , SHEN J , XIONG Y , et al. Prediction of freckle formation in directionally solidified CMSX-4 superalloy[J]. Materials Letters, 2018, 228, 281- 284.
doi: 10.1016/j.matlet.2018.06.002
34
BECKERMANN C , GU J P , BOETTINGER W J . Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings[J]. Metallurgical and Materials Transactions A, 2000, 31 (10): 2545- 2557.
doi: 10.1007/s11661-000-0199-7
35
YANG W , CHEN W , CHANG K M , et al. Freckle criteria for the upward directional solidification of alloys[J]. Metallurgical and Materials Transactions A, 2001, 32 (2): 397- 406.
doi: 10.1007/s11661-001-0271-y
36
WANG L , DONG J , TIAN Y , et al. Microsegregation and Rayleigh number variation during the solidification of superalloy Inconel 718[J]. Journal of University of Science and Technology Beijing, 2008, 15 (5): 594- 599.
doi: 10.1016/S1005-8850(08)60111-5
37
GIAMEI A F , KEAR B H . On the nature of freckles in nickel base superalloys[J]. Metallurgical Transactions, 1970, 1, 2185- 2192.
doi: 10.1007/BF02643434
38
TIN S, POLLOCK T M, KING W T. Carbon additions and grain defect formation in high refractory nickel-base single crystal[C]//Superalloys 2000, Proceedings of the 9th International Symposium on Superalloys. Pennsylvania: TMS, 2000: 201-210.
39
TIN S , POLLOCK T M . Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys carbide precipitation and Rayleigh numbers[J]. Metallurgical and Materials Transactions A, 2003, 34, 1953- 1967.
doi: 10.1007/s11661-003-0160-7
BAO C J , LI Z F , LIU F , et al. Modeling of constituent-based freckle predictor for nickel-base superalloys[J]. The Chinese Journal of Nonferrous Metals, 2019, 29 (5): 998- 1107.
41
MA D X , ZHOU B , POLACZEK A B . Investigation of freckle formation under various solidification conditions[J]. Advanced Materials Research, 2011, 278, 428- 433.
doi: 10.4028/www.scientific.net/AMR.278.428
CHEN J Y , WU W J , LI Q , et al. Freckle of Ni-based single crystal superalloy prepared by low thermal gradient HRS process[J]. The Chinese Journal of Nonferrous Metals, 2018, 28 (12): 2494- 2498.
43
LI Q D , SHEN J , QIN L , et al. Investigation on local cooling in reducing freckles for directionally solidified superalloy specimens with abruptly varying cross-sections[J]. Materials Characterization, 2017, 130, 139- 148.
doi: 10.1016/j.matchar.2017.05.032
44
HAN D Y , JIANG W G , XIAO J H , et al. Investigation on freckle formation and evolution of single-crystal nickel-based superalloy specimens with different thicknesses and abrupt cross-section changes[J]. Journal of Alloys and Compounds, 2019, 805, 218- 228.
doi: 10.1016/j.jallcom.2019.07.045
45
任莹. 镍基高温合金雀斑数值模拟研究[D]. 哈尔滨: 哈尔滨理工大学, 2019.
45
REN Y. Numerical simulation of freckle defects in nickel-based superalloys[D]. Harbin: Harbin University of Science and Technology, 2019.
MA D X . Freckle formation during directionalsolidification of complex castings of superalloys[J]. Acta Metallurgica Sinica, 2016, 52 (4): 426- 436.
47
MA D X , POLACZEK A B . The influence of surface roughness on freckle formation in directionally solidified superalloy samples[J]. Metallurgical and Materials Transactions B, 2012, 43 (4): 671- 677.
doi: 10.1007/s11663-012-9691-x
48
MA D X , POLACZEK A B . The geometrical effect on freckle formation in the directionally solidified superalloy CMSX-4[J]. Metallurgical Materials Transactions A, 2014, 45 (3): 1435- 1444.
doi: 10.1007/s11661-013-2088-x
49
MA D X , WU Q , POLACZEK A B . Some new observations on freckle formation in directionally solidified superalloy components[J]. Metallurgical and Materials Transactions B, 2012, 43 (2): 344- 353.
doi: 10.1007/s11663-011-9608-0
50
HONG J P , MA D X , WANG J , et al. Freckle defect formation near the casting interfaces of directionally solidified superalloys[J]. Materials, 2016, 9 (11): 45- 61.
51
HONG J P , MA D X , WANG J , et al. Geometrical effect of freckle formation on directionally solidified superalloy CM247 LC components[J]. Journal of Alloys and Compounds, 2015, 648, 1076- 1082.
doi: 10.1016/j.jallcom.2015.07.016
52
MA D X , MATHES M , ZHOU B , et al. Influence of crystal orientation on the freckle formation in directionally solidified superalloys[J]. Advanced Materials Research, 2011, 278, 114- 119.
doi: 10.4028/www.scientific.net/AMR.278.114
53
TAN F L . An experimental study on channels formation during solidification of aqueous ammonium chloride[J]. Applied Thermal Engineering, 2015, 25, 2169- 2192.
54
SHIH Y C , TU S M , CHIU C C . Suppressing freckles during solidification due to periodic motionof top liquid layer[J]. Applied Thermal Engineering, 2013, 50, 1055- 1069.
doi: 10.1016/j.applthermaleng.2012.08.059
55
WANG F , MA D X , ZHANG J , et al. Investigation of segregation and density profiles in the mushy zone of CMSX-4 superalloys solidified during downward and upward directional solidification processes[J]. Journal of Alloys and Compounds, 2015, 620, 24- 30.
56
LU Y Z , XIH J , SHEN J , et al. Experimental and simulation study of directional solidification process for industrial gas turbine blades prepared by liquid metal cooling[J]. Acta Metallurgica Sinica, 2015, 51 (5): 603- 611.