Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (8): 153-161    DOI: 10.11868/j.issn.1001-4381.2020.001138
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
壳聚糖/木质素磺酸钠吸附剂的制备及其除Pb2+和Cd2+
郝冬亮1, 王琪琳2, 毛欣宇2, 梁雅丽3,*(), 邵孝候2
1 河北环境工程学院, 河北 秦皇岛 066102
2 河海大学 农业科学与工程学院, 南京 210098
3 山西省生物研究院有限公司, 太原 030006
Preparation of chitosan/sodium lignosulfonate adsorbent and its removal of Pb2+ and Cd2+
Dong-liang HAO1, Qi-lin WANG2, Xin-yu MAO2, Ya-li LIANG3,*(), Xiao-hou SHAO2
1 Hebei University of Environmental Engineering, Qinhuangdao 066102, Hebei, China
2 College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
3 Shanxi Institute of Biology Co., Ltd., Taiyuan 030006, China
全文: PDF(14086 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

工业废水给水体和土壤带来巨大的灾害,严重影响农作物的生长。为了获得洁净水,须制备一种稳定、有效、可持续的处理剂来控制水污染。使用木质素磺酸钠和壳聚糖,以自由基聚合法在聚丙烯酸上制备木质素基水凝胶吸附剂,并将其应用于除去Pd2+和Cd2+。采用正交法对木质素磺酸钠、壳聚糖、交联剂以及引发剂的含量进行优化。分别利用傅里叶红外光谱仪、扫描电镜图、热分析仪以及Zeta电位仪对吸附剂进行表征。探究不同条件对木质素基水凝胶吸附Pb2+和Cd2+的影响,在此基础上建立动力学和等温线模型。结果表明:在吸附剂为0.015 g、重金属离子浓度为100 mg·L-1、pH值为7时,对Pd2+的吸附容量为367 mg·g-1,对Cd2+的吸附容量为296 mg·g-1。同时,揭示木质素基水凝胶剂的吸附过程是一种以静电吸附为辅、化学吸附为主的吸附模式。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝冬亮
王琪琳
毛欣宇
梁雅丽
邵孝候
关键词 木质素磺酸钠复合材料正交实验设计重金属离子    
Abstract

Industrial wastewater has brought huge disasters to water bodies and soil, and seriously affected the growth of crops. In order to obtain clean water, a stable, effective and sustainable treatment agent must be prepared to control water pollution. The lignin-based hydrogel adsorbent was prepared on polyacrylic acid by free radical polymerization of sodium lignosulfonate and chitosan, which was applied to remove Pd2+ and Cd2+. The orthogonal method was used to optimize the content of sodium lignosulfonate, chitosan, cross-linking agent and initiator. Fourier infrared spectrometer, scanning electron micrograph, thermal analyzer and Zeta potentiometer were used to characterize the adsorbent. The effects of different conditions on the adsorption of Pb2+ and Cd2+ by lignin-based hydrogels were discussed, and the kinetics and isotherm models on the basis were established. The results show that when the adsorbent is 0.015 g, the concentration of heavy metal ions is 100 mg·L-1, and the pH value is 7, the adsorption capacity for Pd2+ is 367 mg·g-1 and the adsorption capacity for Cd2+ is 296 mg·g-1. Simultaneously, it is revealed that the adsorption process of lignin-based hydrogels is an adsorption mode in which electrostatic adsorption is supplemented by chemical adsorption.

Key wordssodium lignosulfonate    composite    orthogonal experimental design    heavy metal ion
收稿日期: 2020-12-10      出版日期: 2021-08-12
中图分类号:  TQ317  
基金资助:国家自然科学基金青年项目(51809076);中央高校基本科研业务费(2019B08514)
通讯作者: 梁雅丽     E-mail: liangyali@163.com
作者简介: 梁雅丽(1978-), 女, 副研究员, 硕士, 研究方向: 生物质材料的利用, 联系地址: 河北省秦皇岛市北戴河区金港大道八号河北环境工程学院(066102), E-mail: liangyali@163.com
引用本文:   
郝冬亮, 王琪琳, 毛欣宇, 梁雅丽, 邵孝候. 壳聚糖/木质素磺酸钠吸附剂的制备及其除Pb2+和Cd2+[J]. 材料工程, 2021, 49(8): 153-161.
Dong-liang HAO, Qi-lin WANG, Xin-yu MAO, Ya-li LIANG, Xiao-hou SHAO. Preparation of chitosan/sodium lignosulfonate adsorbent and its removal of Pb2+ and Cd2+. Journal of Materials Engineering, 2021, 49(8): 153-161.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001138      或      http://jme.biam.ac.cn/CN/Y2021/V49/I8/153
Factor Sodium lignosul-fonate/g Chitosan/g Potassium persulfate/g N′N-methylene bisacrylamide/g
1 0.1 0.1 0.07 0.0085
2 0.1 0.2 0.09 0.0115
3 0.1 0.3 0.11 0.0145
4 0.2 0.1 0.09 0.0145
5 0.2 0.2 0.11 0.0085
6 0.2 0.3 0.07 0.0115
7 0.3 0.1 0.11 0.0115
8 0.3 0.2 0.07 0.0145
9 0.3 0.3 0.09 0.0085
Table 1  正交实验设计方案
Factor Sodium lignosulfonate/g Chitosan/g Potassium persulfate/g N′N-methylene bisacrylamide/g Adsorption capacity/(mg·g-1)
1 0.1 0.1 0.07 0.0085 241
2 0.1 0.2 0.09 0.0115 185
3 0.1 0.3 0.11 0.0145 330
4 0.2 0.1 0.09 0.0145 161
5 0.2 0.2 0.11 0.0085 210
6 0.2 0.3 0.07 0.0115 325
7 0.3 0.1 0.11 0.0115 289
8 0.3 0.2 0.07 0.0145 286
9 0.3 0.3 0.09 0.0085 232
k1 252 230 284 227
k2 232 227 193 266
k3 269 295 276 259
R 37 65 91 29
Table 2  正交实验结果
Fig.1  木质素基水凝胶(a)和吸附Pb2+后吸附剂(b)的扫描电镜图以及吸附Pb2+后吸附剂的Mapping图(c)
Fig.2  木质素磺酸钠、木质素基水凝胶、壳聚糖、吸附Pb2+及Cd2+后木质素基水凝胶的红外光谱图
Fig.3  壳聚糖(a),木质素磺酸钠(b)和木质素基水凝胶(c)的热重曲线
Fig.4  吸附剂的投放量(a)和pH值(b)对吸附性能的影响
(插图为不同pH值下木质素基水凝胶的Zeta电位)
Fig.5  木质素基水凝胶对Pb2+,Cd2+吸附容量随时间的变化(a),木质素基水凝胶吸附Pb2+(b)和Cd2+(c)颗粒内扩散动力学模型(插图为木质素基水凝胶吸附Pb2+,Cd2+拟二级动力学模型)
Ion Experimental data Pseudo first order Pseudo second order
Qe/(mg·g-1) Qe/(mg·g-1) k1/min-1 R2 Qe/(mg·g-1) k2/min-1 R2
Pb2+ 345.27 239.38 0.0171 0.9243 338.48 0.0383 0.9969
Cd2+ 278.14 395.75 0.0285 0.9636 247.11 0.0241 0.9937
Table 3  动力学拟合参数
Fig.6  初始浓度对吸附性能的影响(a)以及Langmuir等温线模型(b)
Ion Langmuir isotherm model Freundlich isotherm model
Qm, L/(mg·g-1) KL/(L·mg-1) R2 KF/(L· g-1) 1/n R2
Pb2+ 354.13 0.0491 0.9967 290.71 0.0454 0.8441
Cd2+ 268.36 0.0314 0.9976 207.63 0.0699 0.8791
Table 4  等温线模型拟合参数
Fig.7  木质素基水凝胶对Pb2+,Cd2+吸附的吸附机理
1 CHEN J , ZHU J , WANG N , et al. Hydrophilic polythiophene/SiO2 composite for adsorption engineering: green synthesis in aqueous medium and its synergistic and specific adsorption for heavy metals from wastewater[J]. Chemical Engineering Journal, 2019, 360, 1486- 1497.
doi: 10.1016/j.cej.2018.10.228
2 CHEN Q , ZHENG J , WEN L , et al. A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: performance and quantum chemical mechanism[J]. Chemosphere, 2019, 224, 509- 518.
doi: 10.1016/j.chemosphere.2019.02.138
3 司子彦, 谢水波, 朱奥琦, 等. 蒙脱土/Fe3O4/腐殖酸复合材料对U(Ⅵ)的作用机制[J]. 材料工程, 2021, 49 (3): 158- 166.
3 SI Z Y , XIE S B , ZHU A Q , et al. Action mechanism of montmorillonite/Fe3O4/humic acid composite on U(Ⅵ)[J]. Journal of Materials Engineering, 2021, 49 (3): 158- 166.
4 WU D Q , ZHU J , HAN H , et al. Synthesis and characterization of arginine-NIPAAm hybrid hydrogel as wound dressing: in vitro and in vivo study[J]. Acta Biomaterialia, 2018, 65, 305- 316.
doi: 10.1016/j.actbio.2017.08.048
5 GODIYA C B , LIANG M , SAYED S M , et al. Novel alginate/polyethyleneimine hydrogel adsorbent for cascaded removal and utilization of Cu2+ and Pb2+ ions[J]. Journal of Environmental Management, 2019, 232 (15): 829- 841.
6 MA J , LUO J , LIU Y , et al. Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) removal using a humic substance-based double network hydrogel in individual and multicomponent systems[J]. Journal of Materials Chemistry A, 2018, 6 (41): 20110- 20120.
doi: 10.1039/C8TA07250G
7 GUO H , JIANG C , XU Z , et al. Synthesis of bitter gourd-shaped nanoscaled hydroxyapatite and its adsorption property for heavy metal ions[J]. Materials Letters, 2019, 241 (15): 176- 179.
8 SHARMA M , SINGH J , HAZRA S , et al. Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths: adsorption and kinetic studies[J]. Microchemical Journal, 2019, 145, 105- 112.
doi: 10.1016/j.microc.2018.10.026
9 FU F , LIU X , CHEN G . Adsorption of heavy metal sewage on nano-materials such as titanate/TiO2 added lignin[J]. Results in Physics, 2019, 12, 405- 411.
doi: 10.1016/j.rinp.2018.11.084
10 YUE X , ZHANG T , YANG D , et al. The synthesis of hierarchical porous Al2O3/acrylic resin composites as durable, efficient and recyclable absorbents for oil/water separation[J]. Chemical Engineering Journal, 2017, 309, 522- 531.
doi: 10.1016/j.cej.2016.10.049
11 ABDELSALAM H , TELEB N H , YAHIA I S , et al. First principles study of the adsorption of hydrated heavy metals on graphene quantum dots[J]. Journal of Physics and Chemistry of Solids, 2019, 130, 32- 40.
doi: 10.1016/j.jpcs.2019.02.014
12 LIU S , PAN J , CAO J , et al. Simultaneous removal of Pb(Ⅱ) and 2, 4, 6-trichlorophenol by a hierarchical porous PU@PDA@MSNs sponge with reversible "shape memory" effect[J]. Chemical Engineering Journal, 2016, 284, 10- 20.
doi: 10.1016/j.cej.2015.08.133
13 WU Y , QIU X , CAO S , et al. Adsorption of natural composite sandwich-like nanofibrous mats for heavy metals in aquatic environment[J]. Journal of Colloid and Interface Science, 2019, 539, 533- 544.
doi: 10.1016/j.jcis.2018.12.099
14 VESELSKÁ V , ŠILLEROVÁ H , GÖTTLICHER J , et al. The role of soil components in synthetic mixtures during the adsorption and speciation changes of Cr(Ⅵ): conjunction of the modeling approach with spectroscopic and isotopic investigations[J]. Environment International, 2019, 127, 848- 857.
doi: 10.1016/j.envint.2019.03.066
15 SUN J , LI M , ZHANG Z , et al. Unravelling the adsorption disparity mechanism of heavy-metal ions on the biomass-derived hierarchically porous carbon[J]. Applied Surface Science, 2019, 471, 615- 620.
doi: 10.1016/j.apsusc.2018.12.050
16 WANG J , ZHANG W , WEI J . Fabrication of poly(β-cyclodextrin)-conjugated magnetic graphene oxide by surface-initiated RAFT polymerization for synergetic adsorption of heavy metal ions and organic pollutants[J]. Journal of Materials Chemistry A, 2019, 7 (5): 2055- 2065.
doi: 10.1039/C8TA09250H
17 XIE A , DAI J , CHEN X , et al. Ultrahigh adsorption of typical antibiotics onto novel hierarchical porous carbons derived from renewable lignin via halloysite nanotubes-template and in-situ activation[J]. Chemical Engineering Journal, 2016, 304, 609- 620.
doi: 10.1016/j.cej.2016.06.138
18 SIYAL A A , SHAMSUDDIN M R , KHAN M I , et al. A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes[J]. Journal of Environmental Management, 2018, 224, 327- 339.
19 ZHANG D , WANG C , BAO Q , et al. The physicochemical cha-racterization, equilibrium, and kinetics of heavy metal ions adsorption from aqueous solution by arrowhead plant (Sagitta-ria trifolia L.) stalk[J]. Journal of Food Biochemistry, 2018, 42 (1): 12448.
doi: 10.1111/jfbc.12448
20 廖家隆, 张喆秋, 陈丽杰, 等. 含砷废水处理研究进展[J]. 有色金属科学与工程, 2018, 9 (1): 86- 91.
20 LIAO J L , ZHANG J Q , CHEN L J , et al. Research progress of arsenic containing wastewater treatment[J]. Nonferrous Metals Science and Engineering, 2018, 9 (1): 86- 91.
21 李仕友, 史冬峰, 唐振平, 等. 壳聚糖/氧化石墨烯复合材料吸附U(Ⅵ)的特性与机理[J]. 环境科学学报, 2017, 37 (4): 1388- 1395.
21 LI S Y , SHI D F , TANG Z P , et al. Adsorption characteristics and mechanism of chitosan/graphene oxide composites for U(Ⅵ)[J]. Acta Scientiae Circumstantiae, 2017, 37 (4): 1388- 1395.
22 李坤权, 王艳锦, 杨美蓉, 等. 多胺功能化介孔炭对Pb(Ⅱ)的吸附动力学与机制[J]. 环境科学, 2014, 35 (8): 3198- 3205.
22 LI K Q , WANG Y J , YANG M R , et al. Adsorption kinetics and mechanism of Pb(Ⅱ) on polyamine functionalized mesoporous carbon[J]. Environmental Science, 2014, 35 (8): 3198- 3205.
23 JIANG C , WANG X , WANG G , et al. Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucanitosan for heavy metal ions[J]. Composite Part B: Engineering, 2019, 169, 45- 54.
doi: 10.1016/j.compositesb.2019.03.082
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[3] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[4] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[7] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[8] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[9] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[10] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[13] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[14] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[15] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn