1 Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China 2 Weihai Wanfeng Auto Holding Group Co., Ltd., Weihai 264209, Shandong, China
The Mg-xGd-1Er-1Zn-0.6Zr alloys with Gd contents of 7%(mass fraction), 9% and 11% were prepared by gravity casting method.The microstructure of the alloys was studied by means of optical microscope, scanning electron microscope and X-ray diffractometer.The corrosion behavior of the alloys were evaluated by means of open circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy measurements in 3.5%NaCl solution.The results show that when Gd content increases from 7% to 11%, the peak time of open circuit potential decreases from 1609 s to 851 s, the charge transfer resistance decreases from 588.50 Ω to 31.9 Ω, the corrosion current density increases from 2.21×10-5 A/cm2 to 3.97×10-5 A/cm2, indicating that the corrosion resistance of the alloys decreases with the increase of Gd content.It is attributed to the combined operation of the micro-galvanic corrosion effect as well as corrosion barrier effect of second phase.When the Gd content increases from 7% to 11%, the volume fraction of (Mg, Zn)3(Gd, Er) phase increases from 1.9% to 5.2%, and changes from discontinuous distribution to semi-continuous distribution along grain boundaries, the volume fraction of the lamellar-shape LPSO phase increases from 11.7% to 26.7% and penetrates into grains.The increase in the volume fraction of the (Mg, Zn)3(Gd, Er) phase and the lamellar-shape LPSO phase results in the decrease of corrosion resistance, however, a large number of fine lamellar-shape LPSO phases is able to prevent the corrosion from spreading and slow down the growth of corrosion rate of the alloy with 11%Gd content in 8-24 h.
Fig.11 铸态Mg-xGd-1Er-1Zn-0.6Zr合金在3.5%NaCl溶液中浸泡不同时间后去掉腐蚀产物的腐蚀形貌 (a)合金A;(b)合金B;(c)合金C;(1)1 h;(2)14 h;(3)24 h
Fig.12 铸态Mg-xGd-1Er-1Zn-0.6Zr合金失重腐蚀速率
Fig.13 铸态Mg-xGd-1Er-1Zn-0.6Zr合金随浸泡时间延长的腐蚀机理示意图
1
WANG Q D , CHEN Y , LIU M P , et al. Microstructure evolution of AZ series magnesium alloys during cyclic extrusion compression[J]. Materials Science and Engineering: A, 2010, 527 (9): 2265- 2273.
doi: 10.1016/j.msea.2009.11.065
2
AHMADHANIHA D , JARVENPAA A , JASKARI M , et al. Microstructural modification of pure Mg for improving mechanical and biocorrosion properties[J]. Journal of the Mechanical Beha-vior of Biomedical Materials, 2016, 61, 360- 370.
doi: 10.1016/j.jmbbm.2016.04.015
3
ZHAO M C , SCHMUTZ P , BRUNNER S , et al. An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing[J]. Corrosion Science, 2009, 51 (6): 1277- 1292.
doi: 10.1016/j.corsci.2009.03.014
4
WANG J S , LI X B . Simultaneously improving strength and ductility of AZ91-type alloys with minor Gd addition[J]. Journal of Alloys and Compounds, 2019, 803, 689- 699.
doi: 10.1016/j.jallcom.2019.06.313
5
ZHANG T , SHAO Y W , MENG G Z , et al. Corrosion of hot extrusion AZ91 magnesium alloy: Ⅰ-relation between the microstructure and corrosion behavior[J]. Corrosion Science, 2011, 53 (5): 1960- 1968.
doi: 10.1016/j.corsci.2011.02.015
6
LI J L , CHEN R S , KE W . Microstructure and mechanical properties of Mg-Gd-Y-Zr alloy cast by metal mould and lost foam cas-ting[J]. Transactions of Nonferrous Metals Society of China, 2011, 21 (4): 761- 766.
doi: 10.1016/S1003-6326(11)60777-2
7
LIANG S Q , GUAN D K , TAN X P . The relation between heat treatment and corrosion behavior of Mg-Gd-Y-Zr alloy[J]. Materials & Design, 2011, 32 (3): 1194- 1199.
8
WANG D , WU H J , WU R Z , et al. The transformation of LPSO type in Mg-4Y-2Er-2Zn-0.6Zr and its response to the mechanical properties and damping capacities[J]. Journal of Magnesium and Alloys, 2020, 8 (3): 793- 798.
doi: 10.1016/j.jma.2019.10.003
9
RAMEZANI S , ZAREI-HANZAKI A , ABEDI H R , et al. Achie-vement of fine-grained bimodal microstructure and superior mechanical properties in a multi-axially forged GWZ magnesium alloy containing LPSO structures[J]. Journal of Alloys and Compounds, 2019, 793, 134- 145.
doi: 10.1016/j.jallcom.2019.04.158
10
ZHANG J S , XU J D , CHENG W L , et al. Corrosion behavior of Mg-Zn-Y alloy with long-period stacking ordered structures[J]. Journal of Materials Science and Technology, 2012, 28 (12): 1157- 1162.
doi: 10.1016/S1005-0302(12)60186-8
11
BAO L , ZHANG Z Q , LE Q C , et al. Corrosion behavior and mechanism of Mg-Y-Zn-Zr alloys with various Y/Zn mole ratios[J]. Journal of Alloys and Compounds, 2017, 712, 15- 23.
doi: 10.1016/j.jallcom.2017.04.053
12
ZHANG J Y , XU M , TENG X Y , et al. Effect of Gd addition on microstructure and corrosion behaviors of Mg-Zn-Y alloy[J]. Journal of Magnesium and Alloys, 2016, 4, 319- 325.
doi: 10.1016/j.jma.2016.09.003
13
BI G L , JIANG J , ZHANG F , et al. Microstructure evolution and corrosion properties of Mg-Dy-Zn alloy during cooling after solution treatment[J]. Journal of Rare Earths, 2016, 34 (9): 931- 937.
doi: 10.1016/S1002-0721(16)60117-5
14
JIA L Y , DU W B , WANG Z H , et al. Dual phases strengthening behavior of Mg-10Gd-1Er-1Zn-0.6Zr alloy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30 (3): 635- 646.
doi: 10.1016/S1003-6326(20)65242-6
15
WEN K , DU W B , LIU K , et al. Precipitation behavior of 14H-LPSO structure in Mg-12Gd-2Er-1Zn-0.6Zr alloy[J]. Rare Me-tals, 2016, 35 (5): 367- 373.
doi: 10.1007/s12598-015-0555-9
WANG B J , JIANG C L , LI C Q , et al. Research progress on corrosion behavior of magnesium-lithium alloys[J]. Journal of Aeronautical Materials, 2019, 39 (1): 1- 8.
17
LI B , TENG B G , CHEN G X , et al. Microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy during equal channel angular pressing[J]. Materials Science and Engineering: A, 2019, 744, 396- 405.
doi: 10.1016/j.msea.2018.12.024
18
WANG L , ZHANG B P , SHINOHARA T , et al. Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions[J]. Materials & Design, 2010, 31 (2): 857- 863.
19
SONG Y W , SHAN D Y , CHEN R S , et al. Corrosion characterization of Mg-8Li alloy in NaCl solution[J]. Corrosion Science, 2009, 51 (5): 1087- 1094.
doi: 10.1016/j.corsci.2009.03.011
20
ZUCCHI F , GRASSI V , FRIGNANI A , et al. Electrochemical behaviour of a magnesium alloy containing rare earth elements[J]. Journal of Applied Electrochemistry, 2006, 36 (2): 195- 204.
doi: 10.1007/s10800-005-9053-3
LIN M X , ZHANG J , JIANG Q T , et al. Effect of chlorella vulgaris on corrosion behavior of Mg-3Y-1.5Nd alloy in natural seawater[J]. Journal of Materials Engineering, 2020, 48 (1): 98- 107.
WANG L , DONG C F , ZHANG D W , et al. Effect of alloying elements on initial corrosion behavior of aluminum alloy in Bangkok, Thailand[J]. Acta Metallurgica Sinica, 2020, 56 (1): 119- 128.
23
BARIL G , BLANC C , PÉBÈRE N . AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys—characterization with respect to their microstructures[J]. Journal of the Electrochemical Society, 2001, 148 (12): B489- B496.
doi: 10.1149/1.1415722
ZHANG S , LI Q A , ZHU H X , et al. Effect of Ca on microstructure and corrosion resistance of Mg-11Gd-3Y-0.5Zr alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40 (8): 17- 23.
25
AMBAT R , AUNG N , ZHOU W . Evaluation of microstructural effects on corrosion behavior of AZ91D magnesium alloy[J]. Corrosion Science, 2000, 42 (8): 1433- 1455.
doi: 10.1016/S0010-938X(99)00143-2
26
JONSSON M , PERSSON D , GUBNER R . The initial steps of atmospheric corrosion on magnesium alloy AZ91D[J]. Journal of the Electrochemical Society, 2007, 154 (11): C684- C691.
doi: 10.1149/1.2779957
27
LIU J , YANG L X , ZHANG C Y , et al. Significantly improved corrosion resistance of Mg-15Gd-2Zn-0.39Zr alloys: effect of heat-treatment[J]. Journal of Materials Science and Technology, 2019, 35 (8): 1644- 1654.
doi: 10.1016/j.jmst.2019.03.027
28
LIU X , XUE J L , ZHANG D . Electrochemical behaviors and discharge performance of the as-extruded Mg-1.5wt%Ca alloys as anode for Mg-air battery[J]. Journal of Alloys and Compounds, 2019, 790, 822- 828.
doi: 10.1016/j.jallcom.2019.03.260