Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (8): 63-71    DOI: 10.11868/j.issn.1001-4381.2020.001142
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响
李安庆1,2, 张立华1,2,3,*(), 蒋日鹏1,3, 李晓谦1,2,3, 张昀1,2
1 中南大学 机电工程学院, 长沙 410083
2 中南大学 高性能复杂制造国家重点实验室, 长沙 410083
3 中南大学 轻合金研究院, 长沙 410083
Effect of cooling speed and ultrasonic vibration on solidification structure and mechanical properties of 7085 aluminum alloy
An-qing LI1,2, Li-hua ZHANG1,2,3,*(), Ri-peng JIANG1,3, Xiao-qian LI1,2,3, Yun ZHANG1,2
1 College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
2 State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
3 Institute of Light Alloy Research, Central South University, Changsha 410083, China
全文: PDF(18572 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用炉冷、空冷、水冷3种不同的冷却方式,同时施加超声外场辅助技术,研究冷却速度、超声外场对7085铝合金凝固组织及性能的影响。采用金相显微镜、扫描电子显微镜及电子万能力学试验机对试样进行基体组织、第二相、抗拉强度和伸长率表征,并分析其凝固机理。结果表明:在炉冷、空冷、水冷3种冷却方式下,施加超声外场后各组试样α-Al微观组织细化率分别为40.2%,14.6%,21.6%,晶粒尺寸与冷却速度的拟合关系分别为:LW=154.4+25.33/vLS=148.1+15.3/v,第二相的面积分数分别相对减少32.1%,16.9%,18.5%,第二相的平均长度及宽度也均相对有所减小,其中7085铝合金的抗拉强度分别提高21.7%,21.7%,3.6%,引入超声外场辅助技术后,相比于未施加超声组试样,7085铝合金的伸长率也得到进一步提升,分别提高31.3%,15.7%,41.4%。在超声外场及水冷协同作用下,7085铝合金微观组织及力学性能更佳。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李安庆
张立华
蒋日鹏
李晓谦
张昀
关键词 冷却速度超声外场微观组织第二相拟合关系    
Abstract

Three different cooling methods of furnace cooling, air cooling and water cooling were adopted, and ultrasonic outfield assisted technology was applied to study the effects of cooling speed and ultrasonic outfield on the solidification structure and properties of 7085 aluminum alloy. Metallographic microscope, scanning electron microscope and electronic universal mechanics testing machine were used to characterize the matrix structure, second phase, tensile strength and elongation of the samples, and the solidification mechanism was analyzed. The results show that under the above three cooling methods of furnace cooling, air cooling and water cooling, after ultrasonic field the microstructure refinement rate of α-Al in each group is 40.2%, 14.6%, and 21.6%, respectively. The fitting relationship between grain size and cooling speed is as follows: LW=154.4+25.33/v, LS=148.1+15.3/v, the second phase of the area fraction are relatively reduced by 32.1%, 16.9% and 18.5%, the average length and width of the second phase are also relatively less, the tensile strength of 7085 aluminum alloy, which is increased by 21.7%, 21.7% and 3.6%, respectively, after the introduction of ultrasonic outfield auxiliary technology, compared to the group without ultrasound. Elongation of 7085 aluminum alloy is further enhanced by 31.3%, 15.7% and 41.4% respectively. Under the synergistic effect of ultrasonic field and water cooling, the microstructure and mechanical properties of 7085 aluminum alloy are better.

Key wordscooling speed    ultrasonic field    microstructure    second phase    fitting relationship
收稿日期: 2020-12-11      出版日期: 2021-08-12
中图分类号:  TB331  
基金资助:国家自然科学基金(51805549);国家自然科学基金(52005517);湖南省科技创新计划(2020RC2002);湖南省自然科学基金(2020 JJ4703)
通讯作者: 张立华     E-mail: Zhanglihua@csu.edu.cn
作者简介: 张立华(1965-), 男, 教授, 硕士, 研究方向为超声波处理大规格铝合金的工艺与机理分析, 联系地址: 湖南省长沙市岳麓区麓山南路932号中南大学机电工程学院(410083), E-mail: Zhanglihua@csu.edu.cn
引用本文:   
李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
An-qing LI, Li-hua ZHANG, Ri-peng JIANG, Xiao-qian LI, Yun ZHANG. Effect of cooling speed and ultrasonic vibration on solidification structure and mechanical properties of 7085 aluminum alloy. Journal of Materials Engineering, 2021, 49(8): 63-71.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001142      或      http://jme.biam.ac.cn/CN/Y2021/V49/I8/63
Zn Cu Mg Zr Si Ti Mn Al
7.35 1.75 1.32 0.11 0.06 0.03 0.02 Bal
Table 1  实验用7085铝合金成分(质量分数/%)
Fig.1  超声铸造实验装置图
Fig.2  拉伸测试样品尺寸
Sample Furnace cooling Air cooling Water cooling
No ultrasound group 0.044 0.245 5.08
Ultrasound group 0.052 0.312 5.21
Table 2  不同冷却方式下7085铝合金的平均冷却速度(℃/s)
Fig.3  各组试样金相照片
(a)试样Ⅰ;(b)试样ⅠU;(c)试样Ⅱ;(d)试样ⅡU;(e)试样Ⅲ;(f)试样ⅢU
Type of cooling No ultrasound group/μm Ultrasound group/μm Ratio of refinement/%
Furnace cooling 713.4 426.5 40.2
Air cooling 355.3 303.4 14.6
Water cooling 78.8 61.8 21.6
Table 3  各组试样晶粒尺寸及细化率
Fig.4  晶粒尺寸与冷却速度的关系
Fig.5  各组试样的扫描电镜图
(a)试样Ⅰ;(b)试样ⅠU;(c)试样Ⅱ;(d)试样ⅡU;(e)试样Ⅲ;(f)试样ⅢU
Fig.6  各组试样第二相微观组织
(a)试样Ⅰ;(b)试样ⅠU;(c)试样Ⅱ;(d)试样ⅡU;(e)试样Ⅲ;(f)试样ⅢU
Second phase Al Zn Mg Cu Fe Si
Al2Cu+Al2Mg3Zn3 25.41-50.35 26.36-35.64 11.72-17.07 12.71-25.2 0 0-1.27
Mg2Si 2.14-7.32 0.46-4.1 40.18-54.3 0 0 38.2-44.9
Al3Fe 50.1-56.4 3.19-5.6 0-2.32 6.2-9.1 22.3-31.6 0
Table 4  第二相电子探针成分分析(质量分数/%)
Fig.7  Al3Fe相微观组织
(a)试样Ⅱ;(b), (c)试样ⅡU
Fig.8  试样第二相长度、宽度及面积分数
(a)未施加超声;(b)施加超声
Fig.9  各组试样力学性能对比
(a)抗拉强度;(b)伸长率
Fig.10  抗拉强度(a)和伸长率(b)与冷却速度的关系
1 HE L , LI X , ZHU P , et al. Effects of high magnetic field on the evolutions of constituent phases in 7085 aluminum alloy during homogenization[J]. Materials Characterization, 2012, 71 (5): 19- 23.
2 LUONG H , HILL M R . The effects of laser peening on high-cycle fatigue in 7085-T7651 aluminum alloy[J]. Materials Science and Engineering: A, 2008, 477 (2): 208- 216.
3 李瑞卿, 李晓谦, 陈平虎, 等. 超声铸造7085铝合金在热处理过程中的相变行为[J]. 材料工程, 2016, 44 (6): 24- 30.
doi: 10.3969/j.issn.1673-1433.2016.06.009
3 LI R Q , LI X Q , CHEN P H , et al. Phase transition behavior of ultrasonic cast 7085 aluminum alloy during heat treatment[J]. Jour-nal of Materials Engineering, 2016, 44 (6): 24- 30.
doi: 10.3969/j.issn.1673-1433.2016.06.009
4 刘文义, 胡小会, 李军. 7085超高强铝合金的研究进展[J]. 热加工工艺, 2020, 45 (2): 1- 5.
4 LIU W Y , HU X H , LI J . Research progress of 7085 ultra-high strength aluminum alloys[J]. Thermal Processing Technology, 2020, 45 (2): 1- 5.
5 邹浩, 潘清林, 史运嘉, 等. 超声场对7085铝合金微观组织和力学性能的影响[J]. 中南大学学报, 2018, 25 (6): 1285- 1294.
5 ZOU H , PAN Q L , SHI Y J , et al. Effect of ultrasonic field on microstructure and mechanical properties of 7085 aluminum alloy[J]. Journal of Central South University, 2018, 25 (6): 1285- 1294.
6 范金辉, 翟启杰. 物理场对金属凝固组织的影响[J]. 中国有色金属学报, 2002, 12 (5): 11- 17.
6 FAN J H , ZHAI Q J . Effects of physical field on solidification structure of metal[J]. Chinese Journal of Nonferrous Metals, 2002, 12 (5): 11- 17.
7 张月, 杜文博, 李淑波, 等. 冷却速度对Mg-8Gd-1Er合金凝固组织的影响[J]. 稀有金属材料与工程, 2018, 47 (10): 3120- 3126.
7 ZHANG Y , DU W B , LI S B , et al. Effect of cooling rate on solidification structure of Mg-8Gd-1Er alloy[J]. Materials and Engineering of Rare Metals, 2018, 47 (10): 3120- 3126.
8 杨亚琴, 王金娥. 铸造冷却速度对AZ91镁合金凝固组织与性能的影响[J]. 热加工工艺, 2019, 48 (3): 116- 118.
8 YANG Y Q , WANG J E . Effect of casting cooling rate on solidification structure and properties of AZ91 magnesium alloy[J]. Thermal Processing Technology, 2019, 48 (3): 116- 118.
9 杨伟, 殷海眯, 商景利, 等. SiC颗粒参与下快冷镁合金异质形核与高温晶粒长大[J]. 中国有色金属学报, 2017, 27 (2): 243- 250.
9 YANG W , YIN H M , SHANG J L , et al. Hetero-nucleation and high temperature grain growth of fast cold magnesium alloys with SiC particles[J]. Chinese Journal of Nonferrous Metals, 2017, 27 (2): 243- 250.
10 潘蕾, 陶杰, 陈照峰, 等. 高能超声在颗粒/金属熔体体系中的声学效应[J]. 材料工程, 2006, (1): 35- 37.
doi: 10.3969/j.issn.1001-4381.2006.01.009
10 PAN L , TAO J , CHEN Z F , et al. Acoustic effect of high energy ultrasound in particle/metal melt system[J]. Journal of Materials Engineering, 2006, (1): 35- 37.
doi: 10.3969/j.issn.1001-4381.2006.01.009
11 JUNG J , LEE S , CHO Y , et al. Effect of transition elements on the microstructure and tensile properties of Al-12Si alloy cast under ultrasonic melt treatment[J]. Journal of Alloys and Compounds, 2017, 712 (4): 277- 287.
12 ZHANG L , JIANG R P , LI X Q , et al. Microstructure modification for 2219 Al alloy through ultrasonic treatment and fast coo-ling[J]. Materials Science and Technology, 2019, 35 (11): 1392- 1400.
doi: 10.1080/02670836.2019.1627499
13 李晓谦, 蒋日鹏, 张立华, 等. 超声施振深度和冷却方式对纯铝凝固组织的影响[J]. 北京理工大学学报, 2008, 28 (4): 290- 293.
13 LI X Q , JIANG R P , ZHANG L H , et al. Effect of ultrasonic vibration depth and cooling mode on solidified microstructure of pure aluminum[J]. Journal of Beijing Institute of Technology, 2008, 28 (4): 290- 293.
14 黄明哲, 李晓谦, 蒋日鹏, 等. 超声外场对7085铝合金基体组织及第二相的影响[J]. 中南大学学报, 2015, 46 (7): 2439- 2445.
14 HUANG M Z , LI X Q , JIANG R P , et al. Effect of ultrasonic field on the matrix and phase of 7085 aluminum alloy[J]. Journal of Central South University, 2015, 46 (7): 2439- 2445.
15 STJOHN D H , QIAN M , EASTON M A , et al. The interdepen-dence theory: the relationship between grain formation and nucleant selection[J]. Acta Materialia, 2011, 59 (12): 4907- 4921.
doi: 10.1016/j.actamat.2011.04.035
16 王莹, 李晓谦, 李瑞卿, 等. 大直径铝锭热顶铸造中超声施振深度的细晶机制[J]. 工程科学学报, 2019, 41 (1): 96- 103.
16 WANG Y , LI X Q , LI R Q , et al. Fine crystal mechanism of ultrasonic vibration depth in hot top casting of large diameter aluminum ingots[J]. Journal of Engineering Science, 2019, 41 (1): 96- 103.
17 钟贞涛, 李瑞卿, 李晓谦, 等. 超声处理对2219大规格铝锭微观组织与宏观偏析的影响[J]. 工程科学学报, 2017, 39 (9): 1347- 1354.
17 ZHONG Z T , LI R Q , LI X Q , et al. Effect of ultrasonic treatment on microstructure and macrosegregation of 2219 aluminum ingots[J]. Journal of Engineering Science, 2017, 39 (9): 1347- 1354.
18 王俊, 陈锋, 孙宝德. 高能超声在制备颗粒增强金属基复合材料中的作用[J]. 上海交通大学学报, 1999, 33 (7): 3- 5.
18 WANG J , CHEN F , SUN B D . Effect of high energy ultrasound on preparation of particle reinforced metal matrix composites[J]. Journal of Shanghai Jiao Tong University, 1999, 33 (7): 3- 5.
19 范亚洲, 许晓静, 阮鸿雁. 强化固溶处理对含Sr7085铝合金微观组织与力学性能的影响[J]. 热加工工艺, 2015, 44 (18): 192- 194.
19 FAN Y Z , XU X J , RUAN H Y . Effect of enhanced solid solution treatment on microstructure and mechanical properties of Sr 7085 aluminum alloy[J]. Thermal Processing Technology, 2015, 44 (18): 192- 194.
20 陈送义, 陈康华, 彭国胜, 等. 初始显微组织对7085铝合金热加工性能的影响[J]. 中国有色金属学报, 2013, 23 (4): 956- 963.
20 CHEN S Y , CHEN K H , PENG G S , et al. Effect of initial microstructure on thermal processing properties of 7085 aluminum alloy[J]. Chinese Journal of Nonferrous Metals, 2013, 23 (4): 956- 963.
21 YAO L , HAO H , JI S , et al. Effects of ultrasonic vibration on solidification structure and properties of Mg-8Li-3Al alloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21 (6): 1241- 1246.
doi: 10.1016/S1003-6326(11)60848-0
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[3] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[4] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[5] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[6] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[7] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[8] 张小丽, 冯晓伟, 申勇峰. D6A钢在轧制过程中的强韧化机理[J]. 材料工程, 2022, 50(4): 172-180.
[9] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[10] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[11] 陈维平, 陈焕达, 褚晨亮, 付志强. 粉末冶金(FeNiMnAlx)50Cu50中熵合金的微观组织与力学性能[J]. 材料工程, 2022, 50(10): 55-62.
[12] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[13] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[14] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[15] 武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn