Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (6): 157-163    DOI: 10.11868/j.issn.1001-4381.2020.001147
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
工业纯铁退火过程中的位错密度和磁性能
张瑞, 孟亦圆, 陈军, 车枫, 林莉, 罗忠兵()
大连理工大学 无损检测研究所,辽宁 大连 116085
Dislocation density and magnetic properties of industrial pure iron during annealing
Rui ZHANG, Yiyuan MENG, Jun CHEN, Feng CHE, Li LIN, Zhongbing LUO()
NDT & E Laboratory, Dalian University of Technology, Dalian 116085, Liaoning, China
全文: PDF(5163 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

针对热轧工业纯铁退火过程的微观组织和磁性能,采用X射线衍射和磁滞分析法分别研究位错密度、最大磁导率、矫顽力和剩磁的演变规律。结果表明:退火前后工业纯铁的近等轴晶组织没有明显变化,晶粒度约为3.70级;随着650 ℃退火时间延长至5 h,位错密度从初始热轧态1.80×1014 m-2逐渐降低至1.16×1014 m-2,降幅约35%,同时衍射峰在退火初期发生一定程度左移,并在后期明显右移,表明微观存在压应力及后续释放过程。随退火时间延长,最大磁导率整体呈上升趋势,矫顽力和剩磁存在突变点,磁滞回线形状较窄、变化不大,分析认为主要与位错密度、内应力和含碳量相关。退火处理可以改善工业纯铁的磁性能,进一步考虑成分进行一体化调控将提升工业纯铁磁性能并拓展其电磁应用空间。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张瑞
孟亦圆
陈军
车枫
林莉
罗忠兵
关键词 工业纯铁退火位错密度X射线衍射磁滞    
Abstract

To investigate the microstructure and magnetic properties of hot-rolled industrial pure iron during annealing, X-ray diffraction and magnetic hysteresis analysis were performed. The evolution of dislocation density, and magnetic parameters, i.e. the maximum permeability, coercivity, and remanence, were analyzed respectively. Results show that the near equiaxed grain structure of industrial pure iron has no obvious change before and after annealing, and the grain size number is about 3.70. With the annealing time increasing to 5 h at 650 ℃, the dislocation density gradually decreases from the hot-rolled state of 1.80×1014 m-2 to 1.16×1014 m-2, with an amplitude of 35%. At the same time, the diffraction peaks are observed to shift to the left to a certain extent compared with the hot-rolled state, and then to the right. It indicates that the existence of residual compressive stress in micro scale and a subsequent releasing process. The shape of the magnetic hysteresis loops is narrow and changes little with the increase of annealing time. However, the maximum permeability shows a continuous increment, and some abrupt changes are observed in the coercivity and remanence.This might be attributed to the comprehensive influences of dislocation density, internal stress and carbon content. It is indicated that annealing treatment could improve the magnetic properties of industrial pure iron. With a further consideration of the effects of impurity elements, an integrated strategy of composition and microstructure control will improve the ferromagnetic performance of industrial pure iron and expand its electromagnetic applications.

Key wordsindustrial pure iron    annealing    dislocation density    X-ray diffraction    magnetic hysteresis
收稿日期: 2020-12-17      出版日期: 2022-06-20
中图分类号:  TG113  
  TG15  
基金资助:国家自然科学基金项目(51775087);辽宁省“兴辽英才计划”项目(XLYC1902082)
通讯作者: 罗忠兵     E-mail: zhbluo@dlut.edu.cn
作者简介: 罗忠兵(1984—),男,副教授,博士,博士生导师,研究方向为材料无损检测与评价,联系地址:辽宁省大连市高新园区凌工路2号大连理工大学材料学院(116024),E-mail: zhbluo@dlut.edu.cn
引用本文:   
张瑞, 孟亦圆, 陈军, 车枫, 林莉, 罗忠兵. 工业纯铁退火过程中的位错密度和磁性能[J]. 材料工程, 2022, 50(6): 157-163.
Rui ZHANG, Yiyuan MENG, Jun CHEN, Feng CHE, Li LIN, Zhongbing LUO. Dislocation density and magnetic properties of industrial pure iron during annealing. Journal of Materials Engineering, 2022, 50(6): 157-163.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001147      或      http://jme.biam.ac.cn/CN/Y2022/V50/I6/157
C Si Mn P Cr Ni Al Cu Fe
0.008 0.030 0.060 0.012 0.020 0.020 0.050 0.050 99.75
Table 1  实验用工业纯铁的化学成分(质量分数/%)
Fig.1  工业纯铁退火取样示意图
Fig.2  不同退火时间下工业纯铁的退火工艺图
Fig.3  不同退火时间下工业纯铁的微观组织
(a)0 h;(b)1 h;(c)3 h;(d)5 h
Fig.4  不同退火时间下工业纯铁的晶粒度
Fig.5  不同退火时间下工业纯铁的XRD谱图
(a)40°~140°范围衍射峰;(b)(110)衍射峰
Fig.6  热轧态工业纯铁[(ΔK)2α]/K2H2的关系
Fig.7  热轧态工业纯铁Y/L2与lnL的关系
Fig.8  工业纯铁不同退火时间下的位错密度
Fig.9  工业纯铁不同退火时间下的磁滞回线
Fig.10  工业纯铁不同退火时间下的磁参数
(a)Hc;(b)Bs;(c)μm
1 BOSTANABAD R , ZHANG Y , LI X , et al. Computational microstructure characterization and reconstruction: review of the state-of-the-art techniques[J]. Progress in Materials Science, 2018, 95, 1- 41.
doi: 10.1016/j.pmatsci.2018.01.005
2 LIU S , XIONG Z , GUO H , et al. The significance of multi-step partitioning: processing-structure-property relationship in governing high strength-high ductility combination in medium-manganese steels[J]. Acta Materialia, 2017, 124, 159- 172.
doi: 10.1016/j.actamat.2016.10.067
3 张世远. 磁性材料基础[M]. 北京: 科学出版社, 1988: 27- 58.
3 ZHANG S Y . Fundamentals of magnetic materials[M]. Beijing: Science Press, 1988: 27- 58.
4 段美琪, 王瑞珍, 曹建春, 等. 合金元素和退火工艺对电磁纯铁矫顽力的影响[J]. 金属热处理, 2020, 45 (1): 130- 134.
4 DUAN M Q , WANG R Z , CAO J C , et al. Effects of alloying elements and annealing process on coercivity of electromagnetic iron[J]. Heat Treatment of Metals, 2020, 45 (1): 130- 134.
5 HUANG J , WANG Z , GAN J , et al. X-ray diffraction investigation of annealing behavior of peened surface deformation layer on precipitation hardening stainless steel[J]. Journal of Materials Engineering and Performance, 2018, 27 (5): 2226- 2232.
doi: 10.1007/s11665-018-3318-6
6 BAI Q , FENG H , SI L K , et al. A novel stress relaxation modeling for predicting the change of residual stress during annealing heat treatment[J]. Metallurgical and Materials Transactions A, 2019, 50 (12): 5750- 5759.
doi: 10.1007/s11661-019-05454-z
7 唐荻, 戴辉, 孙蓟泉. 翼缘板钢非对称冷轧及再结晶退火实验研究[J]. 材料工程, 2011, (5): 81- 87.
doi: 10.3969/j.issn.1001-4381.2011.05.018
7 TANG D , DAI H , SUN J Q . Research of asymmetrical cold rolling and recrystallization annealing experiment of flange plate steel[J]. Journal of Materials Engineering, 2011, (5): 81- 87.
doi: 10.3969/j.issn.1001-4381.2011.05.018
8 ADAMCZYK K , STOKKAN G , SABATINO M D . Guidelines for establishing an etching procedure for dislocation density measurements on multicrystalline silicon samples[J]. MethodsX, 2018, 5, 1178- 1186.
doi: 10.1016/j.mex.2018.09.013
9 KOHNERT A A , TUMMALA H , LEBENSOHN R A , et al. On the use of transmission electron microscopy to quantify dislocation densities in bulk metals[J]. Scripta Materialia, 2020, 178, 161- 165.
doi: 10.1016/j.scriptamat.2019.11.011
10 GUTIERREZ U I , RAABE D . Dislocation density measurement by electron channeling contrast imaging in a scanning electron microscope[J]. Scripta Materialia, 2012, 66 (6): 343- 346.
doi: 10.1016/j.scriptamat.2011.11.027
11 SHINTANI T , MURATA Y . Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction[J]. Acta Materialia, 2011, 59 (11): 4314- 4322.
doi: 10.1016/j.actamat.2011.03.055
12 DUTTA K , KISHOR R , SAHU L , et al. On the role of dislocation characters influencing ratcheting deformation of austenitic stainless steel[J]. Materials Science and Engineering: A, 2016, 660, 47- 51.
doi: 10.1016/j.msea.2016.02.076
13 辛伟, 丁克勤. 基于材料磁特性的结构疲劳损伤磁测方法研究[J]. 仪器仪表学报, 2017, 38 (6): 1474- 1481.
doi: 10.3969/j.issn.0254-3087.2017.06.019
13 XIN W , DING K Q . Magnetic measurement method on structure fatigue damage based on the material magnetic characteristics[J]. Chinese Journal of Scientific Instrument, 2017, 38 (6): 1474- 1481.
doi: 10.3969/j.issn.0254-3087.2017.06.019
14 PAL'A J , STUPAPKOV O , BYDŽOVSK AY'G J , et al. Magnetic behaviour of low-carbon steel in parallel and perpendicular directions to tensile deformation[J]. Journal of Magnetism and Magnetic Materials, 2007, 310 (1): 57- 62.
doi: 10.1016/j.jmmm.2006.07.029
15 HU X , HE G , PENG H , et al. Microstructures and mechanical properties of low carbon steel hot rolled in ferrite region based on CSP line[J]. Steel Research International, 2019, 90 (7): 1800643.
doi: 10.1002/srin.201800643
16 毕革平, 陈金哲, 谭文华, 等. 晶粒度测定标准比对分析[J]. 金属热处理, 2020, 45 (4): 212- 220.
16 BI G P , CHEN J Z , TAN W H , et al. Comparative analysis of standards for determining average grain size[J]. Heat Treatment of Metals, 2020, 45 (4): 212- 220.
17 DENTON A R , ASHCROFT N W . Vegard's law[J]. Physical Review A, 1991, 43 (6): 3161.
doi: 10.1103/PhysRevA.43.3161
18 AOYAMA T , NORO H . Accurate online measurement of iron concentration in galvannealed coating layers by shift of X-ray diffraction peak[J]. ISIJ International, 2019, 59 (9): 1599- 1603.
doi: 10.2355/isijinternational.ISIJINT-2019-085
19 DUPUY C H S , CACHARD A , BUDENSTEIN P P . Physics of nonmetallic thin films[J]. Journal of the Electrochemical Society, 1976, 123 (12): 391.
doi: 10.1149/1.2132736
20 LIN Y J , WANG M S , LIU C J , et al. Defects, stress and abnormal shift of the (002) diffraction peak for Li-doped ZnO films[J]. Applied Surface Science, 2010, 256 (24): 7623- 7627.
doi: 10.1016/j.apsusc.2010.06.016
21 UNGÁR T , DRAGOMIR I , REVESZÁ , et al. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice[J]. Journal of Applied Crystallography, 1999, 32 (5): 992- 1002.
doi: 10.1107/S0021889899009334
22 TIKHONOVA M , TORGANCHUK V , BRASCHE F , et al. Effect of warm to hot rolling on microstructure, texture and mechanical properties of an advanced medium-Mn steel[J]. Metallurgical and Materials Transactions A, 2019, 50 (9): 4245- 4256.
doi: 10.1007/s11661-019-05340-8
23 MUJICA N , CERDA M T , ESPINOZA R , et al. Ultrasound as a probe of dislocation density in aluminum[J]. Acta Materialia, 2012, 60 (16): 5828- 5837.
doi: 10.1016/j.actamat.2012.07.023
24 YI J K , LEE B W , KIM H C . Nondestructive evaluation of isothermally annealed 12% CrMoV steel by magnetic BN measurement[J]. Journal of Magnetism & Magnetic Materials, 1994, 130 (1/3): 81- 91.
25 HASIF I , SHIMADA M , KUBOTA T . Stress dependence of hysteresis loss on iron-based soft magnetic materials[J]. Journal of the Japan Institute of Metals and Materials, 2018, 82 (2): 39- 43.
doi: 10.2320/jinstmet.J2017024
26 HASIF I , SHIMADA M , KUBOTA T . Compression dependence of magnetization curves on iron-based soft magnetic materials[J]. Journal of the Japan Institute of Metals and Materials, 2019, 83 (1): 1- 8.
doi: 10.2320/jinstmet.J2018037
[1] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[2] 张小丽, 冯晓伟, 申勇峰. D6A钢在轧制过程中的强韧化机理[J]. 材料工程, 2022, 50(4): 172-180.
[3] 胡广, 赵英杰, 马胜国, 张团卫, 赵聃, 王志华. 考虑位错密度和损伤的NiCoCrFe高熵合金晶体塑性有限元分析[J]. 材料工程, 2022, 50(3): 60-68.
[4] 刘敬勇, 卢磊, 钟政烨. 高应变速率下等径角挤压高纯粗晶铝中的形变孪晶与退火孪晶[J]. 材料工程, 2021, 49(4): 89-94.
[5] 陈畅, 张如意, 史思涛, 马奋天. 真空退火对原位Al2O3/Fe-Cr-Ni增强复合材料性能的影响[J]. 材料工程, 2021, 49(1): 89-94.
[6] 蒙德强, 王铁钢, 彭勇, 柯培玲, 朱强, 许人仁, 刘迁. 真空退火温度对AlCrSiN/Mo自润滑涂层结构与性能的影响[J]. 材料工程, 2021, 49(1): 126-132.
[7] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[8] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[9] 吴立宇, 李小强, 王斌, 屈盛官. 退火温度对PECVD法制备SiO2/Si3N4光学薄膜性能的影响[J]. 材料工程, 2020, 48(12): 75-81.
[10] 闫丽珍, 张永安, 熊柏青, 李锡武, 李志辉, 陈凯欣. 中间退火前的冷轧变形量对6A16铝合金组织与性能的影响[J]. 材料工程, 2020, 48(12): 103-110.
[11] 袁继慧, 陈辉明, 谢伟滨, 魏海根, 汪航, 杨斌. Cu-Cr-Ti-Si合金加工软化的机理[J]. 材料工程, 2020, 48(11): 140-146.
[12] 涂蕴超, 何承绪, 孟利, 陈冷. 退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响[J]. 材料工程, 2020, 48(1): 61-69.
[13] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[14] 柯鹏, 蔡飞, 胡凯, 张世宏, 王硕煜, 朱广宏, 倪振航, 胡小红. 黏结层及真空退火对NiCr-30% Cr3C2金属-陶瓷喷涂层性能的影响[J]. 材料工程, 2019, 47(7): 144-150.
[15] 杨胶溪, 贾无名, 王欣, 文强, 张晏玮, 柏广海, 王荣山. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响[J]. 材料工程, 2018, 46(8): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn