Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (7): 149-155    DOI: 10.11868/j.issn.1001-4381.2020.001151
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Co颗粒含量对SnBi/Cu接头微观组织与性能的影响
李正兵, 李海涛, 郭义乐, 陈益平, 程东海(), 胡德安, 高俊豪, 李东阳
南昌航空大学 航空制造工程学院, 南昌 330063
Effect of Co particle content on microstructure and properties of SnBi/Cu joints
Zhengbing LI, Haitao LI, Yile GUO, Yiping CHEN, Donghai CHENG(), Dean HU, Junhao GAO, Dongyang LI
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(9467 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用扫描电镜(SEM)观察Sn35Bi-xCo(x=0%,0.3%,0.7%,1.0%,1.2%,1.5%,质量分数,下同)复合钎料/Cu接头的微观组织,结合能谱(EDS)和XRD分析,研究接头组织差异。利用万能试验机测试接头力学性能,研究Co颗粒含量对SnBi/Cu接头组织及性能的影响机制。结果表明:随Co颗粒含量增加,Sn35Bi-Co复合钎料的润湿性呈现先增大后降低的趋势,当Co颗粒含量为0.7%时,润湿性最佳;在凝固阶段,向Sn35Bi/Cu接头中加入适量的Co颗粒后,能有效细化焊缝组织,界面IMC层更为平坦,焊缝中Co原子置换界面Cu6Sn5层中Cu原子,生成(Cu,Co)6Sn5固溶体,对界面IMC层具有固溶强化作用;Sn35Bi-Co/Cu接头的抗剪强度随Co颗粒含量增加先增大后降低,当Co颗粒含量为0.7%时,获得最大值54.09 MPa。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李正兵
李海涛
郭义乐
陈益平
程东海
胡德安
高俊豪
李东阳
关键词 Sn35Bi钎料Co颗粒润湿性组织力学性能    
Abstract

The microstructure of Sn35Bi-xCo(x=0%, 0.3%, 0.7%, 1.0%, 1.2%, 1.5%, mass fraction) composite solder/Cu joints was observed by scanning electron microscopy (SEM).Combined energy spectrum (EDS) and XRD analysis, the difference of joint structure was studied. The mechanical properties of joints were tested by universal testing machine, and the influence mechanism of Co particle content on the structure and properties of SnBi/Cu joints was studied. The results show that, with the increase of Co particle content, the wettability of Sn35Bi-Co composite solder increases first and then decreases. When Co particle content is 0.7%, the wettability is the best.When appropriate amount of Co particles is added to the Sn35Bi/Cu joint in the solidification stage, the weld microstructure can be effectively refined, the IMC layer of the interface is more flat, Co atoms in the weld replace Cu atoms in the interface Cu6Sn5 layer, and the (Cu, Co)6Sn5 solid solution can be formed, which can strengthen the IMC layer of the interface.The shear strength of Sn35Bi-Co/Cu joints increases first and then decreases with the increase of Co particle content. When Co particle content is 0.7%, the maximum value of 54.09 MPa is obtained.

Key wordsSn35Bi solder    Co particle    wettability    microstructure    mechanical property
收稿日期: 2020-12-18      出版日期: 2022-07-18
中图分类号:  TG454  
基金资助:国家自然科学基金项目(51865034)
通讯作者: 程东海     E-mail: 70269@nchu.edu.cn
作者简介: 程东海(1984—), 男, 副教授, 博士, 主要从事焊接材料及工艺方面的研究, 联系地址: 江西省南昌市丰和南大道696号南昌航空大学航空制造工程学院(330063), E-mail: 70269@nchu.edu.cn
引用本文:   
李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
Zhengbing LI, Haitao LI, Yile GUO, Yiping CHEN, Donghai CHENG, Dean HU, Junhao GAO, Dongyang LI. Effect of Co particle content on microstructure and properties of SnBi/Cu joints. Journal of Materials Engineering, 2022, 50(7): 149-155.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001151      或      http://jme.biam.ac.cn/CN/Y2022/V50/I7/149
Fig.1  Co颗粒含量与Sn35Bi-Co复合钎料铺展面积(a)和润湿角(b)的关系
Fig.2  Sn35Bi-Co/Cu接头焊缝显微组织
(a)Sn35Bi/Cu; (b)Sn35Bi-0.3Co/Cu; (c)Sn35Bi-0.7Co/Cu; (d)Sn35Bi-1.5Co/Cu
Point Sn Bi Co
1 7.31 92.69
2 95.01 4.99
3 61.74 38.26
4 63.57 36.43
5 63.69 36.31
Table 1  图 2中各点EDS分析结果(原子分数/%)
Fig.3  Sn35Bi-1.5Co/Cu接头焊缝的XRD图谱
Fig.4  Sn35Bi-Co/Cu接头界面组织
(a)Sn35Bi/Cu; (b)Sn35Bi-0.3Co/Cu; (c)Sn35Bi-0.7Co/Cu; (d)Sn35Bi-1.5Co/Cu
Point Sn Cu Co
6 42.48 57.52
7 45.57 51.66 2.77
Table 2  图 4中各点EDS分析结果(原子分数/%)
Fig.5  Sn35Bi-Co/Cu接头剪切断口截面
(a)Sn35Bi/Cu; (b)Sn35Bi-0.7Co/Cu
Fig.6  Co颗粒含量对Sn35Bi-Co/Cu接头抗剪强度的影响
1 李吉东, 杨文超, 李逸泰, 等. Al和Cu对Sn-20Bi合金组织、导电率与抗腐蚀性的影响[J]. 广西大学学报(自然科学版), 2018, 43 (5): 1967- 1975.
1 LI J D , YANG W C , LI Y T , et al. Influence of Al and Cu on microstructure, electrical conductivity and corrosion resistant property of Sn-20Bi alloy[J]. Journal of Guangxi University(Natural Science Edition), 2018, 43 (5): 1967- 1975.
2 景延峰, 杨莉, 葛进国, 等. Al2O3颗粒对Sn58Bi钎料组织及力学性能的影响[J]. 热加工工艺, 2015, 44 (21): 195- 196.
2 JING Y F , YANG L , GE J G , et al. Influence of Al2O3 particles on microstructure and mechanical properties of Sn58Bi solder[J]. Hot Working Technology, 2015, 44 (21): 195- 196.
3 王国强, 杨莉, 张尧成. Sn58Bi-xW复合钎料焊点微观组织及性能的研究[J]. 电子元件与材料, 2017, 36 (11): 78- 82.
3 WANG G Q , YANG L , ZHANG Y C . Microstructure and mechanical properties of Sn58Bi-xW composite solder[J]. Electronic Components and Materials, 2017, 36 (11): 78- 82.
4 YANG L , ZHOU S , ZHANG Y , et al. Reinforcement of vanadium on the microstructure and properties of Sn-58Bi lead-free solder joints[J]. Materials Research Express, 2019, 6 (6): 066301.
doi: 10.1088/2053-1591/ab07f6
5 杨起, 程东海, 胡德安, 等. Cu颗粒对Sn58Bi接头钎缝组织的影响[J]. 南昌航空大学学报(自然科学版), 2016, 30 (2): 74- 78.
5 YANG Q , CHENG D H , HU D A , et al. The effects of Cu particles on the microstructure of Sn58Bi soldered joints[J]. Journal of Nanchang Hangkong University(Natural Sciences), 2016, 30 (2): 74- 78.
6 龚留奎, 廖金发, 袁继慧, 等. 稀土Y对Sn-58Bi焊料合金组织性能的影响[J]. 航空材料学报, 2018, 38 (4): 101- 108.
6 GONG L K , LIAO J F , YUAN J H , et al. Effect of rare earth Y on microstructure and properties of Sn-58Bi solder alloy[J]. Journal of Aeronautical Materials, 2018, 38 (4): 101- 108.
7 朱路. Sn-58Bi-xMo复合钎料焊点界面组织形态与可靠性研究[D]. 苏州: 苏州大学, 2018.
7 ZHU L. Investigation on the microstructure, IMCs morphology and reliability of Sn-58Bi-xMo solder joints[D]. Suzhou: Soochow University, 2018.
8 古海轮, 程东海, 胡德安, 等. 颗粒增强Sn-Bi-Ag钎料的研究[J]. 焊接, 2012, (8): 38- 41.
8 GU H L , CHENG D H , HU D A , et al. Research of Sn-Bi-Ag solder by particle enhancement[J]. Welding & Joining, 2012, (8): 38- 41.
9 董昌慧, 王凤江, 丁海健, 等. 微量Co的添加对Sn-Bi共晶钎料性能的影响[J]. 热加工工艺, 2015, 44 (1): 190- 192.
9 DONG C H , WANG F J , DING H J , et al. Effect of addition of Co element on properties of Sn-Bi eutectic solder[J]. Hot Working Technology, 2015, 44 (1): 190- 192.
10 李正兵, 胡德安, 陈益平, 等. Fe颗粒对时效过程中SnBi/Cu接头组织及性能影响[J]. 焊接学报, 2020, 41 (8): 22- 28.
10 LI Z B , HU D A , CHEN Y P , et al. Effect of Fe particles on the structure and properties of SnBi/Cu joint during aging[J]. Transactions of the China Welding Institution, 2020, 41 (8): 22- 28.
11 ZHANG L , LONG W , WANG F . Microstructures, interface reaction, and properties of Sn-Ag-Cu and Sn-Ag-Cu-0.5CuZnAl solders on Fe substrate[J]. Journal of Materials Science: Materials in Electronics, 2020, 31, 6645- 6653.
12 FAN J , ZHAI H , LIU Z , et al. Microstructure evolution, thermal and mechanical property of Co alloyed Sn-0.7Cu lead-free solder[J]. Journal of Electronic Materials, 2020, 49 (4): 2660- 2668.
13 ZHAO M , ZHANG L , LIU Z Q , et al. Structure and properties of Sn-Cu lead-free solders in electronics packaging[J]. Science and Technology of Advanced Materials, 2019, 20 (1): 421- 444.
14 ZHU X , PENG J , WEI X , et al. Interfacial reaction and microstructure evolution of Sn-9Zn/Ni(Cu) solder joints[J]. Metals, 2019, 9 (5): 604.
15 GAO F , TAKEMOTO T , NISHIKAWA H . Effects of Co and Ni addition on reactive diffusion between Sn-3.5Ag solder and Cu during soldering and annealing[J]. Materials Science and Engineering: A, 2006, 420 (2): 39- 46.
16 GAO F , TAKEMOTO T . Effects of addition participation in the interfacial reaction on the growth patterns of Cu6Sn5-based IMCs during reflow process[J]. Journal of Alloys and Compounds, 2006, 421 (1/2): 283- 288.
17 罗家栋, 薛松柏, 杨晶秋, 等. SnCuNi-xPr/Cu界面组织和性能分析[J]. 焊接学报, 2012, 33 (5): 49- 52.
17 LUO J D , XUE S B , YANG J Q , et al. Interfacial microstructure and properties of SnCuNi-xPr/Cu solder joint[J]. Transactions of the China Welding Institution, 2012, 33 (5): 49- 52.
18 刘晓英. Sn基复合无铅钎料的研究[D]. 大连: 大连理工大学, 2010.
18 LIU X Y. The development of tin based composite lead-free solders[D]. Dalian: Dalian University of Technology, 2010.
[1] 薛燕鹏, 王效光, 赵金乾, 史振学, 刘世忠, 李嘉荣. 两种型壳温度对DD9单晶涡轮叶片凝固组织的影响[J]. 材料工程, 2022, 50(7): 80-87.
[2] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[3] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[4] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[5] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[6] 邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
[7] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[8] 刘禄, 朱文琦, 林巧力. 高温下前驱膜形成机制的研究进展[J]. 材料工程, 2022, 50(5): 1-10.
[9] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[10] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[11] 杨跃森, 董红刚, 吴宝生, 李鹏, 杨江, 马月婷. Zr-Cu-Ni非晶钎料真空钎焊TiAl合金/316L不锈钢接头的界面组织与剪切性能[J]. 材料工程, 2022, 50(5): 52-61.
[12] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[13] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[14] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[15] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn