Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (6): 85-93    DOI: 10.11868/j.issn.1001-4381.2020.001165
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光选区熔化成形含锆7××× 系铝合金的显微组织与力学性能
詹强坤, 刘允中(), 刘小辉, 周志光
华南理工大学 国家金属材料近净成形工程技术研究中心, 广州 510641
Microstructures and mechanical properties of zirconium-containing 7××× aluminum alloy prepared by selective laser melting
Qiang-kun ZHAN, Yun-zhong LIU(), Xiao-hui LIU, Zhi-guang ZHOU
National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510641, China
全文: PDF(26153 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

热裂问题是激光选区熔化成形(SLM)7××× 系铝合金面临的主要障碍之一。通过低能球磨工艺制备ZrH2/7075复合粉末,采用激光选区熔化技术制备含锆7××× 系铝合金材料,分析了不同ZrH2添加量(0.5%,1.0%,1.5%,质量分数,下同)对试样显微组织和力学性能的影响规律。结果表明:随着ZrH2含量的增加,SLM试样的柱状晶组织逐渐消失,热裂纹逐渐减少,当ZrH2含量为1.5%时,试样显微组织完全转变为细小等轴晶(平均晶粒尺寸为1.6 μm),热裂纹完全消除。ZrH2在SLM成形过程中与铝熔体原位反应形成L12型Al3Zr相,L12型Al3Zr相的异质形核作用促进了柱状晶到等轴晶的转变,抑制了热裂纹的产生。经T6热处理后,试样抗拉强度为(550±10)MPa,屈服强度为(490±5)MPa,伸长率为(12±1)%,断口处存在大量韧窝,表现为韧性断裂。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
詹强坤
刘允中
刘小辉
周志光
关键词 7×××系铝合金ZrH2激光选区熔化热裂纹力学性能    
Abstract

The preparation of 7××× series aluminum alloy by selective laser melting technology (SLM) is hindered by hot tearing. Novel ZrH2 modified 7075 composite powders were prepared by the low-energy ball milling technology. Zirconium-containing 7××× series aluminum alloy was then prepared by the SLM process. The microstructure and mechanical properties of the samples with different ZrH2contents (0.5%, 1.0%, 1.5%, mass fraction, the same below) were systematically investigated. The results show that the addition of ZrH2 can significantly reduce hot tearing and change the microstructure. When 1.5% ZrH2 is added, the hot tearing is completely eliminated and the grain microstructure is entirely composed of fine equiaxed grains. The transition of columnar grains to equiaxed grains is attributed to the in-situ formation of L12-Al3Zr which provides numerous nucleation positions for solidification. After T6 heat treatment, the tensile strength, yield strength and elongation of SLMed sample are (550±10), (490±5) MPa and (12±1)%, respectively. Fractography analysis shows a large number of dimples on the fracture surface after tensile testing, indicating ductile fracture mode.

Key words7××× aluminum alloy    ZrH2    selective laser melting    hot tearing    mechanical property
收稿日期: 2020-12-18      出版日期: 2021-06-22
中图分类号:  TG146.2+1  
基金资助:广东省重点领域研发计划项目(2019B090907001);广东省科技计划项目(2014B010129002)
通讯作者: 刘允中     E-mail: yzhliu@scut.edu.cn
作者简介: 刘允中(1969-), 男, 教授, 博士, 研究方向为3D打印金属新材料及金属雾化制粉与喷射成形, 联系地址:广东省广州市天河区华南理工大学38号楼(510641), E-mail:yzhliu@scut.edu.cn
引用本文:   
詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7××× 系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
Qiang-kun ZHAN, Yun-zhong LIU, Xiao-hui LIU, Zhi-guang ZHOU. Microstructures and mechanical properties of zirconium-containing 7××× aluminum alloy prepared by selective laser melting. Journal of Materials Engineering, 2021, 49(6): 85-93.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001165      或      http://jme.biam.ac.cn/CN/Y2021/V49/I6/85
Fig.1  7075铝合金粉末(a),ZrH2粉末(b)和ZrH2/7075复合粉末(c)SEM图及7075铝合金粉末粒径分布(d)
Zn Mg Cu Cr Fe Mn Ti Al
5.76 2.79 1.53 0.20 < 0.10 < 0.10 < 0.05 Bal
Table 1  7075铝合金粉末的化学成分(质量分数/%)
Fig.2  SLM试样光学显微图
(a)7075铝合金;(b)7075铝合金+0.5% ZrH2;(c)7075铝合金+1.0% ZrH2;(d)7075铝合金+1.5% ZrH2
Fig.3  SLM试样的EBSD图(1)和尺寸分布图(2)
(a)7075铝合金;(b)7075铝合金+0.5% ZrH2;(c)7075铝合金+1.0% ZrH2;(d)7075铝合金+1.5% ZrH2
Fig.4  激光功率对试样致密度的影响(a)和典型试样光学显微图(b)~(d)
Fig.5  SLM试样低倍(1)和高倍(2)显微组织图(a)XOY面;(b)XOZ
Fig.6  SLM试样的SEM图(XOZ面)(a)低倍;(b)高倍
Fig.7  SLM试样 (a)TEM图;(b),(c)EDS面扫描图;(d),(e)衍射斑点图;(f)高分辨图
Fig.8  T6热处理态SLM试样的SEM图(a)低倍;(b),(c)高倍
Fig.9  T6热处理态SLM试样 (a),(b)TEM图;(c),(d)衍射斑点图
Fig.10  T6热处理态SLM试样的拉伸应力-应变曲线
Fig.11  激光功率为200 W时T6热处理态SLM试样的断口形貌 (a)低倍;(b)高倍
1 王建国, 王祝堂. 航空航天变形铝合金的进展(3)[J]. 轻合金加工技术, 2013, (10): 1- 14.
1 WANG J G , WANG Z T . Advancement in aerospace wrought aluminium alloys(3)[J]. Light Alloy Fabrication Technology, 2013, (10): 1- 14.
2 李承波, 唐建国, 邓运来, 等. 双级时效对汽车用高强铝合金组织性能的影响[J]. 材料工程, 2019, 47 (10): 57- 63.
2 LI C B , TANG J G , DENG Y L , et al. Effect of two-step aging on microstructure and properties of high-strength aluminum alloys for automobile[J]. Journal of Materials Engineering, 2019, 47 (10): 57- 63.
3 张新明, 邓运来, 张勇. 高强铝合金的发展及其材料的制备加工技术[J]. 金属学报, 2015, 51 (3): 257- 271.
3 ZHANG X M , DENG Y L , ZHANG Y . Development of high strength aluminum alloys and processing techniques for the materials[J]. Acta Metallurgica Sinica, 2015, 51 (3): 257- 271.
4 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44 (2): 122- 128.
4 ZHANG X J , TANG S Y , ZHAO H Y , et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44 (2): 122- 128.
5 ABOULKHAIR N T , EVERITT N M , ASHCROFT I , et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting[J]. Additive Manufacturing, 2014, 1/4, 77- 86.
doi: 10.1016/j.addma.2014.08.001
6 BRANDL E , HECKENBERGER U , HOLZINGER V , et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 2012, 34, 159- 169.
7 BARTKOWIAK K , ULLRICH S , FRICK T , et al. New developments of laser processing aluminium alloys via additive manufacturing technique[J]. Physcs Proc, 2011, 12, 393- 401.
doi: 10.1016/j.phpro.2011.03.050
8 KAUFMANN N , IMRAN M , WISCHEROPP T M , et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia, 2016, 83, 918- 926.
doi: 10.1016/j.phpro.2016.08.096
9 RESCHETNIK W , BRÜGGEMANN J P , AYDINÖZ M E , et al. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy[J]. Procedia Structural Integrity, 2016, 2, 3040- 3048.
doi: 10.1016/j.prostr.2016.06.380
10 WANG P , LI H C , PRASHANTH K G , et al. Selective laser melting of Al-Zn-Mg-Cu: heat treatment, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2017, 707, 287- 290.
doi: 10.1016/j.jallcom.2016.11.210
11 朱海红, 廖海龙. 高强铝合金的激光选区熔化成形研究现状[J]. 激光与光电子学进展, 2018, 55 (1): 22- 28.
11 ZHU H H , LIAO H L . Research status of selective laser melting of high strength aluminum alloy[J]. Laser & Optoelectronics Progress, 2018, 55 (1): 22- 28.
12 SONG B , DONG S , ZHANG B , et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V[J]. Materials & Design, 2012, 35, 120- 125.
13 MING T , PISTORIUS P C . Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting[J]. International Journal of Fatigue, 2016, 94, 192- 201.
14 QI T , ZHU H , ZHANG H , et al. Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode[J]. Materials & Design, 2017, 135, 257- 266.
15 MARTIN J H , YAHATA B D , HUNDLEY J M , et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549 (7672): 365- 369.
doi: 10.1038/nature23894
16 ZHOU S Y , SU Y , WANG H , et al. Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: cracking elimination by co-incorporation of Si and TiB2[J]. Additive Manufacturing, 2020, 36, 101458.
doi: 10.1016/j.addma.2020.101458
17 ZHOU L , PAN H , HYER H , et al. Microstructure and tensile property of a novel AlZnMgScZr alloy additively manufactured by gas atomization and laser powder bed fusion[J]. Scripta Materialia, 2019, 158, 24- 28.
doi: 10.1016/j.scriptamat.2018.08.025
18 LI L , LI R , YUAN T , et al. Microstructures and tensile properties of a selective laser melted Al-Zn-Mg-Cu alloy by Si and Zr microalloying[J]. Materials Science and Engineering: A, 2020, 787, 139492.
doi: 10.1016/j.msea.2020.139492
19 KNIPLING K E , DUNAND D C , SEIDMAN D N . Nucleation and precipitation strengthening in dilute Al-Ti and Al-Zr Alloys[J]. Metallurgical and Materials Transactions:A, 2007, 38 (10): 2552- 2563.
doi: 10.1007/s11661-007-9283-6
20 WANG F , QIU D , LIU Z L , et al. The grain refinement mechanism of cast aluminium by zirconium[J]. Acta Materialia, 2013, 61 (15): 5636- 5645.
doi: 10.1016/j.actamat.2013.05.044
21 BI J , LEI Z , CHEN Y , et al. Microstructure and mechanical properties of a novel Sc and Zr modified 7075 aluminum alloy prepared by selective laser melting[J]. Materials Science and Engineering:A, 2019, 768, 138478.
doi: 10.1016/j.msea.2019.138478
22 ZHANG H , ZHU H , NIE X , et al. Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. Scripta Materialia, 2017, 134, 6- 10.
doi: 10.1016/j.scriptamat.2017.02.036
23 SPIERINGS A B , DAWSON K , HEELING T , et al. Microstructural features of Sc-and Zr-modified Al-Mg alloys processed by selective laser melting[J]. Materials & Design, 2017, 115, 52- 63.
24 NIE X , ZHANG H , ZHU H , et al. On the role of Zr content into Portevin-Le Chatelier (PLC) effect of selective laser melted high strength Al-Cu-Mg-Mn alloy[J]. Materials Letters, 2019, 248, 5- 7.
doi: 10.1016/j.matlet.2019.03.112
25 CROTEAU J R , GRIFFITHS S , ROSSELL M D , et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting[J]. Acta Materialia, 2018, 153, 35- 44.
doi: 10.1016/j.actamat.2018.04.053
26 SPIERINGS A B , DAWSON K , KERN K , et al. SLM-processed Sc and Zr modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment[J]. Materials Science and Engineering: A, 2017, 701, 264- 273.
doi: 10.1016/j.msea.2017.06.089
27 KNIPLING K E , DUNAND D C , SEIDMAN D N . Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during isothermal aging at 375-425 ℃[J]. Acta Materialia, 2008, 56 (1): 114- 127.
doi: 10.1016/j.actamat.2007.09.004
28 MIKHAYLOVSKAYA A V , MOCHUGOVSKIY A G , LEVCHENKO V S , et al. Precipitation behavior of L12Al3Zr phase in Al-Mg-Zr alloy[J]. Materials Characterization, 2018, 139, 30- 37.
doi: 10.1016/j.matchar.2018.02.030
29 TAN Q , ZHANG J , SUN Q , et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles[J]. Acta Materialia, 2020, 196, 1- 16.
doi: 10.1016/j.actamat.2020.06.026
30 LIU C Y , TENG G B , MA Z Y , et al. Effects of Sc and Zr microalloying on the microstructure and mechanical properties of high Cu content 7xxx Al alloy[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26 (12): 1559- 1569.
doi: 10.1007/s12613-019-1840-7
31 GRIFFITHS S , ROSSELL M D , CROTEAU J , et al. Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy[J]. Materials Characterization, 2018, 143, 34- 42.
doi: 10.1016/j.matchar.2018.03.033
32 ZHANG Z , VAJPAI S K , ORLOV D , et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics[J]. Materials Science and Engineering: A, 2014, 598, 106- 113.
doi: 10.1016/j.msea.2014.01.023
33 TIAN W , LI S , LIU J , et al. Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties[J]. Chinese Journal of Aeronautics, 2017, 30 (5): 1777- 1788.
doi: 10.1016/j.cja.2017.06.001
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[11] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[12] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[15] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn