The preparation of 7××× series aluminum alloy by selective laser melting technology (SLM) is hindered by hot tearing. Novel ZrH2 modified 7075 composite powders were prepared by the low-energy ball milling technology. Zirconium-containing 7××× series aluminum alloy was then prepared by the SLM process. The microstructure and mechanical properties of the samples with different ZrH2contents (0.5%, 1.0%, 1.5%, mass fraction, the same below) were systematically investigated. The results show that the addition of ZrH2 can significantly reduce hot tearing and change the microstructure. When 1.5% ZrH2 is added, the hot tearing is completely eliminated and the grain microstructure is entirely composed of fine equiaxed grains. The transition of columnar grains to equiaxed grains is attributed to the in-situ formation of L12-Al3Zr which provides numerous nucleation positions for solidification. After T6 heat treatment, the tensile strength, yield strength and elongation of SLMed sample are (550±10), (490±5) MPa and (12±1)%, respectively. Fractography analysis shows a large number of dimples on the fracture surface after tensile testing, indicating ductile fracture mode.
LI C B , TANG J G , DENG Y L , et al. Effect of two-step aging on microstructure and properties of high-strength aluminum alloys for automobile[J]. Journal of Materials Engineering, 2019, 47 (10): 57- 63.
ZHANG X M , DENG Y L , ZHANG Y . Development of high strength aluminum alloys and processing techniques for the materials[J]. Acta Metallurgica Sinica, 2015, 51 (3): 257- 271.
ZHANG X J , TANG S Y , ZHAO H Y , et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44 (2): 122- 128.
5
ABOULKHAIR N T , EVERITT N M , ASHCROFT I , et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting[J]. Additive Manufacturing, 2014, 1/4, 77- 86.
doi: 10.1016/j.addma.2014.08.001
6
BRANDL E , HECKENBERGER U , HOLZINGER V , et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 2012, 34, 159- 169.
7
BARTKOWIAK K , ULLRICH S , FRICK T , et al. New developments of laser processing aluminium alloys via additive manufacturing technique[J]. Physcs Proc, 2011, 12, 393- 401.
doi: 10.1016/j.phpro.2011.03.050
8
KAUFMANN N , IMRAN M , WISCHEROPP T M , et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia, 2016, 83, 918- 926.
doi: 10.1016/j.phpro.2016.08.096
9
RESCHETNIK W , BRÜGGEMANN J P , AYDINÖZ M E , et al. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy[J]. Procedia Structural Integrity, 2016, 2, 3040- 3048.
doi: 10.1016/j.prostr.2016.06.380
10
WANG P , LI H C , PRASHANTH K G , et al. Selective laser melting of Al-Zn-Mg-Cu: heat treatment, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2017, 707, 287- 290.
doi: 10.1016/j.jallcom.2016.11.210
ZHU H H , LIAO H L . Research status of selective laser melting of high strength aluminum alloy[J]. Laser & Optoelectronics Progress, 2018, 55 (1): 22- 28.
12
SONG B , DONG S , ZHANG B , et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V[J]. Materials & Design, 2012, 35, 120- 125.
13
MING T , PISTORIUS P C . Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting[J]. International Journal of Fatigue, 2016, 94, 192- 201.
14
QI T , ZHU H , ZHANG H , et al. Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode[J]. Materials & Design, 2017, 135, 257- 266.
15
MARTIN J H , YAHATA B D , HUNDLEY J M , et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549 (7672): 365- 369.
doi: 10.1038/nature23894
16
ZHOU S Y , SU Y , WANG H , et al. Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: cracking elimination by co-incorporation of Si and TiB2[J]. Additive Manufacturing, 2020, 36, 101458.
doi: 10.1016/j.addma.2020.101458
17
ZHOU L , PAN H , HYER H , et al. Microstructure and tensile property of a novel AlZnMgScZr alloy additively manufactured by gas atomization and laser powder bed fusion[J]. Scripta Materialia, 2019, 158, 24- 28.
doi: 10.1016/j.scriptamat.2018.08.025
18
LI L , LI R , YUAN T , et al. Microstructures and tensile properties of a selective laser melted Al-Zn-Mg-Cu alloy by Si and Zr microalloying[J]. Materials Science and Engineering: A, 2020, 787, 139492.
doi: 10.1016/j.msea.2020.139492
19
KNIPLING K E , DUNAND D C , SEIDMAN D N . Nucleation and precipitation strengthening in dilute Al-Ti and Al-Zr Alloys[J]. Metallurgical and Materials Transactions:A, 2007, 38 (10): 2552- 2563.
doi: 10.1007/s11661-007-9283-6
20
WANG F , QIU D , LIU Z L , et al. The grain refinement mechanism of cast aluminium by zirconium[J]. Acta Materialia, 2013, 61 (15): 5636- 5645.
doi: 10.1016/j.actamat.2013.05.044
21
BI J , LEI Z , CHEN Y , et al. Microstructure and mechanical properties of a novel Sc and Zr modified 7075 aluminum alloy prepared by selective laser melting[J]. Materials Science and Engineering:A, 2019, 768, 138478.
doi: 10.1016/j.msea.2019.138478
22
ZHANG H , ZHU H , NIE X , et al. Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. Scripta Materialia, 2017, 134, 6- 10.
doi: 10.1016/j.scriptamat.2017.02.036
23
SPIERINGS A B , DAWSON K , HEELING T , et al. Microstructural features of Sc-and Zr-modified Al-Mg alloys processed by selective laser melting[J]. Materials & Design, 2017, 115, 52- 63.
24
NIE X , ZHANG H , ZHU H , et al. On the role of Zr content into Portevin-Le Chatelier (PLC) effect of selective laser melted high strength Al-Cu-Mg-Mn alloy[J]. Materials Letters, 2019, 248, 5- 7.
doi: 10.1016/j.matlet.2019.03.112
25
CROTEAU J R , GRIFFITHS S , ROSSELL M D , et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting[J]. Acta Materialia, 2018, 153, 35- 44.
doi: 10.1016/j.actamat.2018.04.053
26
SPIERINGS A B , DAWSON K , KERN K , et al. SLM-processed Sc and Zr modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment[J]. Materials Science and Engineering: A, 2017, 701, 264- 273.
doi: 10.1016/j.msea.2017.06.089
27
KNIPLING K E , DUNAND D C , SEIDMAN D N . Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during isothermal aging at 375-425 ℃[J]. Acta Materialia, 2008, 56 (1): 114- 127.
doi: 10.1016/j.actamat.2007.09.004
28
MIKHAYLOVSKAYA A V , MOCHUGOVSKIY A G , LEVCHENKO V S , et al. Precipitation behavior of L12Al3Zr phase in Al-Mg-Zr alloy[J]. Materials Characterization, 2018, 139, 30- 37.
doi: 10.1016/j.matchar.2018.02.030
29
TAN Q , ZHANG J , SUN Q , et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles[J]. Acta Materialia, 2020, 196, 1- 16.
doi: 10.1016/j.actamat.2020.06.026
30
LIU C Y , TENG G B , MA Z Y , et al. Effects of Sc and Zr microalloying on the microstructure and mechanical properties of high Cu content 7xxx Al alloy[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26 (12): 1559- 1569.
doi: 10.1007/s12613-019-1840-7
31
GRIFFITHS S , ROSSELL M D , CROTEAU J , et al. Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy[J]. Materials Characterization, 2018, 143, 34- 42.
doi: 10.1016/j.matchar.2018.03.033
32
ZHANG Z , VAJPAI S K , ORLOV D , et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics[J]. Materials Science and Engineering: A, 2014, 598, 106- 113.
doi: 10.1016/j.msea.2014.01.023
33
TIAN W , LI S , LIU J , et al. Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties[J]. Chinese Journal of Aeronautics, 2017, 30 (5): 1777- 1788.
doi: 10.1016/j.cja.2017.06.001