Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (6): 85-93    DOI: 10.11868/j.issn.1001-4381.2020.001165
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能
詹强坤, 刘允中, 刘小辉, 周志光
华南理工大学 国家金属材料近净成形工程技术研究中心, 广州 510641
Microstructures and mechanical properties of zirconium-containing 7×××aluminum alloy prepared by selective laser melting
ZHAN Qiang-kun, LIU Yun-zhong, LIU Xiao-hui, ZHOU Zhi-guang
National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510641, China
全文: PDF(26153 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 热裂问题是激光选区熔化成形(SLM)7×××系铝合金面临的主要障碍之一。通过低能球磨工艺制备ZrH2/7075复合粉末,采用激光选区熔化技术制备含锆7×××系铝合金材料,分析了不同ZrH2添加量(0.5%,1.0%,1.5%,质量分数,下同)对试样显微组织和力学性能的影响规律。结果表明:随着ZrH2含量的增加,SLM试样的柱状晶组织逐渐消失,热裂纹逐渐减少,当ZrH2含量为1.5%时,试样显微组织完全转变为细小等轴晶(平均晶粒尺寸为1.6 μm),热裂纹完全消除。ZrH2在SLM成形过程中与铝熔体原位反应形成L12型Al3Zr相,L12型Al3Zr相的异质形核作用促进了柱状晶到等轴晶的转变,抑制了热裂纹的产生。经T6热处理后,试样抗拉强度为(550±10) MPa,屈服强度为(490±5)MPa,伸长率为(12±1)%,断口处存在大量韧窝,表现为韧性断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
詹强坤
刘允中
刘小辉
周志光
关键词 7×××系铝合金ZrH2激光选区熔化热裂纹力学性能    
Abstract:The preparation of 7×××series aluminum alloy by selective laser melting technology (SLM) is hindered by hot tearing. Novel ZrH2 modified 7075 composite powders were prepared by the low-energy ball milling technology. Zirconium-containing 7×××series aluminum alloy was then prepared by the SLM process. The microstructure and mechanical properties of the samples with different ZrH2contents (0.5%, 1.0%, 1.5%, mass fraction, the same below) were systematically investigated. The results show that the addition of ZrH2 can significantly reduce hot tearing and change the microstructure. When 1.5% ZrH2 is added, the hot tearing is completely eliminated and the grain microstructure is entirely composed of fine equiaxed grains. The transition of columnar grains to equiaxed grains is attributed to the in-situ formation of L12-Al3Zr which provides numerous nucleation positions for solidification. After T6 heat treatment, the tensile strength, yield strength and elongation of SLMed sample are (550±10), (490±5) MPa and (12±1)%, respectively. Fractography analysis shows a large number of dimples on the fracture surface after tensile testing, indicating ductile fracture mode.
Key words7×××aluminum alloy    ZrH2    selective laser melting    hot tearing    mechanical property
收稿日期: 2020-12-18      出版日期: 2021-06-22
中图分类号:  TG146.2+1  
基金资助:广东省重点领域研发计划项目(2019B090907001);广东省科技计划项目(2014B010129002)
通讯作者: 刘允中(1969-),男,教授,博士,研究方向为3D打印金属新材料及金属雾化制粉与喷射成形,联系地址:广东省广州市天河区华南理工大学38号楼(510641),E-mail:yzhliu@scut.edu.cn     E-mail: yzhliu@scut.edu.cn
引用本文:   
詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
ZHAN Qiang-kun, LIU Yun-zhong, LIU Xiao-hui, ZHOU Zhi-guang. Microstructures and mechanical properties of zirconium-containing 7×××aluminum alloy prepared by selective laser melting. Journal of Materials Engineering, 2021, 49(6): 85-93.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001165      或      http://jme.biam.ac.cn/CN/Y2021/V49/I6/85
[1] 王建国,王祝堂. 航空航天变形铝合金的进展(3)[J]. 轻合金加工技术, 2013(10):1-14. WANG J G, WANG Z T. Advancement in aerospace wrought aluminium alloys(3)[J]. Light Alloy Fabrication Technology, 2013(10):1-14.
[2] 李承波,唐建国,邓运来,等. 双级时效对汽车用高强铝合金组织性能的影响[J]. 材料工程, 2019, 47(10):57-63. LI C B, TANG J G, DENG Y L, et al. Effect of two-step aging on microstructure and properties of high-strength aluminum alloys for automobile[J]. Journal of Materials Engineering, 2019, 47(10):57-63.
[3] 张新明,邓运来,张勇. 高强铝合金的发展及其材料的制备加工技术[J]. 金属学报, 2015, 51(3):257-271. ZHANG X M, DENG Y L, ZHANG Y. Development of high strength aluminum alloys and processing techniques for the materials[J]. Acta Metallurgica Sinica, 2015, 51(3):257-271.
[4] 张学军,唐思熠,肇恒跃,等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(2): 122-128. ZHANG X J, TANG S Y, ZHAO H Y, et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44(2):122-128.
[5] ABOULKHAIR N T, EVERITT N M, ASHCROFT I, et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting[J]. Additive Manufacturing, 2014, 1/4:77-86.
[6] BRANDL E, HECKENBERGER U, HOLZINGER V, et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 2012, 34:159-169.
[7] BARTKOWIAK K, ULLRICH S, FRICK T, et al. New developments of laser processing aluminium alloys via additive manufacturing technique[J]. Physcs Proc, 2011, 12:393-401.
[8] KAUFMANN N, IMRAN M, WISCHEROPP T M, et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia, 2016, 83:918-926.
[9] RESCHETNIK W, BRÜGGEMANN J P, AYDINÖZ M E, et al. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy[J]. Procedia Structural Integrity, 2016, 2:3040-3048.
[10] WANG P, LI H C, PRASHANTH K G, et al. Selective laser melting of Al-Zn-Mg-Cu: heat treatment, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2017, 707:287-290.
[11] 朱海红,廖海龙. 高强铝合金的激光选区熔化成形研究现状[J]. 激光与光电子学进展, 2018, 55(1):22-28. ZHU H H, LIAO H L. Research status of selective laser melting of high strength aluminum alloy[J]. Laser & Optoelectronics Progress, 2018, 55(1):22-28.
[12] SONG B, DONG S, ZHANG B, et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V[J]. Materials & Design,2012,35:120-125.
[13] MING T, PISTORIUS P C. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting[J]. International Journal of Fatigue, 2016, 94:192-201.
[14] QI T, ZHU H, ZHANG H, et al. Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode[J]. Materials & Design, 2017, 135:257-266.
[15] MARTIN J H, YAHATA B D, HUNDLEY J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672):365-369.
[16] ZHOU S Y, SU Y, WANG H, et al. Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: cracking elimination by co-incorporation of Si and TiB2[J]. Additive Manufacturing, 2020, 36:101458.
[17] ZHOU L, PAN H, HYER H, et al. Microstructure and tensile property of a novel AlZnMgScZr alloy additively manufactured by gas atomization and laser powder bed fusion[J]. Scripta Materialia, 2019, 158:24-28.
[18] LI L, LI R, YUAN T, et al. Microstructures and tensile properties of a selective laser melted Al-Zn-Mg-Cu alloy by Si and Zr microalloying[J]. Materials Science and Engineering: A, 2020, 787:139492.
[19] KNIPLING K E, DUNAND D C, SEIDMAN D N. Nucleation and precipitation strengthening in dilute Al-Ti and Al-Zr Alloys[J]. Metallurgical and Materials Transactions:A, 2007, 38(10): 2552-2563.
[20] WANG F, QIU D, LIU Z L, et al. The grain refinement mechanism of cast aluminium by zirconium[J]. Acta Materialia, 2013, 61(15):5636-5645.
[21] BI J, LEI Z, CHEN Y, et al. Microstructure and mechanical properties of a novel Sc and Zr modified 7075 aluminum alloy prepared by selective laser melting[J]. Materials Science and Engineering:A, 2019, 768:138478.
[22] ZHANG H, ZHU H, NIE X, et al. Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. Scripta Materialia, 2017, 134:6-10.
[23] SPIERINGS A B, DAWSON K, HEELING T, et al. Microstructural features of Sc-and Zr-modified Al-Mg alloys processed by selective laser melting[J]. Materials & Design, 2017, 115:52-63.
[24] NIE X, ZHANG H, ZHU H, et al. On the role of Zr content into Portevin-Le Chatelier (PLC) effect of selective laser melted high strength Al-Cu-Mg-Mn alloy[J]. Materials Letters, 2019, 248:5-7.
[25] CROTEAU J R, GRIFFITHS S, ROSSELL M D, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting[J].Acta Materialia,2018,153:35-44.
[26] SPIERINGS A B, DAWSON K, KERN K, et al. SLM-processed Sc and Zr modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment[J]. Materials Science and Engineering: A, 2017, 701:264-273.
[27] KNIPLING K E, DUNAND D C, SEIDMAN D N. Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during isothermal aging at 375-425 ℃[J]. Acta Materialia, 2008, 56(1):114-127.
[28] MIKHAYLOVSKAYA A V, MOCHUGOVSKIY A G, LEVCHENKO V S, et al. Precipitation behavior of L12Al3Zr phase in Al-Mg-Zr alloy[J]. Materials Characterization, 2018, 139:30-37.
[29] TAN Q, ZHANG J, SUN Q, et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles[J]. Acta Materialia, 2020, 196:1-16.
[30] LIU C Y, TENG G B, MA Z Y, et al. Effects of Sc and Zr microalloying on the microstructure and mechanical properties of high Cu content 7xxx Al alloy[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(12):1559-1569.
[31] GRIFFITHS S, ROSSELL M D, CROTEAU J, et al. Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy[J]. Materials Characterization, 2018, 143:34-42.
[32] ZHANG Z, VAJPAI S K, ORLOV D, et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics[J]. Materials Science and Engineering: A, 2014, 598:106-113.
[33] TIAN W, LI S, LIU J, et al. Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties[J]. Chinese Journal of Aeronautics, 2017, 30(5):1777-1788.
[1] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[2] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[3] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[4] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[5] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[6] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[7] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[8] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[9] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[10] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[11] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
[12] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[13] 张海连, 段淼, 李四中, 林志勇. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49(7): 85-91.
[14] 唐延川, 万能, 唐兴昌, 刘德佳, 焦海涛, 胡勇, 赵龙志. 合金化组元(Al,Cr,Si,Ti)含量对激光沉积(FeNiCo)-(AlCrSiTi)非等原子比多组元合金涂层组织与力学性能的影响[J]. 材料工程, 2021, 49(7): 92-102.
[15] 邢宇轩, 郭英奎, 陈磊, 赵壮志, 王玉金. 气压浸渗法制备ZrC-W-Cu复合材料的显微组织与力学性能[J]. 材料工程, 2021, 49(7): 124-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn