Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (9): 105-112    DOI: 10.11868/j.issn.1001-4381.2020.001167
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响
许家豪, 汪选国(), 姚振华
武汉理工大学 材料科学与工程学院,武汉 430070
Effect of powder metallurgy preparation process on properties of TiC reinforced high chromium cast iron matrix composites
Jiahao XU, Xuanguo WANG(), Zhenhua YAO
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
全文: PDF(1406 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用高能球磨和真空烧结的方法制备TiC增强高铬铸铁(HCCI)基复合材料。利用SEM, DSC等方法对不同球磨时间的粉末进行分析,研究不同烧结温度对高铬铸铁基复合材料的显微组织、硬度及密度的影响,比较相同工艺下复合材料与高铬铸铁材料的耐磨性。结果表明:球磨12 h后的粉末颗粒大小趋于稳定,粉末活性提高,烧结性能改善,烧结试样中TiC均匀地分布在基体中。随着烧结温度的升高,复合材料内部晶粒逐渐长大,密度和硬度逐渐提高。在1280 ℃超固相线液相烧结的条件下烧结2 h后,致密度达94.17%,硬度和抗弯强度分别为49.2HRC和980 MPa。在销盘磨损实验中复合材料的耐磨性为单一高铬铸铁材料的1.52倍,磨损机制为磨粒磨损+轻微氧化磨损。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许家豪
汪选国
姚振华
关键词 TiC增强高铬铸铁基复合材料真空烧结微观组织力学性能摩擦磨损    
Abstract

TiC reinforced high chromium cast iron(HCCI) matrix composites were prepared by high energy ball milling and vacuum sintering.Scanning electron microscope (SEM) and differential scanning calorimetry (DSC) were employed to analyze the powder at different time of ball milling.The effect of sintering temperature on microstructures, hardness and densities of high chromium iron-based composites was explored.The wear resistance of the composites and high chromium cast iron under the same process was compared.The results show that the size of powder particles tends to be stable, the powder activity increases and the sintering property is improved after 12 h of ball milling.TiC in sintered samples is uniformly distributed in the matrix.The grains in the composites grow gradually, the hardness and densities of the composites continuously increase with the increase of sintering temperature.After sintering for 2 h under the condition of supersolidus liquid phase sintering at 1280 ℃, the relative density of composites is 94.17%, the hardness is 49.2HRC and the bending strength is 980 MPa. In the pin and disc wear test, the wear resistance of the composites is 1.52 times than that of the single high chromium cast iron materials, and the wear mechanism is abrasive wear and slight oxidation wear.

Key wordsTiC/HCCI    vacuum sintering    microstructure    mechanical property    friction and wear
收稿日期: 2020-12-18      出版日期: 2022-09-20
中图分类号:  TF125  
通讯作者: 汪选国     E-mail: xuanguo@whut.edu.cn
作者简介: 汪选国(1972—),男,副教授,工学博士,主要从事材料成型与加工、结构残余应力测试分析工作,联系地址:湖北省武汉市武汉理工大学材料科学与工程学院(430070),E-mail: xuanguo@whut.edu.cn
引用本文:   
许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
Jiahao XU, Xuanguo WANG, Zhenhua YAO. Effect of powder metallurgy preparation process on properties of TiC reinforced high chromium cast iron matrix composites. Journal of Materials Engineering, 2022, 50(9): 105-112.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001167      或      http://jme.biam.ac.cn/CN/Y2022/V50/I9/105
C Cr Si Mn Fe
3.76 25.04 0.80 0.36 Bal
Table 1  高铬铸铁粉末的主要化学成分(质量分数/%)
Fig.1  不同球磨时间下混合粉末的SEM图
(a)5 min; (b)4 h; (c)8 h; (d)12 h
Fig.2  粉末的DSC曲线
(a)高铬铸铁粉末;(b)球磨12 h后的混合粉末
Fig.3  不同球磨时间下烧结试样的SEM图
(a)4 h; (b)8 h; (c)12 h
Fig.4  不同烧结温度下试样的XRD图
Fig.5  不同烧结温度下试样的SEM图
(a)1150 ℃; (b)1200 ℃; (c)1250 ℃; (d)1280 ℃
Fig.6  烧结温度对试样密度和硬度的影响
Fig.7  1280 ℃烧结试样的弯曲断口形貌
Fig.8  HCCI与TiC/HCCI复合材料的磨损失重
Fig.9  TiC/HCCI(a)和HCCI(b)的磨损形貌
Fig.10  TiC/HCCI(a)和HCCI(b)的磨损形貌及EDS元素分析
1 LAI J P , PAN Q L , PENG H J , et al. Effects of Si on the microstructures and mechanical properties of high chromium cast iron[J]. Journal of Materials Engineering and Performance, 2016, 25 (11): 4617- 4623.
doi: 10.1007/s11665-016-2331-x
2 KIBBLE K A , PEARCE J T H . Influence of heat treatment on the microstructure and hardness of 19% high chromium cast irons[J]. Cast Metals, 2016, 6 (1): 9- 15.
3 WU X J , XING J D , FU H G , et al. Effect of titanium on the morphology of primary M7C3 carbides in hypereutectic high chromium white iron[J]. Materials Science and Engineering: A, 2007, 457 (1/2): 180- 185.
4 ZHOU M J , JIANG Y H , CHONG X Y . Interface transition layer interaction mechanism for ZTAP/HCCI composites[J]. Science and Engineering of Composite Materials, 2018, 25 (5): 881- 890.
doi: 10.1515/secm-2016-0332
5 WANG Z , LIN T , HE X , et al. Microstructure and properties of TiC-high manganese steel cermet prepared by different sintering processes[J]. Journal of Alloys and Compounds, 2015, 650, 918- 924.
doi: 10.1016/j.jallcom.2015.08.047
6 DAS K , BANDYOPADHYAY T K . Effect of form of carbon on the microstructure of in situ synthesized TiC-reinforced iron-based composite[J]. Materials Letters, 2004, 58 (12/13): 1877- 1880.
7 LI B , LIU Y , LI J , et al. Effect of sintering process on the microstructures and properties of in situ TiB2-TiC reinforced steel matrix composites produced by spark plasma sintering[J]. Journal of Materials Processing Technology, 2010, 210 (1): 91- 95.
doi: 10.1016/j.jmatprotec.2009.08.008
8 JAM A , NIKZAD L , RAZAVI M . TiC-based cermet prepared by high-energy ball-milling and reactive spark plasma sintering[J]. Ceramics International, 2017, 43 (2): 2448- 2455.
doi: 10.1016/j.ceramint.2016.11.039
9 DU J , CHONG X Y , JIANG Y H , et al. Numerical simulation of mold filling process for high chromium cast iron matrix composite reinforced by ZTA ceramic particles[J]. International Journal of Heat and Mass Transfer, 2015, 89, 872- 883.
doi: 10.1016/j.ijheatmasstransfer.2015.05.046
10 FENG K , YANG Y , SHEN B , et al. In situ synthesis of TiC/Fe composites by reaction casting[J]. Materials & Design, 2005, 26 (1): 37- 40.
11 HU S W , ZHAO Y G , WANG Z , et al. Fabrication of in situ TiC locally reinforced manganese steel matrix composite via combustion synthesis during casting[J]. Materials & Design, 2013, 44, 340- 345.
12 CEN Q H , JIANG Y H , ZHOU R , et al. Study on in situ synthesis of TiC particle reinforced iron matrix composite[J]. Journal of Materials Engineering and Performance, 2011, 20 (8): 1447- 1450.
doi: 10.1007/s11665-010-9793-z
13 TORRALBA J M , CAMBRONERO L E G , PRIETO J M R , et al. Sinterability study of PM M2 and T15 high speed steels reinforced with tungsten and titanium carbides[J]. Powder Metallurgy, 1993, 36 (1): 55- 66.
doi: 10.1179/pom.1993.36.1.55
14 MEI Z , YAN Y W , CUI K . Effect of matrix composition on the microstructure of in situ synthesized TiC particulate reinforced iron-based composites[J]. Materials Letters, 2003, 57 (21): 3175- 3181.
doi: 10.1016/S0167-577X(03)00020-X
15 ABU-OQAIL A , WAGIH A , FATHY A , et al. Effect of high energy ball milling on strengthening of Cu-ZrO2 nanocomposites[J]. Ceramics International, 2019, 45 (5): 5866- 5875.
doi: 10.1016/j.ceramint.2018.12.053
16 YUAN Z W , JIN Z J , KANG R K , et al. Tribochemical polishing CVD diamond film with FeNiCr alloy polishing plate prepared by MA-HPS technique[J]. Diamond and Related Materials, 2012, 21, 50- 57.
doi: 10.1016/j.diamond.2011.10.015
17 瞿金蓉, 胡明安, 陈敬中, 等. 纳米粒子的熔点与粒径的关系[J]. 地球科学——中国地质大学学报, 2005, 30 (2): 195- 198.
17 QU J R , HU M A , CHEN J Z , et al. Nanoparticle size and melting point relationship[J]. Earth Science-Journal of China University of Geosciences, 2005, 30 (2): 195- 198.
18 KARANTZALIS E , LEKATOU A , MAVROS H . Microstructure and properties of high chromium cast irons: effect of heat treatments and alloying additions[J]. International Journal of Cast Metals Research, 2013, 22 (6): 448- 456.
19 宋建勇. 烧结亚共晶高铬铸铁的制备以及组织与性能研究[D]. 长沙: 湖南大学, 2016.
19 SONG J Y. Study on the fabrication and microstructure-property of sintered hypoeutectic high chromium cast iron[D]. Changsha: Hunan University, 2016.
20 钟群鹏, 赵子华, 张峥. 断口学的发展及微观断裂机理研究[J]. 机械强度, 2005, 27 (3): 358- 370.
doi: 10.3321/j.issn:1001-9669.2005.03.018
20 ZHONG Q P , ZHAO Z H , ZHANG Z . Development of "fractography" and research of fracture micromechanism[J]. Journal of Mechanical Strength, 2005, 27 (3): 358- 370.
doi: 10.3321/j.issn:1001-9669.2005.03.018
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[11] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[12] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[15] 惠阳, 刘贵民, 兰海, 杜建华. 连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能[J]. 材料工程, 2022, 50(4): 112-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn