High-fracture-toughness ternary layered ceramics: from the MAX to MAB phases
Yue-lei BAI1,*(), Hang YIN1, Guang-ping SONG1, Xiao-dong HE1,2, Xin-xin QI1, Jin GAO1, Bing-bing HAO1, Jin-ze ZHANG1
1 National Key Laboratory of Science and Technology on Advanced Composites in Special Environments/Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China 2 Shenzhen STRONG Advanced Materials Research Institute Co., Ltd., Shenzhen 518000, Guangdong, China
The MAX phase of the ternary layered compound and the recently attracted attention of the MAB phase have become the research hotspots in the field of structural ceramics for more than 20 years because of their common characteristics of ceramics and metals. The high damage tolerance and high fracture toughness are different from the essential characteristics of traditional ceramics. The overall development of MAX phase and the latest research progress of MAB phase were briefly reviewed in this article, focusing on the analysis of the effect of multi-scale layered structure on macro-mechanical behavior and its internal mechanism. Based on the results of first-principles calculations, the bond stiffness model was established and the quantitative characterization of chemical bond strength was realized, and more importantly, it was clarified that "sufficiently" weak interlayer bonding is the root cause for the extraordinary mechanical properties of ternary layered ceramics. The magnetocaloric effect (MCE) of Fe2AlB2 near room temperature shows the good application prospects of MAB phase compounds in the functional field. After more than 20 years of continuous research, the structure and performance of MAX-phase compounds have gradually become clear. At present, application research for specific scenarios is vigorously carried out all over the world. However, the current knowledge of MAB phase compounds is still very limited. Therefore, synthesizing and characterizing the structure, mechanical properties, physical properties, and service behaviour of existing MAB phase compounds are the important tasks at this stage. First-principles numerical simulation based on density functional theory (DFT) can play an important role, just as in understanding the extraordinary properties of MAX phase compounds and discovering new compounds.
FAHRENHOLTZ W G , WUCHINA E J , LEE W E , et al. Ultra-high temperature ceramics: materials for extreme environment applications[M]. Hoboken, New Jersey, USA: John Wiley & Sons, Inc, 2014.
2
GREEN D J . An introduction to the mechanical properties of ceramics[M]. Cambridge: Cambridge University Press, 1998.
3
BARSOUM M W , EL-RAGHY T . Synthesis and characterization of a remarkable ceramic: Ti3SiC2[J]. J Am Ceram Soc, 1996, 79, 1953- 1956.
doi: 10.1111/j.1151-2916.1996.tb08018.x
4
BAI Y L , SRIKANTH N , CHUA C K , et al. Density functional theory study of Mn+1AXn phases: a review[J]. Crit Rev Solid State Mat Sci, 2019, 44, 56- 107.
doi: 10.1080/10408436.2017.1370577
5
BARSOUM M W . The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates[J]. Prog Solid State Chem, 2000, 28, 201- 281.
doi: 10.1016/S0079-6786(00)00006-6
6
ADE M , HILLEBRECHT H . Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n=1, 2, 3 and a unifying concept for ternary borides as MAB-phases[J]. Inorganic Chemistry, 2015, 54, 6122- 6135.
doi: 10.1021/acs.inorgchem.5b00049
7
KOTA S , SOKOL M , BARSOUM M W . A progress report on the MAB phases: atomically laminated, ternary transition metal borides[J]. International Materials Reviews, 2020, 65, 226- 255.
doi: 10.1080/09506608.2019.1637090
8
JEITSCHKO W . The crystal structure of Fe2AlB2[J]. Acta Crystallographica, 1969, 25, 163- 165.
9
NOWOTNY H , ROGL P . Ternary metal borides[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1977.
10
TAN X Y , CHAI P , THOMPSON C M , et al. Magnetocaloric effect in AlFe2B2: toward magnetic refrigerants from earth-abundant elements[J]. J Am Chem Soc, 2013, 135, 9553- 9557.
doi: 10.1021/ja404107p
11
KOTA S , ZAPATA-SOLVAS E , LY A , et al. Synthesis and characterization of an alumina forming nanolaminated boride: MoAlB[J]. Sci Rep, 2016, 6, 9.
doi: 10.1038/s41598-016-0002-7
12
LI N , BAI Y L , WANG S , et al. Rapid synthesis, electrical, and mechanical properties of polycrystalline Fe2AlB2 bulk from elemental powders[J]. J Am Ceram Soc, 2017, 100, 4407- 4411.
doi: 10.1111/jace.15058
13
HU C F , SAKKA Y , GRASSO S , et al. Shell-like nanolayered Nb4AlC3 ceramic with high strength and toughness[J]. Scr Mater, 2011, 64, 765- 768.
doi: 10.1016/j.scriptamat.2010.12.045
14
ZHANG H B , HU C F , SATO K , et al. Tailoring Ti3AlC2 ceramic with high anisotropic physical and mechanical properties[J]. J Eur Ceram Soc, 2015, 35, 393- 397.
doi: 10.1016/j.jeurceramsoc.2014.08.026
15
XIE X , YANG R , CUI Y , et al. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties[J]. J Mater Sci Technol, 2020, 38, 86- 92.
doi: 10.1016/j.jmst.2019.05.070
16
BAI Y L , HE X D , SUN Y , et al. Chemical bonding and elastic properties of Ti3AC2 phases (A=Si, Ge, and Sn): a first-principle study[J]. Solid State Sci, 2010, 12, 1220- 1225.
doi: 10.1016/j.solidstatesciences.2010.03.007
17
BAI Y L , DUFF A , JAYASEELAN D D , et al. DFT predictions of crystal structure, electronic structure, compressibility, and elastic properties of Hf-Al-C carbides[J]. J Am Ceram Soc, 2016, 99, 3449- 3457.
doi: 10.1111/jace.14361
18
WANG C Y , HAN H , ZHAO Y Y , et al. Elastic, mechanical, electronic, and defective properties of Zr-Al-C nanolaminates from first principles[J]. J Am Ceram Soc, 2018, 101, 756- 772.
doi: 10.1111/jace.15252
19
BAI Y L , QI X X , DUFF A , et al. Density functional theory insights into ternary layered boride MoAlB[J]. Acta Mater, 2017, 132, 69- 81.
doi: 10.1016/j.actamat.2017.04.031
20
BAI Y L , HE X D , WANG R G , et al. An ab initio study on compressibility of Al-containing MAX-phase carbides[J]. J Appl Phys, 2013, 114, 173709.
doi: 10.1063/1.4829282
21
JEITSCHKO W , NOWOTNY H , BENESOVSKY F . Die H-phasen Ti2InC, Zr2InC, Hf2InC und Ti2GeC[J]. Monatshefte Fur Chemie, 1963, 94, 1201- 1205.
doi: 10.1007/BF00905711
22
JEITSCHKO W , NOWOTNY H , BENESOVSKY F . Kohlenstoffhaltige ternare verbindungen (V-Ge-C, Nb-Ga-C, TA-Ga-C, Ta-Ge C, Cr-Ga-C UND Cr-Ge-C)[J]. Monatshefte Fur Chemie, 1963, 94, 844- 850.
doi: 10.1007/BF00902358
23
JEITSCHKO W , NOWOTNY H , BENESOVSKY F . Die H-Phasen: Ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN und Nb2GaC[J]. Monatshefte für Chemie/Chemical Monthly, 1964, 95, 178- 179.
doi: 10.1007/BF00909264
24
JEITSCHKO W , NOWOTNY H , BENESOVSKY F . Die H-Phasen Ti2TlC, Ti2PbC, Nb2InC, Nb2SnC und Ta2GaC[J]. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1964, 95, 431- 435.
doi: 10.1007/BF00901306
25
JEITSCHK W , NOWOTNY H . Crystal structure of Ti3SiC2 a new type of complex carbide[J]. Monatshefte Fur Chemie, 1967, 98, 329- 337.
doi: 10.1007/BF00899949
26
JEITSCHKO W , NOWOTNY H . Die Kristallstruktur von Ti3SiC2-ein neuer Komplexcarbid-Typ[J]. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1967, 98, 329- 337.
doi: 10.1007/BF00899949
27
WOLFSGRUBER H , NOWOTNY H , BENESOVSKY F . Die Kristallstruktur von Ti3GeC2[J]. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1967, 98, 2403- 2405.
doi: 10.1007/BF00902438
28
JEITSCHKO W , NOWOTNY H , BENESOVSKY F . Ti2AlN, eine stickstoffhaltige H-phase[J]. Monatshefte Fur Chemie, 1963, 94, 1198- 337.
doi: 10.1007/BF00905710
29
NOWOTNY V H . Strukturchemie einiger Verbindungen der übergangsmetalle mit den elementen C, Si, Ge, Sn[J]. Prog Solid State Chem, 1971, 5, 27- 70.
doi: 10.1016/0079-6786(71)90016-1
30
PIETZKA M , SCHUSTER J . Summary of constitutional data on the aluminum-carbon-titanium system[J]. Journal of Phase Equilibria, 1994, 15, 392- 400.
doi: 10.1007/BF02647559
31
NICKL J J , SCHWEITZER K K , LUXENBERG P . Gasphasenabscheidung im system Ti-Si-C[J]. Journal of the Less Common Metals, 1972, 26, 335- 353.
doi: 10.1016/0022-5088(72)90083-5
32
GOTO T , HIRAI T . Chemically vapor deposited Ti3SiC2[J]. Mater Res Bull, 1987, 22, 1195- 1201.
doi: 10.1016/0025-5408(87)90128-0
33
LIS J , PAMPUCH R , PIEKARCZYK J , et al. New ceramics based on TI3SiC2[J]. Ceram Int, 1993, 19, 219- 222.
doi: 10.1016/0272-8842(93)90052-S
34
LIS J , MIYAMOTO Y , PAMPUCH R , et al. Ti3SiC2-based materials prepared by HIP-SHS techniques[J]. Mater Lett, 1995, 22, 163- 168.
doi: 10.1016/0167-577X(94)00246-0
35
MORGIEL J , LIS J , PAMPUCH R . Microstructure of Ti3SiC2-based ceramics[J]. Mater Lett, 1996, 27, 85- 89.
doi: 10.1016/0167-577X(95)00259-6
36
ISEKI T , YANO T , CHUNG Y S . Wetting and properties of reaction products in active metal brazing of SiC[J]. J Ceram Soc Jpn, 1989, 97, 710- 714.
doi: 10.2109/jcersj.97.710
37
BARSOUM M W , ZHEN T , KALIDINDI S R , et al. Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa[J]. Nat Mater, 2003, 2, 107- 111.
doi: 10.1038/nmat814
38
ZHOU A G , BASU S , BARSOUM MW . Kinking nonlinear elasticity, damping and microyielding of hexagonal close-packed metals[J]. Acta Mater, 2008, 56, 60- 67.
doi: 10.1016/j.actamat.2007.08.050
39
BARSOUM M W , YOO H I , POLUSHINA I K , et al. Electrical conductivity, thermopower, and hall effect of Ti3AlC2, Ti4AlN3, and Ti3SiC2[J]. Phys Rev B, 2000, 62, 10194- 10198.
doi: 10.1103/PhysRevB.62.10194
40
BARSOUM M W , ELRAGHY T , OGBUJI L . Oxidation of Ti3SiC2 in air[J]. J Electrochem Soc, 1997, 144, 2508- 2516.
doi: 10.1149/1.1837846
41
BARSOUM M W , BRODKIN D , EL-RAGHY T . Layered machinable ceramics for high temperature applications[J]. Scr Mater, 1997, 36, 535- 541.
doi: 10.1016/S1359-6462(96)00418-6
42
BARSOUM M W , YAROSCHUK G , TYAGI S . Fabrication and characterization of M2SnC (M=Ti, Zr, Hf and Nb)[J]. Scr Mater, 1997, 37, 1583- 1591.
doi: 10.1016/S1359-6462(97)00288-1
43
BARSOUM M W , ALI M , EL-RAGHY T . Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5[J]. Metall Mater Trans A, 2000, 31, 1857- 1865.
doi: 10.1007/s11661-006-0243-3
44
EL-RAGHY T , CHAKRABORTY S , BARSOUM M W . Synthesis and characterization of Hf2PbC, Zr2PbC and M2SnC (M=Ti, Hf, Nb or Zr)[J]. J Eur Ceram Soc, 2000, 20, 2619- 2625.
doi: 10.1016/S0955-2219(00)00127-8
45
WANG X H , ZHOU Y C . Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review[J]. J Mater Sci Technol, 2010, 26, 385- 416.
doi: 10.1016/S1005-0302(10)60064-3
46
XU L D , ZHU D G , GRASSO S , et al. Effect of texture microstructure on tribological properties of tailored Ti3AlC2 ceramic[J]. Journal of Advanced Ceramics, 2017, 6, 120- 128.
doi: 10.1007/s40145-017-0224-6
47
CAI L P , HUANG Z Y , HU W Q , et al. Fabrication, mechanical properties, and tribological behaviors of Ti2AlC and Ti2AlSn0.2C solid solutions[J]. Journal of Advanced Ceramics, 2017, 6, 90- 99.
doi: 10.1007/s40145-017-0221-9
48
BARSOUM M W , SCHUSTER J C . Comment on "New ternary nitride in the Ti-Al-N system"[J]. J Am Ceram Soc, 1998, 81, 785- 786.
49
BARSOUM M W , FARBER L , LEVIN I , et al. High-resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2 N2 revisited[J]. J Am Ceram Soc, 1999, 82, 2545- 2547.
doi: 10.1111/j.1151-2916.1999.tb02117.x
50
HOLM B , AHUJA R , LI S , et al. Theory of the ternary layered system Ti-Al-N[J]. J Appl Phys, 2002, 91, 9874- 9877.
doi: 10.1063/1.1476076
51
PALMQUIST J P , LI S , PERSSON P O A , et al. Mn+1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations[J]. Phys Rev B, 2004, 70, 165401.
doi: 10.1103/PhysRevB.70.165401
52
HOGBERG H , EKLUND P , EMMERLICH J , et al. Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering[J]. J Mater Res, 2005, 20, 779- 782.
doi: 10.1557/JMR.2005.0105
53
LIN Z J , ZHUO M J , ZHOU Y C , et al. Structural characterization of a new layered-ternary Ta4AlC3 ceramic[J]. J Mater Res, 2006, 21, 2587- 2592.
doi: 10.1557/jmr.2006.0310
54
MANOUN B , SAXENA S K , EL-RAGHY T , et al. High-pressure X-ray diffraction study of Ta4AlC3[J]. Appl Phys Lett, 2006, 88, 201902.
doi: 10.1063/1.2202387
55
EKLUND P , PALMQUIST J P , HOWING J , et al. Ta4AlC3: phase determination, polymorphism and deformation[J]. Acta Mater, 2007, 55, 4723- 4729.
doi: 10.1016/j.actamat.2007.04.040
56
ETZKORN J , ADE M , HILLEBRECHT H . Ta3AlC2 and Ta4AlC3-single-crystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique[J]. Inorg Chem, 2007, 46, 1410- 1418.
doi: 10.1021/ic062231y
57
ETZKORN J , ADE M , HILLEBRECHT H . V2AlC, V4AlC3-x (x approximate to 0.31), and V12Al3C8: synthesis, crystal growth, structure, and superstructure[J]. Inorg Chem, 2007, 46, 7646- 7653.
doi: 10.1021/ic700382y
58
HU C F , LI F Z , ZHANG J , et al. Nb4AlC3: a new compound belonging to the MAX phases[J]. Scr Mater, 2007, 57, 893- 896.
doi: 10.1016/j.scriptamat.2007.07.038
59
ZHOU Y C , MENG F L , ZHANG J . New MAX-phase compounds in the V-Cr-Al-C system[J]. J Am Ceram Soc, 2008, 91, 1357- 1360.
doi: 10.1111/j.1551-2916.2008.02279.x
60
ETZKORN J , ADE M , KOTZOTT D , et al. Ti2GaC, Ti4GaC3 and Cr2GaC-synthesis, crystal growth and structure analysis of Ga-containing MAX-phases Mn+1GaCn with M=Ti, Cr and n=1, 3[J]. J Solid State Chem, 2009, 182, 995- 1002.
doi: 10.1016/j.jssc.2009.01.003
61
SEGALL M D , LINDAN P J D , PROBERT M J , et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J Phys-Condes Matter, 2002, 14, 2717- 2744.
doi: 10.1088/0953-8984/14/11/301
62
MEDVEDEVA N I , NOVIKOV D L , IVANOVSKY A L , et al. Electronic properties of Ti3SiC2-based solid solutions[J]. Phys Rev B, 1998, 58, 16042- 16050.
doi: 10.1103/PhysRevB.58.16042
63
WANG J Y , ZHOU Y C . Ab initio investigation of the electronic structure and bonding properties of the layered ternary compound Ti3SiC2 at high pressure[J]. J Phys-Condes Matter, 2003, 15, 1983- 1991.
doi: 10.1088/0953-8984/15/12/315
64
WANG J Y , ZHOU Y C . Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M=Ti, V, Nb, and Cr) ceramics[J]. Phys Rev B, 2004, 69, 214111.
doi: 10.1103/PhysRevB.69.214111
65
SUN Z M , LI S , AHUJA R , et al. Calculated elastic properties of M2AlC (M=Ti, V, Cr, Nb and Ta)[J]. Solid State Commun, 2004, 129, 589- 592.
doi: 10.1016/j.ssc.2003.12.008
66
WANG J Y , ZHOU Y C . Polymorphism of Ti3SiC2 ceramic: first-principles investigations[J]. Phys Rev B, 2004, 69, 144108.
doi: 10.1103/PhysRevB.69.144108
67
LIAO T , WANG J Y , ZHOU Y C . Deformation modes and ideal strengths of ternary layered Ti2AlC and Ti2AlN from first-principles calculations[J]. Phys Rev B, 2006, 73, 214109.
doi: 10.1103/PhysRevB.73.214109
68
MUSIC D , SUN Z M , VOEVODIN A A , et al. Electronic structure and shearing in nanolaminated ternary carbides[J]. Solid State Commun, 2006, 139, 139- 143.
doi: 10.1016/j.ssc.2006.06.007
69
LIAO T , WANG J Y , ZHOU Y C . Superior mechanical properties of Nb2AsC to those of other layered ternary carbides: a first-principles study[J]. J Phys-Condes Matter, 2006, 18, L527- L533.
doi: 10.1088/0953-8984/18/41/L04
70
FARBER L , LEVIN I , BARSOUM M W , et al. High-resolution transmission electron microscopy of some Tin+1AXn compounds (n=1, 2; A=Al or Si; X=C or N)[J]. J Appl Phys, 1999, 86, 2540- 2543.
doi: 10.1063/1.371089
71
RAWN C J , BARSOUM M W , EL-RAGHY T , et al. Structure of Ti4AlN3-a layered Mn+1AXn nitride[J]. Mater Res Bull, 2000, 35, 1785- 1796.
doi: 10.1016/S0025-5408(00)00383-4
72
HE X D , BAI Y L , ZHU C C , et al. Polymorphism of newly discovered Ti4GaC3: a first-principles study[J]. Acta Mater, 2011, 59, 5523- 5533.
doi: 10.1016/j.actamat.2011.05.025
73
BAI Y L , HE X D , WANG R G , et al. Effect of transition metal (M) and M-C slabs on equilibrium properties of Al-containing MAX carbides: An ab initio study[J]. Comput Mater Sci, 2014, 91, 28- 37.
doi: 10.1016/j.commatsci.2014.04.033
74
EKLUND P , BECKERS M , JANSSON U , et al. The Mn+1AXn phases: materials science and thin-film processing[J]. Thin Solid Films, 2010, 518, 1851- 1878.
doi: 10.1016/j.tsf.2009.07.184
75
YU R , ZHAN Q , HE L L , et al. Polymorphism of Ti3SiC2[J]. J Mater Res, 2002, 17, 948- 950.
doi: 10.1557/JMR.2002.0141
76
YU R , ZHANG X F , HE L L , et al. Topology of charge density and elastic anisotropy of Ti3SiC2 polymorphs[J]. J Mater Res, 2005, 20, 1180- 1185.
doi: 10.1557/JMR.2005.0145
77
WANG Z W , ZHA C S , BARSOUM M W . Compressibility and pressure-induced phase transformation of Ti3GeC2[J]. Appl Phys Lett, 2004, 85, 3453- 3455.
doi: 10.1063/1.1808491
78
RAWN C J , PAYZANT E A , HUBBARD C R , et al. Structure of Ti3SiC2[J]. Materials Science Forum, 2000, 321/324, 889- 892.
doi: 10.4028/www.scientific.net/MSF.321-324.889
79
ONODERA A , HIRANO H , YUASA T , et al. Static compression of Ti3SiC2 to 61 GPa[J]. Appl Phys Lett, 1999, 74, 3782- 3784.
doi: 10.1063/1.124178
80
JORDAN J L , SEKINE T , KOBAYASHI T , et al. High pressure behavior of titanium-silicon carbide (Ti3SiC2)[J]. J Appl Phys, 2003, 93, 9639- 9643.
doi: 10.1063/1.1573345
81
BAI Y L , HE X D , WANG R G , et al. High temperature physical and mechanical properties of large-scale Ti2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing[J]. J Eur Ceram Soc, 2013, 33, 2435- 2445.
doi: 10.1016/j.jeurceramsoc.2013.04.014
82
FARBER L , BARSOUM M W , ZAVALIANGOS A , et al. Dislocations and stacking faults in Ti3SiC2[J]. J Am Ceram Soc, 1998, 81, 1677- 1681.
83
BARSOUM M W. Mechanical properties: ambient temperature[C]//MAX Phases (Properties of Machianable Ternary Carbides and Nitrides). Weinheim, Germany: John Wiley & Sons, 2013: 307-361.
84
周玉. 陶瓷材料学[M]. 北京: 科学出版社, 2004.
84
ZHOU Y . Ceramic materials science[M]. Beijing: Science Press, 2004.
85
GILBERT C J , BLOYER D R , BARSOUM M W , et al. Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2[J]. Scr Mater, 2000, 42, 761- 767.
doi: 10.1016/S1359-6462(99)00427-3
86
LI S B , YU W B , ZHAI H X , et al. Mechanical properties of low temperature synthesized dense and fine-grained Cr2AlC ceramics[J]. J Eur Ceram Soc, 2011, 31, 217- 224.
doi: 10.1016/j.jeurceramsoc.2010.08.014
87
CHEN D , SHIRATO K , BARSOUM M W , et al. Cyclic fatigue-crack growth and fracture properties in Ti3SiC2 ceramics at elevated temperatures[J]. J Am Ceram Soc, 2001, 84, 2914- 2920.
doi: 10.1111/j.1151-2916.2001.tb01115.x
88
GANGULY A , ZHEN T , BARSOUM M W . Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1-x) C2(x=0.5, 0.75) solid solutions[J]. J Alloy Compd, 2004, 376, 287- 295.
doi: 10.1016/j.jallcom.2004.01.011
89
BARSOUM M , RADOVIC M . Mechanical properties of the MAX phase[J]. Annual Review of Materials Research, 2011, 41, 195- 227.
doi: 10.1146/annurev-matsci-062910-100448
90
LAPAUW T , LAMBRINOU K , CABIOC'H T , et al. Synthesis of the new MAX phase Zr2AlC[J]. Journal of the European Ceramic Society, 2016, 36, 1847- 1853.
doi: 10.1016/j.jeurceramsoc.2016.02.044
91
HU C F , HE L F , LIU M Y , et al. In situ reaction synthesis and mechanical properties of V2AlC[J]. J Am Ceram Soc, 2008, 91, 4029- 4035.
doi: 10.1111/j.1551-2916.2008.02774.x
92
ZHANG W , TRAVITZKY N , HU C F , et al. Reactive hot pressing and properties of Nb2AlC[J]. J Am Ceram Soc, 2009, 92, 2396- 2399.
doi: 10.1111/j.1551-2916.2009.03187.x
93
HU C F , HE L F , ZHANG J , et al. Microstructure and properties of bulk Ta2AlC ceramic synthesized by an in situ reaction/hot pressing method[J]. J Eur Ceram Soc, 2008, 28, 1679- 1685.
doi: 10.1016/j.jeurceramsoc.2007.10.006
94
YING G B , HE X D , LI M W , et al. Synthesis and mechanical properties of high-purity Cr2AlC ceramic[J]. Mater Sci Eng A, 2011, 528, 2635- 2640.
doi: 10.1016/j.msea.2010.12.039
95
AMINI S , BARSOUM M W , EL-RAGHYY T . Synthesis and mechanical properties of fully dense Ti2SC[J]. J Am Ceram Soc, 2007, 90, 3953- 3958.
96
WANG X H , ZHOU Y C . Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process[J]. Acta Mater, 2002, 50, 3141- 3149.
97
HOSSEIN-ZADEH M , MIRZAEE O , MOHAMMADIAN-SEMNANI H . An investigation into the microstructure and mechanical properties of V4AlC3MAX phase prepared by spark plasma sintering[J]. Ceramics International, 2019, 45, 7446- 7457.
doi: 10.1016/j.ceramint.2019.01.036
98
HU C F , LI F Z , HE L F , et al. In situ reaction synthesis, electrical and thermal, and mechanical properties of Nb4AlC3[J]. J Am Ceram Soc, 2008, 91, 2258- 2263.
doi: 10.1111/j.1551-2916.2008.02424.x
99
HU C F , LIN Z J , HE L F , et al. Physical and mechanical properties of bulk Ta4AlC3 ceramic prepared by an in situ reaction synthesis/hot-pressing method[J]. J Am Ceram Soc, 2007, 90, 2542- 2548.
doi: 10.1111/j.1551-2916.2007.01804.x
100
WANG C , HAN H , ZHAO Y , et al. Elastic, mechanical, electronic, and defective properties of Zr-Al-C nanolaminates from first principles[J]. Journal of the American Ceramic Society, 2018, 101, 756- 772.
doi: 10.1111/jace.15252
101
HE L F , LIN Z J , WANG J Y , et al. Synthesis and characterization of bulk Zr2Al3C4 ceramic[J]. J Am Ceram Soc, 2007, 90, 3687- 3689.
doi: 10.1111/j.1551-2916.2007.01964.x
102
HE L F , ZHOU Y C , BAO Y W , et al. Synthesis, physical, and mechanical properties of bulk Zr3Al3C5ceramic[J]. J Am Ceram Soc, 2007, 90, 1164- 1170.
doi: 10.1111/j.1551-2916.2007.01518.x
103
ZHANG R B , CHEN G Q , HAN W B . Synthesis, mechanical and physical properties of bulk Zr2Al4C5 ceramic[J]. Mater Chem Phys, 2010, 119, 261- 265.
doi: 10.1016/j.matchemphys.2009.08.051
104
XU L , SHI O , LIU C , et al. Synthesis, microstructure and properties of MoAlB ceramics[J]. Ceramics International, 2018, 44, 13396- 13401.
doi: 10.1016/j.ceramint.2018.04.177
105
BAI Y L , QI X X , HE X D , et al. Phase stability and weak metallic bonding within ternary-layered borides CrAlB, Cr2AlB2, Cr3AlB4, and Cr4AlB6[J]. J Am Ceram Soc, 2019, 102, 3715- 3727.
doi: 10.1111/jace.16206
QI X X , SONG G P , YIN W L , et al. Analysis on stability and mechanical property of newly-discovered ternary layered boride Cr4AlB4[J]. Journal of Inorganic Materials, 2020, 35 (1): 53- 60.
107
BAI Y L , HE X D , LI Y B , et al. Rapid synthesis of bulk Ti2AlC by self-propagating high temperature combustion synthesis with a pseudo-hot isostatic pressing process[J]. J Mater Res, 2009, 24, 2528- 2535.
doi: 10.1557/jmr.2009.0327
CHENG L F , ZHANG L T , MEI H . Strengthening and toughening of ceramic matrix composites and application basis[M]. Beijing: Chemical Industry Press, 2019.
109
ZHOU Y C , HE L F , LIN Z J , et al. Synthesis and structure-property relationships of a new family of layered carbides in Zr-Al(Si)-C and Hf-Al(Si)-C systems[J]. J Eur Ceram Soc, 2013, 33, 2831- 2865.
doi: 10.1016/j.jeurceramsoc.2013.05.020
YOU S L , YU Z Q , YANG Z G . Research progress of boride ceramics and their composite materials[J]. Physical Testing and Chemical Analysis Part B, 2007, 43 (1): 27- 31.
LU C Y , GU H Z , WANG H Z , et al. Progress in research on ZrB2-containing ceramics[J]. Materials Reports, 2003, 17, 246- 249.
doi: 10.3321/j.issn:1005-023X.2003.z1.075
XIANG J H , XIAO H N . Research status and application of TiB2 material[J]. Ceramic Engineering, 1996, (4): 40- 44, 39.
115
LAMICHHANE T N , XIANG L , LIN Q , et al. Magnetic properties of single crystalline itinerant ferromagnet Fe2AlB2[J]. Physical Review Materials, 2018, 2, 084408.
doi: 10.1103/PhysRevMaterials.2.084408
116
KIM K , CHEN C , NISHIO-HAMANE D , et al. Topochemical synthesis of phase-pure Mo2AlB2 through staging mechanism[J]. Chemical Communications, 2019, 55, 9295- 9298.
doi: 10.1039/C9CC03855H
117
KOTA S , WANG W Z , LU J , et al. Magnetic properties of Cr2AlB2, Cr3AlB4, and CrB powders[J]. J Alloy Compd, 2018, 767, 474- 482.
doi: 10.1016/j.jallcom.2018.07.031
118
LU J , KOTA S , BARSOUM M W , et al. Atomic structure and lattice defects in nanolaminated ternary transition metal borides[J]. Materials Research Letters, 2017, 5 (4): 235- 241.
doi: 10.1080/21663831.2016.1245682
119
JEITSCHKO W . Die Kristallstruktur von MoAlB[J]. Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften, 1966, 97, 1472- 1476.
doi: 10.1007/BF00902599
120
CHABAN N F , KUZ'MA Y . Ternary systems Cr-Al-B and Mn-Al-B[J]. Inorg Mater, 1973, 9, 1696- 1698.
121
ZHANG H M , DAI F Z , XIANG H M , et al. Crystal structure of Cr4AlB4: a new MAB phase compound discovered in Cr-Al-B system[J]. J Mater Sci Technol, 2019, 35, 530- 534.
122
JUNG W , PETRY K . Ternäre boride des ruthemums mit aluminium und Zink[J]. Zeitschrift Fur kristallographie, 1988, 182 (1/4): 153- 154.
123
KADAS K , IUSAN D , HELLSVIK J , et al. AlM2B2 (M=Cr, Mn, Fe, Co, Ni): a group of nanolaminated materials[J]. Journal of Physics-Condensed Matter, 2017, 29 (15): 11.
124
HALLA F , THURY W . über boride von molybdän und wolfram[J]. Zeitschrift für anorganische und allgemeine Chemie, 1942, 249, 229- 237.
doi: 10.1002/zaac.19422490301
125
ELMASSALAMI M , OLIVEIRA D D , TAKEYA H . On the ferromagnetism of AlFe2B2[J]. J Magn Magn Mater, 2011, 323, 2133- 2136.
doi: 10.1016/j.jmmm.2011.03.008
126
DU Q , CHEN G , YANG W , et al. Magnetic properties of AlFe2B2 and CeMn2Si2 synthesized by melt spinning of stoichiometric compositions[J]. Japanese Journal of Applied Physics, 2015, 54, 053003.
doi: 10.7567/JJAP.54.053003
127
XU L D , SHI O L , LIU C Y , et al. Synthesis, microstructure and properties of MoAlB ceramics[J]. Ceram Int, 2018, 44, 13396- 13401.
doi: 10.1016/j.ceramint.2018.04.177
128
LU X , LI S , ZHANG W , et al. Thermal shock behavior of a nanolaminated ternary boride: MoAlB[J]. Ceram Int, 2019, 45 (7): 9386- 9389.
doi: 10.1016/j.ceramint.2018.08.071
129
WANG S , XU Y J , YU Z G , et al. Synthesis, microstructure and mechanical properties of a MoAlB ceramic prepared by spark plasma sintering from elemental powders[J]. Ceram Int, 2019, 45, 23515- 23521.
doi: 10.1016/j.ceramint.2019.08.060
130
BEI G P , van der ZWAAG S , KOTA S , et al. Ultra-high temperature ablation behavior of MoAlB ceramics under an oxyacetylene flame[J]. J Eur Ceram Soc, 2019, 39, 2010- 2017.
doi: 10.1016/j.jeurceramsoc.2019.01.016
131
LIU J , LI S B , YAO B X , et al. Rapid synthesis and characterization of a nanolaminated Fe2AlB2 compound[J]. J Alloy Compd, 2018, 766, 488- 497.
doi: 10.1016/j.jallcom.2018.06.352
132
KOTA S , CHEN Y X , WANG J Y , et al. Synthesis and characterization of the atomic laminate Mn2AlB2[J]. J Eur Ceram Soc, 2018, 38, 5333- 5340.
doi: 10.1016/j.jeurceramsoc.2018.07.051
133
SAMMIS C G , ASHBY M F . The failure of brittle porous solids under compressive stress states[J]. Acta Metallurgica, 1986, 34, 511- 526.
doi: 10.1016/0001-6160(86)90087-8
134
LIU J , LI S B , YAO B X , et al. Thermal stability and thermal shock resistance of Fe2AlB2[J]. Ceram Int, 2018, 44, 16035- 16039.
doi: 10.1016/j.ceramint.2018.06.042
135
BAI Y L , SUN D D , LI N , et al. High-temperature mechanical properties and thermal shock behavior of ternary-layered MAB phases Fe2AlB2[J]. Int J Refract Met Hard Mat, 2019, 80, 151- 160.
doi: 10.1016/j.ijrmhm.2019.01.010
136
CHEN Y , KOTA S , BARSOUM M W , et al. Compressive deformation of MoAlB up to 1100℃[J]. J Alloy Compd, 2019, 774, 1216- 1222.
doi: 10.1016/j.jallcom.2018.09.124
137
曹学强. 热障涂层新材料和新结构[M]. 北京: 科学出版社, 2016.
137
CAO X Q . Nevo materials and new structures of thermal barrier coatings[M]. Beijng: Science Press, 2016.
138
RADOVIC M , BARSOUM M W . MAX phases: bridging the gap between metals and ceramics[J]. American Ceramic Society Bulletin, 2013, 92, 20- 27.
139
WARBURG E . Magnetische untersuchungen[J]. Annalen der Physik, 1881, 249, 141- 164.
doi: 10.1002/andp.18812490510
140
BAI Y L , QI X X , HE X D , et al. Experimental and DFT insights into elastic, magnetic, electrical, and thermodynamic properties of MAB-phase Fe2AlB2[J]. J Am Ceram Soc, 2020, 103, 5837- 5851.
doi: 10.1111/jace.17205
141
GUTFLEISCH O , WILLARD M A , BRUCK E , et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient[J]. Adv Mater, 2011, 23, 821- 842.
doi: 10.1002/adma.201002180
142
CHIEN C L , UNRUH K M . Comparison of amorphous and crystalline FeB[J]. Phys Rev B, 1984, 29, 207- 211.
143
MIRYASOV N Z , PARSANOV A P . Ferromagnetism of Mn-B alloys[J]. Izvest akad nauk S s s r ser fiz, 1959, 23
144
DU Q H , CHEN G F , YANG W Y , et al. Magnetic properties of AlFe2B2 and CeMn2Si2 synthesized by melt spinning of stoichiometric compositions[J]. Japanese Journal of Applied Physics, 2015, 54, 5.
145
BARUA R , LEJEUNE B T , JENSEN B A , et al. Enhanced room-temperature magnetocaloric effect and tunable magnetic response in Ga-and Ge-substituted AlFe2B2[J]. J Alloy Compd, 2019, 777, 1030- 1038.
doi: 10.1016/j.jallcom.2018.10.206
146
HIRT S , YUAN F , MOZHARIVSKYJ Y , et al. AlFe2-xCoxB2 (x=0-0.30): TC tuning through cosubstitution for a promising magnetocaloric material realized by spark plasma sintering[J]. Inorg Chem, 2016, 55, 9677- 9684.
doi: 10.1021/acs.inorgchem.6b01467
147
LEVIN E M , JENSEN B A , BARUA R , et al. Effects of Al content and annealing on the phases formation, lattice parameters, and magnetization of AlxFe2B2 (x=1.0, 1.1, 1.2) alloys[J]. Physical Review Materials, 2018, 2 (3): 034403.
doi: 10.1103/PhysRevMaterials.2.034403
148
ZHANG X , LEJEUNE B T , BARUA R , et al. Estimating the in-operando stabilities of AlFe2B2-based compounds for magnetic refrigeration[J]. Journal of Alloys and Compounds, 2020, 823, 153693.
doi: 10.1016/j.jallcom.2020.153693
149
PECHARSKY V K , GSCHNEIDNER K A . Giant magnetocaloric effect in Gd5(Si2Ge2)[J]. Phys Rev Lett, 1997, 78, 4494- 4497.
doi: 10.1103/PhysRevLett.78.4494
150
TEGUS O , BRUCK E , BUSCHOW K H J , et al. Transition-metal-based magnetic refrigerants for room-temperature applications[J]. Nature, 2002, 415, 150- 152.
doi: 10.1038/415150a
151
WANG J L , CAMPBELL S J , ZENG R , et al. Re-entrant ferromagnet PrMn2Ge0.8Si1.2: magnetocaloric effect[J]. J Appl Phys, 2009, 105, 3.
152
SOKOL M , NATU V , KOTA S , et al. On the chemical diversity of the MAX phases[J]. Trends Chem, 2019, 1, 210- 223.
doi: 10.1016/j.trechm.2019.02.016
153
BENAMOR A , KOTA S , CHIKER N , et al. Friction and wear properties of MoAlB against Al2O3 and 100Cr6 steel counterparts[J]. J Eur Ceram Soc, 2019, 39, 868- 877.
doi: 10.1016/j.jeurceramsoc.2018.10.026