Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 1-23    DOI: 10.11868/j.issn.1001-4381.2020.001171
  综述 本期目录 | 过刊浏览 | 高级检索 |
高韧性三元层状陶瓷: 从MAX相到MAB相
柏跃磊1,*(), 尹航1, 宋广平1, 赫晓东1,2, 齐欣欣1, 高进1, 郝兵兵1, 张金泽1
1 哈尔滨工业大学 特种环境复合材料技术国防科技重点实验室/复合材料与结构研究所, 哈尔滨 150080
2 深圳烯创先进材料研究院有限公司, 广东 深圳 518000
High-fracture-toughness ternary layered ceramics: from the MAX to MAB phases
Yue-lei BAI1,*(), Hang YIN1, Guang-ping SONG1, Xiao-dong HE1,2, Xin-xin QI1, Jin GAO1, Bing-bing HAO1, Jin-ze ZHANG1
1 National Key Laboratory of Science and Technology on Advanced Composites in Special Environments/Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
2 Shenzhen STRONG Advanced Materials Research Institute Co., Ltd., Shenzhen 518000, Guangdong, China
全文: PDF(33188 KB)   HTML ( 4 )  
输出: BibTeX | EndNote (RIS)      
摘要 

三元层状化合物MAX相和新近引起人们注意的MAB相以其兼具陶瓷和金属的共同特性成为结构陶瓷领域20余年的研究热点,而高损伤容限和高断裂韧度是其区别于传统陶瓷的本质特征。本文简要回顾了MAX相的整体发展脉络和MAB相的最新研究进展,重点分析了纳米层状结构对宏观力学行为的影响及其内在机制。基于第一性原理计算结果建立的键刚度模型在实现对化学键强度的定量表征基础上,更重要的是阐明了"足够"弱的层间结合是三元层状陶瓷表现出非凡力学性能的根本原因。而Fe2AlB2在室温附近所出现的磁热效应(MCE)则显示了MAB相化合物在功能领域的良好应用前景。经过20余年的持续研究,MAX相化合物的结构和性能逐渐变得清晰,目前针对具体场景的应用研究在世界各地蓬勃开展起来。然而,目前对MAB相化合物的认识还很有限。因此,合成和表征现有已知MAB相化合物的结构、力学性能、物理性能以及基于应用背景的使役行为是现阶段的重要任务。其中,基于密度泛函理论(DFT)的第一性原理数值模拟可扮演重要角色,正如其在理解MAX相化合物的非凡性能和发现新型化合物时所起的重要作用一样。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柏跃磊
尹航
宋广平
赫晓东
齐欣欣
高进
郝兵兵
张金泽
关键词 MAX相MAB相层状结构损伤容限键刚度模型磁制冷Fe2AlB2    
Abstract

The MAX phase of the ternary layered compound and the recently attracted attention of the MAB phase have become the research hotspots in the field of structural ceramics for more than 20 years because of their common characteristics of ceramics and metals. The high damage tolerance and high fracture toughness are different from the essential characteristics of traditional ceramics. The overall development of MAX phase and the latest research progress of MAB phase were briefly reviewed in this article, focusing on the analysis of the effect of multi-scale layered structure on macro-mechanical behavior and its internal mechanism. Based on the results of first-principles calculations, the bond stiffness model was established and the quantitative characterization of chemical bond strength was realized, and more importantly, it was clarified that "sufficiently" weak interlayer bonding is the root cause for the extraordinary mechanical properties of ternary layered ceramics. The magnetocaloric effect (MCE) of Fe2AlB2 near room temperature shows the good application prospects of MAB phase compounds in the functional field. After more than 20 years of continuous research, the structure and performance of MAX-phase compounds have gradually become clear. At present, application research for specific scenarios is vigorously carried out all over the world. However, the current knowledge of MAB phase compounds is still very limited. Therefore, synthesizing and characterizing the structure, mechanical properties, physical properties, and service behaviour of existing MAB phase compounds are the important tasks at this stage. First-principles numerical simulation based on density functional theory (DFT) can play an important role, just as in understanding the extraordinary properties of MAX phase compounds and discovering new compounds.

Key wordsMAX phase    MAB phase    layered structure    damage tolerance    model of bond stiffness    magnetic refrigeration    Fe2AlB2
收稿日期: 2020-12-19      出版日期: 2021-05-21
中图分类号:  TB321  
基金资助:国家自然科学基金面上项目(51972080);深圳市科技计划资助项目(KQTD2016112814303055)
通讯作者: 柏跃磊     E-mail: baiyl@hit.edu.cn
作者简介: 柏跃磊(1983-), 男, 教授, 博士生导师, 研究方向: 三元层状陶瓷、计算材料科学/多尺度物理力学、热防护材料与系统, 联系地址: 黑龙江省哈尔滨市南岗区一匡街2号哈工大科学园B1栋411室(150080), baiyl@hit.edu.cn
引用本文:   
柏跃磊, 尹航, 宋广平, 赫晓东, 齐欣欣, 高进, 郝兵兵, 张金泽. 高韧性三元层状陶瓷: 从MAX相到MAB相[J]. 材料工程, 2021, 49(5): 1-23.
Yue-lei BAI, Hang YIN, Guang-ping SONG, Xiao-dong HE, Xin-xin QI, Jin GAO, Bing-bing HAO, Jin-ze ZHANG. High-fracture-toughness ternary layered ceramics: from the MAX to MAB phases. Journal of Materials Engineering, 2021, 49(5): 1-23.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001171      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/1
Fig.1  MAX相的晶体结构图[20]  (a)211;(b)312;(c)413
Atom Chemistry Range of zM/X Comment and reference
M2AX/Ti2SC - Kudieka and Rohde (1960)
Wyckoff x y zi(canonical) - -
A 2d 1/3 2/3 3/4 -
M 4f 2/3 1/3 1/12(0.083) 0.07-1
X 2a 0 0 0 -
α-M3AX2/Ti3SiC2 Jeitschko and Nowotny[26]
A 2b 0 0 4/16 - -
M1 4f 1/3 2/3 2/16(0.125) 0.131-0.138
M2 2a 0 0 0 - -
X1 4f 2/3 1/3 1/16(0.0625) 0.0722
β-M3AX2/Ti3SiC2 - Farber et al[70]
A 2d 1/3 2/3 4/16 -
M1 4f 1/3 2/3 2/16(0.125) 0.1355
M2 2a 0 0 0 -
X1 4f 2/3 1/3 1/16(0.0625) 0.072
α-M4AX3/Ti4AlN3 - Barsoum et al[49] and Rawn et al[71]
A 2c 1/3 2/3 5/20 -
M1 4e 1/3 2/3 12/20(0.15) 0.155-0.158
M2 4f 1/3 2/3 1/20(0.05) 0.052-0.055
X1 2a 0 0 0 -
X2 4e 2/3 1/3 2/20 0.103-0.109
β-M4AX3/Ta4AlC3 - Eklund et al[55]
A 2c 1/3 2/3 5/20 - -
M1 4e 1/3 2/3 12/20(0.6) 0.658 -
M2 4f 1/3 2/3 1/20 0.055 Eklund et al[55]
X1 2a 0 0 0 - -
X2 4e 2/3 1/3 2/20 0.103 -
γ-M4AX3/Ta4GaC3 - Etzkorn et al[60]
A 2c 1/3 2/3 5/20 - -
M1 4e 1/3 2/3 3/20(0.15) 0.156 -
M2 4f 1/3 2/3 1/20 0.056 Etzkorn et al[60] and He et al[72]
X1 2a 0 0 0 - -
X2 4f 2/3 1/3 2/20 0.1065 -
Table 1  MAX相的原子位置和内坐标
Fig.2  Ti4GaC3多形体之间的相变能垒[72](TSa-b,TSa-c和TSb-c分别对应α-β,α-γ和β-γ相变的过渡态)
Fig.3  Ti2AlC的断口形貌[81]   (a)断口全貌;(b)晶粒弯曲和扭折;(c)层间分层;(d)图(c)的放大图
Fig.4  粗晶和细晶Ti3SiC2的裂纹扩展阻力随裂纹生长的演化曲线(a)[87]和晶粒尺寸对断裂韧度的影响(b)[83]
Fig.5  MAX相的损伤容限  (a)Ti3SiC2,Ti3GeC2和Ti3Si0.5Ge0.5C2经维氏压痕测试后的四点弯曲强度[88];(b)46 μm Ti3GeC2试样的组织结构;(c)7 μm Ti3Si0.5Ge0.5C2试样的组织结构;(d)块体Ti2AlC经铁锤反复敲打后的表面形貌[83]
Fig.6  M2AlC(a),M3AlC2(b)和M4AlC3(c)在0 GPa时的化学键刚度[20]
Fig.7  M2AlC(a),M3AlC2(b)和M4AlC3(c)的体积模量和总化学键刚度的关系[20]
Compound The weakest bond
(stiffness/GPa)
The strongest bond
(stiffness/GPa)
kmin/kmax Fracture toughness/
(MPa·m1/2)
Indentation cracks
Ti2AlC Ti—Al(375)[20] Ti—C(741)[20] 0.505 6.5[89] No[89]
Zr2AlC Zr—Al(342)[20] Zr—C(704)[20] 0.488 - No[90]
Hf2AlC Hf—Al(372)[20] Hf—C(806)[20] 0.465 - -
V2AlC V—Al(472)[20] V—C(901)[20] 0.528 5.7±0.2[91] No[91]
Nb2AlC Nb—Al(461)[20] Nb—C(917)[20] 0.505 5.9±0.3[92] No[92]
Ta2AlC Ta—Al(518)[20] Ta—C(1139)[20] 0.456 7.7±0.2[93] No[93]
Cr2AlC Cr—Al(495)[20] Cr—C(1020)[20] 0.485 6.22±0.26[94] No[94]
Ti2SC Ti—S(578) Ti—C(752) 0.769 5.0±1.0[95] Yes[95]
Ti3AlC2 Ti1—Al(366)[20] Ti1—C(870)[20] 0.417 7.2[96] No[96]
Zr3AlC2 Zr1—Al(352)[20] Zr1—C(840)[20] 0.416 - -
Hf3AlC2 Hf1—Al(362)[20] Hf1—C(980)[20] 0.368 - -
Ta3AlC2 Ta1—Al(500)[20] Ta1—C(1388)[20] 0.358 - -
V4AlC3 V1—Al(450)[20] V1—C1(1075)[20] 0.417 - No[97]
Nb4AlC3 Nb1—Al(436)[20] Nb1—C1(1031)[20] 0.422 7.1±0.3[98] No[98]
Ta4AlC3 Ta1—Al(500)[20] Ta1—C1(1220)[20] 0.471 7.7±0.5[99] No[99]
Ti4GaC3 Ti1—Ga(375)[72] Ti1—C1(952)[72] 0.489 - -
Zr2Al3C4 Al1—C4(505)[100] Zr1—C2(893)[100] 0.611 4.2±0.52[101] Yes
Zr3Al3C5 Al1—C3(714)[100] Zr1—C2(893)[100] 0.563 4.68±0.74[102] Yes
Zr2Al4C5 C4—C5(535)[100] Zr1—C1(807)[100] 0.663 4.64±0.64[103] Yes
Zr3Al4C6 C4—C5(535)[100] Zr1—C1(807)[100] 0.663 - -
Hf2Al3C4 Al2—C1(465)[17] Hf—C3(840)[17] 0.554 - -
Hf3Al3C5 Al2—C1(461)[17] Hf1—C3(909)[17] 0.507 - -
Hf2Al4C5 Al2—C3(498)[17] Hf2—C4(806)[17] 0.618 - -
Hf3Al4C6 Al3—C2(478)[17] Hf3—C1(806)[17] 0.593 - -
MoAlB Al—Al(526)[19] B—B(1205)[19] 0.437 4.3±0.1[104] No[11]
Cr2AlB2 Al—B(571)/Cr-Al(617)[105] Cr—B2(1149)[105] 0.497/0.537 - -
Cr3AlB4 Al—B1(581)/Cr1-Al(610)[105] Cr1—B2(1075)[105] 0.540/0.567 - -
Cr4AlB6 Al—B1(595)/Cr1-Al(599)[105] Cr1—B2(1099)[105] 0.541/0.545 - -
Cr4AlB4 Al—B1(574)/Cr1-Al(625)[106] Cr1—B2(1190)[106] 0.482/0.525 - -
Table 2  部分典型三元层状化合物的化学键刚度、断裂韧度和维氏压痕
Fig.8  MAX相的维氏压痕与最弱和最强化学键的相应刚度比值kmin/kmax  (a)Ti2SC[95];(b)Ti2AlC[107]
Fig.9  (HfC)nAl3C2和(HfC)nAl4C3的晶体结构[17]
Material Melting point/℃ Density/
(g·cm-3)
Moss
hardness
Crystal structure Thermal expansion
coefficient/
(10-6 K-1)
Specific heat/
(J·g-1·K-1)
Thermal
conductivity/
(W·m-1·K-1)
ZrB2 3000 6.0-6.2 9 Hexagonal 9.05 0.502 24.08
HfB2 3150-3350 11.2 - Simple hexagonal 7.74 0.461-0.67 62.38
TaB2 3050-3180 11.0-11.7 8 Hexagonal 5.04 0.17-0.46 10.89
TiB2 2890-2990 4.4-4.6 8 Simple hexagonal 8.64 0.62 46.89
CrB2 2150 5.6 8-9 Hexagonal 11.2 0.461 30.98
Table 3  典型二元硼化物材料性能[113]
Fig.10  MAB相的晶体结构
Fig.11  MAB相的透射电镜照片  (a) Fe2AlB2单晶[101]方向扫描透射电镜图[115];(b)图(a)相应的能谱图[115];(c)沿[100]和[001]方向带有倾斜边界缺陷的Cr2AlB2晶粒透射电镜图像[118];(d)NaOH处理后MoAlB晶体透射电镜图[116]; (e)Cr3AlB4晶粒透射电镜图像,白色箭头为堆垛层错[117]
Fig.12  MAB相的多尺度层状结构  (a)MoAlB透射电镜图像[11];(b)MoAlB二次电子SEM图像[11];(c)MoAlB晶粒的高倍SEM照片[11];(d)Cr2AlB2晶粒分层[123];(e)Fe2AlB2晶粒分层[123]
Fig.13  MAB相单晶形貌[6]
(a)MoAlB;(b)Mn2AlB2; (c)Fe2AlB2; (d)WAlB; (e)Cr2AlB2; (f)Cr3AlB4; (g)Cr4AlB6
Material Processing Raw material Temperature/
Holding
time/min
Pressure/
MPa
Atmosphere Impurity Reference
MoAlB HP MoB∶Al=1∶1.3 1200 348 39 Vacuum Al3Mo, Al2O3 [11]
HP MoAlB powder 1600 60 60 - MoB [127]
HP Mo∶ Al∶ B=1∶1.3∶1 1200 60 25 Ar Al2O3, Al3Mo [128]
SPS Mo∶Al∶ B=1∶1.1∶1 1150 10 40 Vacuum MoB2 [129]
SPS MoAlB powder 1250 30 50 Ar Al5Mo [130]
Fe2AlB2 HP Fe∶ Al∶ B=2∶1.15∶2 1200 30 30 Vacuum Al2O3, Fe-Al [12]
HP FeB∶Al=1.1∶2 1100 60 30 Ar Al13Fe4 [131]
Mn2AlB2 HP Mn∶Al∶ B=2∶1.2∶2 1050 120 36 Vacuum Al2O3 [132]
Table 4  部分典型MAB相材料的制备工艺
Material Vickers hardness/
GPa
Compressive strength/MPa Flexural strength/
MPa
Fracture toughness/
(MPa·m1/2)
Grain size/μm Reference
Fe2AlB2 10.2±0.2 2101±202 232± 25 5.4±0.2 ≈20-50 [12]
10.7±0.5 - ≈340 4.6 - [131, 134]
10.0±0.4 2082±157a 242 ±27 5.0±0.3a ≈20-50 [135]
- 1992±176b - 5.3±0.6b
MoAlB 10.6 ± 0.3 1940±300a - - - [11]
1420±100b - - -
9.3±0.4 1620.2±86a 456.4± 19 4.3±0.1 ≈10 [127]
- 1252.7±53b - - -
- ≈2000 - - ≈5-30 [136]
8.43 - 307 4.9 ≈10-30 [128]
Mn2AlB2 8.7±0.6 1240±100 - - 1-15 [132]
Table 5  部分典型MAB相块体的力学性能
Fig.14  MoAlB(a)[11]和Fe2AlB2(b)[12]的维氏压痕
Fig.15  采用SENB法测定Fe2AlB2断裂韧度的载荷-位移曲线[12]
Material TC/K SM/
(J·kg-1·K-1)
(2 T/5 T)
ΔTad/K
(2 T/5 T)
RCP/(J·kg-1)
(2 T/5 T)
Fabrication method
Fe2AlB2 301 1.51/3.05 4.0/7.96 52.71/126.47 Reactive hot pressing (1200 ℃, 30 min, 30 MPa)[140]
282 4.4/7.3 1.8/3.0 88/210 Arc-melting (900 ℃, 7 days)[10]
307 4.1/7.7 - 53/162 Ga flux (900 ℃, 7 days)[10]
Gd5Si2Ge2 276 14/19 7.3/15 126/460 Ref[149]
MnFeP0.45As0.55 300 14.5/18 - 174/414 Ref[150]
PrMn2Ge0.8Si1.2 303 1.0/2.2 - - Ref[151]
Table 6  Fe2AlB2和常见磁制冷材料磁热特性参数[10, 140, 149-151]
Fig.16  反应热压合成Fe2AlB2的磁性能[140]   (a)磁矩随温度的变化曲线(施加磁场为5 mT), 顶部插图是2 K时的磁滞回线,底部插图是磁矩随温度曲线的一阶导数;(b)265~325 K温度区间的等温M-H曲线;(c)接近居里温度TC的Arrott曲线族;(d)在2~5 T区间内的磁熵变
1 FAHRENHOLTZ W G , WUCHINA E J , LEE W E , et al. Ultra-high temperature ceramics: materials for extreme environment applications[M]. Hoboken, New Jersey, USA: John Wiley & Sons, Inc, 2014.
2 GREEN D J . An introduction to the mechanical properties of ceramics[M]. Cambridge: Cambridge University Press, 1998.
3 BARSOUM M W , EL-RAGHY T . Synthesis and characterization of a remarkable ceramic: Ti3SiC2[J]. J Am Ceram Soc, 1996, 79, 1953- 1956.
doi: 10.1111/j.1151-2916.1996.tb08018.x
4 BAI Y L , SRIKANTH N , CHUA C K , et al. Density functional theory study of Mn+1AXn phases: a review[J]. Crit Rev Solid State Mat Sci, 2019, 44, 56- 107.
doi: 10.1080/10408436.2017.1370577
5 BARSOUM M W . The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates[J]. Prog Solid State Chem, 2000, 28, 201- 281.
doi: 10.1016/S0079-6786(00)00006-6
6 ADE M , HILLEBRECHT H . Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n=1, 2, 3 and a unifying concept for ternary borides as MAB-phases[J]. Inorganic Chemistry, 2015, 54, 6122- 6135.
doi: 10.1021/acs.inorgchem.5b00049
7 KOTA S , SOKOL M , BARSOUM M W . A progress report on the MAB phases: atomically laminated, ternary transition metal borides[J]. International Materials Reviews, 2020, 65, 226- 255.
doi: 10.1080/09506608.2019.1637090
8 JEITSCHKO W . The crystal structure of Fe2AlB2[J]. Acta Crystallographica, 1969, 25, 163- 165.
9 NOWOTNY H , ROGL P . Ternary metal borides[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1977.
10 TAN X Y , CHAI P , THOMPSON C M , et al. Magnetocaloric effect in AlFe2B2: toward magnetic refrigerants from earth-abundant elements[J]. J Am Chem Soc, 2013, 135, 9553- 9557.
doi: 10.1021/ja404107p
11 KOTA S , ZAPATA-SOLVAS E , LY A , et al. Synthesis and characterization of an alumina forming nanolaminated boride: MoAlB[J]. Sci Rep, 2016, 6, 9.
doi: 10.1038/s41598-016-0002-7
12 LI N , BAI Y L , WANG S , et al. Rapid synthesis, electrical, and mechanical properties of polycrystalline Fe2AlB2 bulk from elemental powders[J]. J Am Ceram Soc, 2017, 100, 4407- 4411.
doi: 10.1111/jace.15058
13 HU C F , SAKKA Y , GRASSO S , et al. Shell-like nanolayered Nb4AlC3 ceramic with high strength and toughness[J]. Scr Mater, 2011, 64, 765- 768.
doi: 10.1016/j.scriptamat.2010.12.045
14 ZHANG H B , HU C F , SATO K , et al. Tailoring Ti3AlC2 ceramic with high anisotropic physical and mechanical properties[J]. J Eur Ceram Soc, 2015, 35, 393- 397.
doi: 10.1016/j.jeurceramsoc.2014.08.026
15 XIE X , YANG R , CUI Y , et al. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties[J]. J Mater Sci Technol, 2020, 38, 86- 92.
doi: 10.1016/j.jmst.2019.05.070
16 BAI Y L , HE X D , SUN Y , et al. Chemical bonding and elastic properties of Ti3AC2 phases (A=Si, Ge, and Sn): a first-principle study[J]. Solid State Sci, 2010, 12, 1220- 1225.
doi: 10.1016/j.solidstatesciences.2010.03.007
17 BAI Y L , DUFF A , JAYASEELAN D D , et al. DFT predictions of crystal structure, electronic structure, compressibility, and elastic properties of Hf-Al-C carbides[J]. J Am Ceram Soc, 2016, 99, 3449- 3457.
doi: 10.1111/jace.14361
18 WANG C Y , HAN H , ZHAO Y Y , et al. Elastic, mechanical, electronic, and defective properties of Zr-Al-C nanolaminates from first principles[J]. J Am Ceram Soc, 2018, 101, 756- 772.
doi: 10.1111/jace.15252
19 BAI Y L , QI X X , DUFF A , et al. Density functional theory insights into ternary layered boride MoAlB[J]. Acta Mater, 2017, 132, 69- 81.
doi: 10.1016/j.actamat.2017.04.031
20 BAI Y L , HE X D , WANG R G , et al. An ab initio study on compressibility of Al-containing MAX-phase carbides[J]. J Appl Phys, 2013, 114, 173709.
doi: 10.1063/1.4829282
21 JEITSCHKO W , NOWOTNY H , BENESOVSKY F . Die H-phasen Ti2InC, Zr2InC, Hf2InC und Ti2GeC[J]. Monatshefte Fur Chemie, 1963, 94, 1201- 1205.
doi: 10.1007/BF00905711
22 JEITSCHKO W , NOWOTNY H , BENESOVSKY F . Kohlenstoffhaltige ternare verbindungen (V-Ge-C, Nb-Ga-C, TA-Ga-C, Ta-Ge C, Cr-Ga-C UND Cr-Ge-C)[J]. Monatshefte Fur Chemie, 1963, 94, 844- 850.
doi: 10.1007/BF00902358
23 JEITSCHKO W , NOWOTNY H , BENESOVSKY F . Die H-Phasen: Ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN und Nb2GaC[J]. Monatshefte für Chemie/Chemical Monthly, 1964, 95, 178- 179.
doi: 10.1007/BF00909264
24 JEITSCHKO W , NOWOTNY H , BENESOVSKY F . Die H-Phasen Ti2TlC, Ti2PbC, Nb2InC, Nb2SnC und Ta2GaC[J]. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1964, 95, 431- 435.
doi: 10.1007/BF00901306
25 JEITSCHK W , NOWOTNY H . Crystal structure of Ti3SiC2 a new type of complex carbide[J]. Monatshefte Fur Chemie, 1967, 98, 329- 337.
doi: 10.1007/BF00899949
26 JEITSCHKO W , NOWOTNY H . Die Kristallstruktur von Ti3SiC2-ein neuer Komplexcarbid-Typ[J]. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1967, 98, 329- 337.
doi: 10.1007/BF00899949
27 WOLFSGRUBER H , NOWOTNY H , BENESOVSKY F . Die Kristallstruktur von Ti3GeC2[J]. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1967, 98, 2403- 2405.
doi: 10.1007/BF00902438
28 JEITSCHKO W , NOWOTNY H , BENESOVSKY F . Ti2AlN, eine stickstoffhaltige H-phase[J]. Monatshefte Fur Chemie, 1963, 94, 1198- 337.
doi: 10.1007/BF00905710
29 NOWOTNY V H . Strukturchemie einiger Verbindungen der übergangsmetalle mit den elementen C, Si, Ge, Sn[J]. Prog Solid State Chem, 1971, 5, 27- 70.
doi: 10.1016/0079-6786(71)90016-1
30 PIETZKA M , SCHUSTER J . Summary of constitutional data on the aluminum-carbon-titanium system[J]. Journal of Phase Equilibria, 1994, 15, 392- 400.
doi: 10.1007/BF02647559
31 NICKL J J , SCHWEITZER K K , LUXENBERG P . Gasphasenabscheidung im system Ti-Si-C[J]. Journal of the Less Common Metals, 1972, 26, 335- 353.
doi: 10.1016/0022-5088(72)90083-5
32 GOTO T , HIRAI T . Chemically vapor deposited Ti3SiC2[J]. Mater Res Bull, 1987, 22, 1195- 1201.
doi: 10.1016/0025-5408(87)90128-0
33 LIS J , PAMPUCH R , PIEKARCZYK J , et al. New ceramics based on TI3SiC2[J]. Ceram Int, 1993, 19, 219- 222.
doi: 10.1016/0272-8842(93)90052-S
34 LIS J , MIYAMOTO Y , PAMPUCH R , et al. Ti3SiC2-based materials prepared by HIP-SHS techniques[J]. Mater Lett, 1995, 22, 163- 168.
doi: 10.1016/0167-577X(94)00246-0
35 MORGIEL J , LIS J , PAMPUCH R . Microstructure of Ti3SiC2-based ceramics[J]. Mater Lett, 1996, 27, 85- 89.
doi: 10.1016/0167-577X(95)00259-6
36 ISEKI T , YANO T , CHUNG Y S . Wetting and properties of reaction products in active metal brazing of SiC[J]. J Ceram Soc Jpn, 1989, 97, 710- 714.
doi: 10.2109/jcersj.97.710
37 BARSOUM M W , ZHEN T , KALIDINDI S R , et al. Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa[J]. Nat Mater, 2003, 2, 107- 111.
doi: 10.1038/nmat814
38 ZHOU A G , BASU S , BARSOUM MW . Kinking nonlinear elasticity, damping and microyielding of hexagonal close-packed metals[J]. Acta Mater, 2008, 56, 60- 67.
doi: 10.1016/j.actamat.2007.08.050
39 BARSOUM M W , YOO H I , POLUSHINA I K , et al. Electrical conductivity, thermopower, and hall effect of Ti3AlC2, Ti4AlN3, and Ti3SiC2[J]. Phys Rev B, 2000, 62, 10194- 10198.
doi: 10.1103/PhysRevB.62.10194
40 BARSOUM M W , ELRAGHY T , OGBUJI L . Oxidation of Ti3SiC2 in air[J]. J Electrochem Soc, 1997, 144, 2508- 2516.
doi: 10.1149/1.1837846
41 BARSOUM M W , BRODKIN D , EL-RAGHY T . Layered machinable ceramics for high temperature applications[J]. Scr Mater, 1997, 36, 535- 541.
doi: 10.1016/S1359-6462(96)00418-6
42 BARSOUM M W , YAROSCHUK G , TYAGI S . Fabrication and characterization of M2SnC (M=Ti, Zr, Hf and Nb)[J]. Scr Mater, 1997, 37, 1583- 1591.
doi: 10.1016/S1359-6462(97)00288-1
43 BARSOUM M W , ALI M , EL-RAGHY T . Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5[J]. Metall Mater Trans A, 2000, 31, 1857- 1865.
doi: 10.1007/s11661-006-0243-3
44 EL-RAGHY T , CHAKRABORTY S , BARSOUM M W . Synthesis and characterization of Hf2PbC, Zr2PbC and M2SnC (M=Ti, Hf, Nb or Zr)[J]. J Eur Ceram Soc, 2000, 20, 2619- 2625.
doi: 10.1016/S0955-2219(00)00127-8
45 WANG X H , ZHOU Y C . Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review[J]. J Mater Sci Technol, 2010, 26, 385- 416.
doi: 10.1016/S1005-0302(10)60064-3
46 XU L D , ZHU D G , GRASSO S , et al. Effect of texture microstructure on tribological properties of tailored Ti3AlC2 ceramic[J]. Journal of Advanced Ceramics, 2017, 6, 120- 128.
doi: 10.1007/s40145-017-0224-6
47 CAI L P , HUANG Z Y , HU W Q , et al. Fabrication, mechanical properties, and tribological behaviors of Ti2AlC and Ti2AlSn0.2C solid solutions[J]. Journal of Advanced Ceramics, 2017, 6, 90- 99.
doi: 10.1007/s40145-017-0221-9
48 BARSOUM M W , SCHUSTER J C . Comment on "New ternary nitride in the Ti-Al-N system"[J]. J Am Ceram Soc, 1998, 81, 785- 786.
49 BARSOUM M W , FARBER L , LEVIN I , et al. High-resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2 N2 revisited[J]. J Am Ceram Soc, 1999, 82, 2545- 2547.
doi: 10.1111/j.1151-2916.1999.tb02117.x
50 HOLM B , AHUJA R , LI S , et al. Theory of the ternary layered system Ti-Al-N[J]. J Appl Phys, 2002, 91, 9874- 9877.
doi: 10.1063/1.1476076
51 PALMQUIST J P , LI S , PERSSON P O A , et al. Mn+1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations[J]. Phys Rev B, 2004, 70, 165401.
doi: 10.1103/PhysRevB.70.165401
52 HOGBERG H , EKLUND P , EMMERLICH J , et al. Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering[J]. J Mater Res, 2005, 20, 779- 782.
doi: 10.1557/JMR.2005.0105
53 LIN Z J , ZHUO M J , ZHOU Y C , et al. Structural characterization of a new layered-ternary Ta4AlC3 ceramic[J]. J Mater Res, 2006, 21, 2587- 2592.
doi: 10.1557/jmr.2006.0310
54 MANOUN B , SAXENA S K , EL-RAGHY T , et al. High-pressure X-ray diffraction study of Ta4AlC3[J]. Appl Phys Lett, 2006, 88, 201902.
doi: 10.1063/1.2202387
55 EKLUND P , PALMQUIST J P , HOWING J , et al. Ta4AlC3: phase determination, polymorphism and deformation[J]. Acta Mater, 2007, 55, 4723- 4729.
doi: 10.1016/j.actamat.2007.04.040
56 ETZKORN J , ADE M , HILLEBRECHT H . Ta3AlC2 and Ta4AlC3-single-crystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique[J]. Inorg Chem, 2007, 46, 1410- 1418.
doi: 10.1021/ic062231y
57 ETZKORN J , ADE M , HILLEBRECHT H . V2AlC, V4AlC3-x (x approximate to 0.31), and V12Al3C8: synthesis, crystal growth, structure, and superstructure[J]. Inorg Chem, 2007, 46, 7646- 7653.
doi: 10.1021/ic700382y
58 HU C F , LI F Z , ZHANG J , et al. Nb4AlC3: a new compound belonging to the MAX phases[J]. Scr Mater, 2007, 57, 893- 896.
doi: 10.1016/j.scriptamat.2007.07.038
59 ZHOU Y C , MENG F L , ZHANG J . New MAX-phase compounds in the V-Cr-Al-C system[J]. J Am Ceram Soc, 2008, 91, 1357- 1360.
doi: 10.1111/j.1551-2916.2008.02279.x
60 ETZKORN J , ADE M , KOTZOTT D , et al. Ti2GaC, Ti4GaC3 and Cr2GaC-synthesis, crystal growth and structure analysis of Ga-containing MAX-phases Mn+1GaCn with M=Ti, Cr and n=1, 3[J]. J Solid State Chem, 2009, 182, 995- 1002.
doi: 10.1016/j.jssc.2009.01.003
61 SEGALL M D , LINDAN P J D , PROBERT M J , et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J Phys-Condes Matter, 2002, 14, 2717- 2744.
doi: 10.1088/0953-8984/14/11/301
62 MEDVEDEVA N I , NOVIKOV D L , IVANOVSKY A L , et al. Electronic properties of Ti3SiC2-based solid solutions[J]. Phys Rev B, 1998, 58, 16042- 16050.
doi: 10.1103/PhysRevB.58.16042
63 WANG J Y , ZHOU Y C . Ab initio investigation of the electronic structure and bonding properties of the layered ternary compound Ti3SiC2 at high pressure[J]. J Phys-Condes Matter, 2003, 15, 1983- 1991.
doi: 10.1088/0953-8984/15/12/315
64 WANG J Y , ZHOU Y C . Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M=Ti, V, Nb, and Cr) ceramics[J]. Phys Rev B, 2004, 69, 214111.
doi: 10.1103/PhysRevB.69.214111
65 SUN Z M , LI S , AHUJA R , et al. Calculated elastic properties of M2AlC (M=Ti, V, Cr, Nb and Ta)[J]. Solid State Commun, 2004, 129, 589- 592.
doi: 10.1016/j.ssc.2003.12.008
66 WANG J Y , ZHOU Y C . Polymorphism of Ti3SiC2 ceramic: first-principles investigations[J]. Phys Rev B, 2004, 69, 144108.
doi: 10.1103/PhysRevB.69.144108
67 LIAO T , WANG J Y , ZHOU Y C . Deformation modes and ideal strengths of ternary layered Ti2AlC and Ti2AlN from first-principles calculations[J]. Phys Rev B, 2006, 73, 214109.
doi: 10.1103/PhysRevB.73.214109
68 MUSIC D , SUN Z M , VOEVODIN A A , et al. Electronic structure and shearing in nanolaminated ternary carbides[J]. Solid State Commun, 2006, 139, 139- 143.
doi: 10.1016/j.ssc.2006.06.007
69 LIAO T , WANG J Y , ZHOU Y C . Superior mechanical properties of Nb2AsC to those of other layered ternary carbides: a first-principles study[J]. J Phys-Condes Matter, 2006, 18, L527- L533.
doi: 10.1088/0953-8984/18/41/L04
70 FARBER L , LEVIN I , BARSOUM M W , et al. High-resolution transmission electron microscopy of some Tin+1AXn compounds (n=1, 2; A=Al or Si; X=C or N)[J]. J Appl Phys, 1999, 86, 2540- 2543.
doi: 10.1063/1.371089
71 RAWN C J , BARSOUM M W , EL-RAGHY T , et al. Structure of Ti4AlN3-a layered Mn+1AXn nitride[J]. Mater Res Bull, 2000, 35, 1785- 1796.
doi: 10.1016/S0025-5408(00)00383-4
72 HE X D , BAI Y L , ZHU C C , et al. Polymorphism of newly discovered Ti4GaC3: a first-principles study[J]. Acta Mater, 2011, 59, 5523- 5533.
doi: 10.1016/j.actamat.2011.05.025
73 BAI Y L , HE X D , WANG R G , et al. Effect of transition metal (M) and M-C slabs on equilibrium properties of Al-containing MAX carbides: An ab initio study[J]. Comput Mater Sci, 2014, 91, 28- 37.
doi: 10.1016/j.commatsci.2014.04.033
74 EKLUND P , BECKERS M , JANSSON U , et al. The Mn+1AXn phases: materials science and thin-film processing[J]. Thin Solid Films, 2010, 518, 1851- 1878.
doi: 10.1016/j.tsf.2009.07.184
75 YU R , ZHAN Q , HE L L , et al. Polymorphism of Ti3SiC2[J]. J Mater Res, 2002, 17, 948- 950.
doi: 10.1557/JMR.2002.0141
76 YU R , ZHANG X F , HE L L , et al. Topology of charge density and elastic anisotropy of Ti3SiC2 polymorphs[J]. J Mater Res, 2005, 20, 1180- 1185.
doi: 10.1557/JMR.2005.0145
77 WANG Z W , ZHA C S , BARSOUM M W . Compressibility and pressure-induced phase transformation of Ti3GeC2[J]. Appl Phys Lett, 2004, 85, 3453- 3455.
doi: 10.1063/1.1808491
78 RAWN C J , PAYZANT E A , HUBBARD C R , et al. Structure of Ti3SiC2[J]. Materials Science Forum, 2000, 321/324, 889- 892.
doi: 10.4028/www.scientific.net/MSF.321-324.889
79 ONODERA A , HIRANO H , YUASA T , et al. Static compression of Ti3SiC2 to 61 GPa[J]. Appl Phys Lett, 1999, 74, 3782- 3784.
doi: 10.1063/1.124178
80 JORDAN J L , SEKINE T , KOBAYASHI T , et al. High pressure behavior of titanium-silicon carbide (Ti3SiC2)[J]. J Appl Phys, 2003, 93, 9639- 9643.
doi: 10.1063/1.1573345
81 BAI Y L , HE X D , WANG R G , et al. High temperature physical and mechanical properties of large-scale Ti2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing[J]. J Eur Ceram Soc, 2013, 33, 2435- 2445.
doi: 10.1016/j.jeurceramsoc.2013.04.014
82 FARBER L , BARSOUM M W , ZAVALIANGOS A , et al. Dislocations and stacking faults in Ti3SiC2[J]. J Am Ceram Soc, 1998, 81, 1677- 1681.
83 BARSOUM M W. Mechanical properties: ambient temperature[C]//MAX Phases (Properties of Machianable Ternary Carbides and Nitrides). Weinheim, Germany: John Wiley & Sons, 2013: 307-361.
84 周玉. 陶瓷材料学[M]. 北京: 科学出版社, 2004.
84 ZHOU Y . Ceramic materials science[M]. Beijing: Science Press, 2004.
85 GILBERT C J , BLOYER D R , BARSOUM M W , et al. Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2[J]. Scr Mater, 2000, 42, 761- 767.
doi: 10.1016/S1359-6462(99)00427-3
86 LI S B , YU W B , ZHAI H X , et al. Mechanical properties of low temperature synthesized dense and fine-grained Cr2AlC ceramics[J]. J Eur Ceram Soc, 2011, 31, 217- 224.
doi: 10.1016/j.jeurceramsoc.2010.08.014
87 CHEN D , SHIRATO K , BARSOUM M W , et al. Cyclic fatigue-crack growth and fracture properties in Ti3SiC2 ceramics at elevated temperatures[J]. J Am Ceram Soc, 2001, 84, 2914- 2920.
doi: 10.1111/j.1151-2916.2001.tb01115.x
88 GANGULY A , ZHEN T , BARSOUM M W . Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1-x) C2(x=0.5, 0.75) solid solutions[J]. J Alloy Compd, 2004, 376, 287- 295.
doi: 10.1016/j.jallcom.2004.01.011
89 BARSOUM M , RADOVIC M . Mechanical properties of the MAX phase[J]. Annual Review of Materials Research, 2011, 41, 195- 227.
doi: 10.1146/annurev-matsci-062910-100448
90 LAPAUW T , LAMBRINOU K , CABIOC'H T , et al. Synthesis of the new MAX phase Zr2AlC[J]. Journal of the European Ceramic Society, 2016, 36, 1847- 1853.
doi: 10.1016/j.jeurceramsoc.2016.02.044
91 HU C F , HE L F , LIU M Y , et al. In situ reaction synthesis and mechanical properties of V2AlC[J]. J Am Ceram Soc, 2008, 91, 4029- 4035.
doi: 10.1111/j.1551-2916.2008.02774.x
92 ZHANG W , TRAVITZKY N , HU C F , et al. Reactive hot pressing and properties of Nb2AlC[J]. J Am Ceram Soc, 2009, 92, 2396- 2399.
doi: 10.1111/j.1551-2916.2009.03187.x
93 HU C F , HE L F , ZHANG J , et al. Microstructure and properties of bulk Ta2AlC ceramic synthesized by an in situ reaction/hot pressing method[J]. J Eur Ceram Soc, 2008, 28, 1679- 1685.
doi: 10.1016/j.jeurceramsoc.2007.10.006
94 YING G B , HE X D , LI M W , et al. Synthesis and mechanical properties of high-purity Cr2AlC ceramic[J]. Mater Sci Eng A, 2011, 528, 2635- 2640.
doi: 10.1016/j.msea.2010.12.039
95 AMINI S , BARSOUM M W , EL-RAGHYY T . Synthesis and mechanical properties of fully dense Ti2SC[J]. J Am Ceram Soc, 2007, 90, 3953- 3958.
96 WANG X H , ZHOU Y C . Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process[J]. Acta Mater, 2002, 50, 3141- 3149.
97 HOSSEIN-ZADEH M , MIRZAEE O , MOHAMMADIAN-SEMNANI H . An investigation into the microstructure and mechanical properties of V4AlC3MAX phase prepared by spark plasma sintering[J]. Ceramics International, 2019, 45, 7446- 7457.
doi: 10.1016/j.ceramint.2019.01.036
98 HU C F , LI F Z , HE L F , et al. In situ reaction synthesis, electrical and thermal, and mechanical properties of Nb4AlC3[J]. J Am Ceram Soc, 2008, 91, 2258- 2263.
doi: 10.1111/j.1551-2916.2008.02424.x
99 HU C F , LIN Z J , HE L F , et al. Physical and mechanical properties of bulk Ta4AlC3 ceramic prepared by an in situ reaction synthesis/hot-pressing method[J]. J Am Ceram Soc, 2007, 90, 2542- 2548.
doi: 10.1111/j.1551-2916.2007.01804.x
100 WANG C , HAN H , ZHAO Y , et al. Elastic, mechanical, electronic, and defective properties of Zr-Al-C nanolaminates from first principles[J]. Journal of the American Ceramic Society, 2018, 101, 756- 772.
doi: 10.1111/jace.15252
101 HE L F , LIN Z J , WANG J Y , et al. Synthesis and characterization of bulk Zr2Al3C4 ceramic[J]. J Am Ceram Soc, 2007, 90, 3687- 3689.
doi: 10.1111/j.1551-2916.2007.01964.x
102 HE L F , ZHOU Y C , BAO Y W , et al. Synthesis, physical, and mechanical properties of bulk Zr3Al3C5ceramic[J]. J Am Ceram Soc, 2007, 90, 1164- 1170.
doi: 10.1111/j.1551-2916.2007.01518.x
103 ZHANG R B , CHEN G Q , HAN W B . Synthesis, mechanical and physical properties of bulk Zr2Al4C5 ceramic[J]. Mater Chem Phys, 2010, 119, 261- 265.
doi: 10.1016/j.matchemphys.2009.08.051
104 XU L , SHI O , LIU C , et al. Synthesis, microstructure and properties of MoAlB ceramics[J]. Ceramics International, 2018, 44, 13396- 13401.
doi: 10.1016/j.ceramint.2018.04.177
105 BAI Y L , QI X X , HE X D , et al. Phase stability and weak metallic bonding within ternary-layered borides CrAlB, Cr2AlB2, Cr3AlB4, and Cr4AlB6[J]. J Am Ceram Soc, 2019, 102, 3715- 3727.
doi: 10.1111/jace.16206
106 齐欣欣, 宋广平, 尹维龙, 等. 新型三元层状硼化物Cr4AlB4的物相稳定性和力学行为分析[J]. 无机材料学报, 2020, 35 (1): 53- 60.
106 QI X X , SONG G P , YIN W L , et al. Analysis on stability and mechanical property of newly-discovered ternary layered boride Cr4AlB4[J]. Journal of Inorganic Materials, 2020, 35 (1): 53- 60.
107 BAI Y L , HE X D , LI Y B , et al. Rapid synthesis of bulk Ti2AlC by self-propagating high temperature combustion synthesis with a pseudo-hot isostatic pressing process[J]. J Mater Res, 2009, 24, 2528- 2535.
doi: 10.1557/jmr.2009.0327
108 成来飞, 张立同, 梅辉. 陶瓷基复合材料强韧化与应用基础[M]. 北京: 化学工业出版社, 2019.
108 CHENG L F , ZHANG L T , MEI H . Strengthening and toughening of ceramic matrix composites and application basis[M]. Beijing: Chemical Industry Press, 2019.
109 ZHOU Y C , HE L F , LIN Z J , et al. Synthesis and structure-property relationships of a new family of layered carbides in Zr-Al(Si)-C and Hf-Al(Si)-C systems[J]. J Eur Ceram Soc, 2013, 33, 2831- 2865.
doi: 10.1016/j.jeurceramsoc.2013.05.020
110 尤姝黎, 于志强, 杨振国. 硼化物陶瓷及其复合材料的研究进展[J]. 理化检验(物理分册), 2007, 43 (1): 27- 31.
110 YOU S L , YU Z Q , YANG Z G . Research progress of boride ceramics and their composite materials[J]. Physical Testing and Chemical Analysis Part B, 2007, 43 (1): 27- 31.
111 李福民, 唐国章. 钢铁材料表面硼化物覆层技术初探[J]. 河北理工学院学报, 2000, 增刊1, 133- 137.
111 LI F M , TANG G Z . Discussion on boride coating on the steel surface[J]. Journal of Hebei Institute of Technology, 2000, Suppl 1, 133- 137.
112 吕春燕, 顾华志, 汪厚植, 等. ZrB2系陶瓷材料的研究进展[J]. 材料导报, 2003, 17, 246- 249.
doi: 10.3321/j.issn:1005-023X.2003.z1.075
112 LU C Y , GU H Z , WANG H Z , et al. Progress in research on ZrB2-containing ceramics[J]. Materials Reports, 2003, 17, 246- 249.
doi: 10.3321/j.issn:1005-023X.2003.z1.075
113 邓世钧. 高性能陶瓷涂层技术[J]. 表面工程与再制造, 2003, (6): 4- 5.
114 向军辉, 肖汉宁. TiB2材料的研究现状及其应用[J]. 陶瓷工程, 1996, (4): 40- 44, 39.
114 XIANG J H , XIAO H N . Research status and application of TiB2 material[J]. Ceramic Engineering, 1996, (4): 40- 44, 39.
115 LAMICHHANE T N , XIANG L , LIN Q , et al. Magnetic properties of single crystalline itinerant ferromagnet Fe2AlB2[J]. Physical Review Materials, 2018, 2, 084408.
doi: 10.1103/PhysRevMaterials.2.084408
116 KIM K , CHEN C , NISHIO-HAMANE D , et al. Topochemical synthesis of phase-pure Mo2AlB2 through staging mechanism[J]. Chemical Communications, 2019, 55, 9295- 9298.
doi: 10.1039/C9CC03855H
117 KOTA S , WANG W Z , LU J , et al. Magnetic properties of Cr2AlB2, Cr3AlB4, and CrB powders[J]. J Alloy Compd, 2018, 767, 474- 482.
doi: 10.1016/j.jallcom.2018.07.031
118 LU J , KOTA S , BARSOUM M W , et al. Atomic structure and lattice defects in nanolaminated ternary transition metal borides[J]. Materials Research Letters, 2017, 5 (4): 235- 241.
doi: 10.1080/21663831.2016.1245682
119 JEITSCHKO W . Die Kristallstruktur von MoAlB[J]. Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften, 1966, 97, 1472- 1476.
doi: 10.1007/BF00902599
120 CHABAN N F , KUZ'MA Y . Ternary systems Cr-Al-B and Mn-Al-B[J]. Inorg Mater, 1973, 9, 1696- 1698.
121 ZHANG H M , DAI F Z , XIANG H M , et al. Crystal structure of Cr4AlB4: a new MAB phase compound discovered in Cr-Al-B system[J]. J Mater Sci Technol, 2019, 35, 530- 534.
122 JUNG W , PETRY K . Ternäre boride des ruthemums mit aluminium und Zink[J]. Zeitschrift Fur kristallographie, 1988, 182 (1/4): 153- 154.
123 KADAS K , IUSAN D , HELLSVIK J , et al. AlM2B2 (M=Cr, Mn, Fe, Co, Ni): a group of nanolaminated materials[J]. Journal of Physics-Condensed Matter, 2017, 29 (15): 11.
124 HALLA F , THURY W . über boride von molybdän und wolfram[J]. Zeitschrift für anorganische und allgemeine Chemie, 1942, 249, 229- 237.
doi: 10.1002/zaac.19422490301
125 ELMASSALAMI M , OLIVEIRA D D , TAKEYA H . On the ferromagnetism of AlFe2B2[J]. J Magn Magn Mater, 2011, 323, 2133- 2136.
doi: 10.1016/j.jmmm.2011.03.008
126 DU Q , CHEN G , YANG W , et al. Magnetic properties of AlFe2B2 and CeMn2Si2 synthesized by melt spinning of stoichiometric compositions[J]. Japanese Journal of Applied Physics, 2015, 54, 053003.
doi: 10.7567/JJAP.54.053003
127 XU L D , SHI O L , LIU C Y , et al. Synthesis, microstructure and properties of MoAlB ceramics[J]. Ceram Int, 2018, 44, 13396- 13401.
doi: 10.1016/j.ceramint.2018.04.177
128 LU X , LI S , ZHANG W , et al. Thermal shock behavior of a nanolaminated ternary boride: MoAlB[J]. Ceram Int, 2019, 45 (7): 9386- 9389.
doi: 10.1016/j.ceramint.2018.08.071
129 WANG S , XU Y J , YU Z G , et al. Synthesis, microstructure and mechanical properties of a MoAlB ceramic prepared by spark plasma sintering from elemental powders[J]. Ceram Int, 2019, 45, 23515- 23521.
doi: 10.1016/j.ceramint.2019.08.060
130 BEI G P , van der ZWAAG S , KOTA S , et al. Ultra-high temperature ablation behavior of MoAlB ceramics under an oxyacetylene flame[J]. J Eur Ceram Soc, 2019, 39, 2010- 2017.
doi: 10.1016/j.jeurceramsoc.2019.01.016
131 LIU J , LI S B , YAO B X , et al. Rapid synthesis and characterization of a nanolaminated Fe2AlB2 compound[J]. J Alloy Compd, 2018, 766, 488- 497.
doi: 10.1016/j.jallcom.2018.06.352
132 KOTA S , CHEN Y X , WANG J Y , et al. Synthesis and characterization of the atomic laminate Mn2AlB2[J]. J Eur Ceram Soc, 2018, 38, 5333- 5340.
doi: 10.1016/j.jeurceramsoc.2018.07.051
133 SAMMIS C G , ASHBY M F . The failure of brittle porous solids under compressive stress states[J]. Acta Metallurgica, 1986, 34, 511- 526.
doi: 10.1016/0001-6160(86)90087-8
134 LIU J , LI S B , YAO B X , et al. Thermal stability and thermal shock resistance of Fe2AlB2[J]. Ceram Int, 2018, 44, 16035- 16039.
doi: 10.1016/j.ceramint.2018.06.042
135 BAI Y L , SUN D D , LI N , et al. High-temperature mechanical properties and thermal shock behavior of ternary-layered MAB phases Fe2AlB2[J]. Int J Refract Met Hard Mat, 2019, 80, 151- 160.
doi: 10.1016/j.ijrmhm.2019.01.010
136 CHEN Y , KOTA S , BARSOUM M W , et al. Compressive deformation of MoAlB up to 1100℃[J]. J Alloy Compd, 2019, 774, 1216- 1222.
doi: 10.1016/j.jallcom.2018.09.124
137 曹学强. 热障涂层新材料和新结构[M]. 北京: 科学出版社, 2016.
137 CAO X Q . Nevo materials and new structures of thermal barrier coatings[M]. Beijng: Science Press, 2016.
138 RADOVIC M , BARSOUM M W . MAX phases: bridging the gap between metals and ceramics[J]. American Ceramic Society Bulletin, 2013, 92, 20- 27.
139 WARBURG E . Magnetische untersuchungen[J]. Annalen der Physik, 1881, 249, 141- 164.
doi: 10.1002/andp.18812490510
140 BAI Y L , QI X X , HE X D , et al. Experimental and DFT insights into elastic, magnetic, electrical, and thermodynamic properties of MAB-phase Fe2AlB2[J]. J Am Ceram Soc, 2020, 103, 5837- 5851.
doi: 10.1111/jace.17205
141 GUTFLEISCH O , WILLARD M A , BRUCK E , et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient[J]. Adv Mater, 2011, 23, 821- 842.
doi: 10.1002/adma.201002180
142 CHIEN C L , UNRUH K M . Comparison of amorphous and crystalline FeB[J]. Phys Rev B, 1984, 29, 207- 211.
143 MIRYASOV N Z , PARSANOV A P . Ferromagnetism of Mn-B alloys[J]. Izvest akad nauk S s s r ser fiz, 1959, 23
144 DU Q H , CHEN G F , YANG W Y , et al. Magnetic properties of AlFe2B2 and CeMn2Si2 synthesized by melt spinning of stoichiometric compositions[J]. Japanese Journal of Applied Physics, 2015, 54, 5.
145 BARUA R , LEJEUNE B T , JENSEN B A , et al. Enhanced room-temperature magnetocaloric effect and tunable magnetic response in Ga-and Ge-substituted AlFe2B2[J]. J Alloy Compd, 2019, 777, 1030- 1038.
doi: 10.1016/j.jallcom.2018.10.206
146 HIRT S , YUAN F , MOZHARIVSKYJ Y , et al. AlFe2-xCoxB2 (x=0-0.30): TC tuning through cosubstitution for a promising magnetocaloric material realized by spark plasma sintering[J]. Inorg Chem, 2016, 55, 9677- 9684.
doi: 10.1021/acs.inorgchem.6b01467
147 LEVIN E M , JENSEN B A , BARUA R , et al. Effects of Al content and annealing on the phases formation, lattice parameters, and magnetization of AlxFe2B2 (x=1.0, 1.1, 1.2) alloys[J]. Physical Review Materials, 2018, 2 (3): 034403.
doi: 10.1103/PhysRevMaterials.2.034403
148 ZHANG X , LEJEUNE B T , BARUA R , et al. Estimating the in-operando stabilities of AlFe2B2-based compounds for magnetic refrigeration[J]. Journal of Alloys and Compounds, 2020, 823, 153693.
doi: 10.1016/j.jallcom.2020.153693
149 PECHARSKY V K , GSCHNEIDNER K A . Giant magnetocaloric effect in Gd5(Si2Ge2)[J]. Phys Rev Lett, 1997, 78, 4494- 4497.
doi: 10.1103/PhysRevLett.78.4494
150 TEGUS O , BRUCK E , BUSCHOW K H J , et al. Transition-metal-based magnetic refrigerants for room-temperature applications[J]. Nature, 2002, 415, 150- 152.
doi: 10.1038/415150a
151 WANG J L , CAMPBELL S J , ZENG R , et al. Re-entrant ferromagnet PrMn2Ge0.8Si1.2: magnetocaloric effect[J]. J Appl Phys, 2009, 105, 3.
152 SOKOL M , NATU V , KOTA S , et al. On the chemical diversity of the MAX phases[J]. Trends Chem, 2019, 1, 210- 223.
doi: 10.1016/j.trechm.2019.02.016
153 BENAMOR A , KOTA S , CHIKER N , et al. Friction and wear properties of MoAlB against Al2O3 and 100Cr6 steel counterparts[J]. J Eur Ceram Soc, 2019, 39, 868- 877.
doi: 10.1016/j.jeurceramsoc.2018.10.026
[1] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[2] 董慧民, 闫丽, 安学锋, 钱黄海, 苏正涛, 益小苏. ESTM-fabric/3266复合材料低速冲击响应及冲击后压缩行为研究[J]. 材料工程, 2020, 48(1): 41-47.
[3] 马宏毅, 安学锋, 益小苏. “离位”增韧复合材料准静态压入损伤特性研究[J]. 材料工程, 2012, 0(9): 88-91,98.
[4] 房卫萍, 陈沦, 史耀武, 虞文军, 毛智勇, 唐振云. 损伤容限钛合金的研究进展及应用现状[J]. 材料工程, 2010, 0(9): 95-98.
[5] 张纪奎, 程小全, 郦正能. 基于损伤容限设计的机体金属材料力学性能综合表征与评价[J]. 材料工程, 2010, 0(7): 49-53.
[6] 袁鸿, 余槐, 王金雪, 王新南, 朱知寿, 李晓红. TC4-DT钛合金电子束焊接接头的损伤容限性能[J]. 材料工程, 2007, 0(8): 17-19.
[7] 王瑞刚, 潘伟, 蒋蒙宁, 罗永明, 陈健, 孙瑞峰. 层状结构陶瓷材料结构和应用[J]. 材料工程, 2003, 0(1): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn