Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 1-23    DOI: 10.11868/j.issn.1001-4381.2020.001171
  综述 本期目录 | 过刊浏览 | 高级检索 |
高韧性三元层状陶瓷:从MAX相到MAB相
柏跃磊1, 尹航1, 宋广平1, 赫晓东1,2, 齐欣欣1, 高进1, 郝兵兵1, 张金泽1
1. 哈尔滨工业大学 特种环境复合材料技术国防科技重点实验室/复合材料与结构研究所, 哈尔滨 150080;
2. 深圳烯创先进材料研究院有限公司, 广东 深圳 518000
High-fracture-toughness ternary layered ceramics: from the MAX to MAB phases
BAI Yue-lei1, YIN Hang1, SONG Guang-ping1, HE Xiao-dong1,2, QI Xin-xin1, GAO Jin1, HAO Bing-bing1, ZHANG Jin-ze1
1. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments/Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China;
2. Shenzhen STRONG Advanced Materials Research Institute Co., Ltd., Shenzhen 518000, Guangdong, China
全文: PDF(33188 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 三元层状化合物MAX相和新近引起人们注意的MAB相以其兼具陶瓷和金属的共同特性成为结构陶瓷领域20余年的研究热点,而高损伤容限和高断裂韧度是其区别于传统陶瓷的本质特征。本文简要回顾了MAX相的整体发展脉络和MAB相的最新研究进展,重点分析了纳米层状结构对宏观力学行为的影响及其内在机制。基于第一性原理计算结果建立的键刚度模型在实现对化学键强度的定量表征基础上,更重要的是阐明了"足够"弱的层间结合是三元层状陶瓷表现出非凡力学性能的根本原因。而Fe2AlB2在室温附近所出现的磁热效应(MCE)则显示了MAB相化合物在功能领域的良好应用前景。经过20余年的持续研究,MAX相化合物的结构和性能逐渐变得清晰,目前针对具体场景的应用研究在世界各地蓬勃开展起来。然而,目前对MAB相化合物的认识还很有限。因此,合成和表征现有已知MAB相化合物的结构、力学性能、物理性能以及基于应用背景的使役行为是现阶段的重要任务。其中,基于密度泛函理论(DFT)的第一性原理数值模拟可扮演重要角色,正如其在理解MAX相化合物的非凡性能和发现新型化合物时所起的重要作用一样。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柏跃磊
尹航
宋广平
赫晓东
齐欣欣
高进
郝兵兵
张金泽
关键词 MAX相MAB相层状结构损伤容限键刚度模型磁制冷Fe2AlB2    
Abstract:The MAX phase of the ternary layered compound and the recently attracted attention of the MAB phase have become the research hotspots in the field of structural ceramics for more than 20 years because of their common characteristics of ceramics and metals. The high damage tolerance and high fracture toughness are different from the essential characteristics of traditional ceramics. The overall development of MAX phase and the latest research progress of MAB phase were briefly reviewed in this article, focusing on the analysis of the effect of multi-scale layered structure on macro-mechanical behavior and its internal mechanism. Based on the results of first-principles calculations,the bond stiffness model was established and the quantitative characterization of chemical bond strength was realized, and more importantly, it was clarified that "sufficiently" weak interlayer bonding is the root cause for the extraordinary mechanical properties of ternary layered ceramics. The magnetocaloric effect (MCE) of Fe2AlB2 near room temperature shows the good application prospects of MAB phase compounds in the functional field. After more than 20 years of continuous research, the structure and performance of MAX-phase compounds have gradually become clear. At present, application research for specific scenarios is vigorously carried out all over the world. However, the current knowledge of MAB phase compounds is still very limited. Therefore, synthesizing and characterizing the structure, mechanical properties, physical properties, and service behaviour of existing MAB phase compounds are the important tasks at this stage. First-principles numerical simulation based on density functional theory (DFT) can play an important role, just as in understanding the extraordinary properties of MAX phase compounds and discovering new compounds.
Key wordsMAX phase    MAB phase    layered structure    damage tolerance    model of bond stiffness    magnetic refrigeration    Fe2AlB2
收稿日期: 2020-12-19      出版日期: 2021-05-21
中图分类号:  TB321  
基金资助:国家自然科学基金面上项目(51972080);深圳市科技计划资助项目(KQTD2016112814303055)
通讯作者: 柏跃磊(1983-),男,教授,博士生导师,研究方向:三元层状陶瓷、计算材料科学/多尺度物理力学、热防护材料与系统,联系地址:黑龙江省哈尔滨市南岗区一匡街2号哈工大科学园B1栋411室(150080),baiyl@hit.edu.cn     E-mail: baiyl@hit.edu.cn
引用本文:   
柏跃磊, 尹航, 宋广平, 赫晓东, 齐欣欣, 高进, 郝兵兵, 张金泽. 高韧性三元层状陶瓷:从MAX相到MAB相[J]. 材料工程, 2021, 49(5): 1-23.
BAI Yue-lei, YIN Hang, SONG Guang-ping, HE Xiao-dong, QI Xin-xin, GAO Jin, HAO Bing-bing, ZHANG Jin-ze. High-fracture-toughness ternary layered ceramics: from the MAX to MAB phases. Journal of Materials Engineering, 2021, 49(5): 1-23.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001171      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/1
[1] FAHRENHOLTZ W G, WUCHINA E J, LEE W E, et al. Ultra-high temperature ceramics:materials for extreme environment applications[M]. Hoboken, New Jersey, USA:John Wiley & Sons, Inc, 2014.
[2] GREEN D J. An introduction to the mechanical properties of ceramics[M].Cambridge:Cambridge University Press, 1998.
[3] BARSOUM M W, EL-RAGHY T. Synthesis and characterization of a remarkable ceramic:Ti3SiC2[J]. J Am Ceram Soc, 1996, 79:1953-1956.
[4] BAI Y L, SRIKANTH N, CHUA C K, et al. Density functional theory study of Mn+1AXn phases:a review[J]. Crit Rev Solid State Mat Sci, 2019, 44:56-107.
[5] BARSOUM M W. The MN+1AXN phases:a new class of solids; thermodynamically stable nanolaminates[J]. Prog Solid State Chem, 2000, 28:201-281.
[6] ADE M, HILLEBRECHT H. Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6:the first members of the series (CrB2)nCrAl with n=1, 2, 3 and a unifying concept for ternary borides as MAB-phases[J]. Inorganic Chemistry, 2015, 54:6122-6135.
[7] KOTA S, SOKOL M, BARSOUM M W. A progress report on the MAB phases:atomically laminated, ternary transition metal borides[J]. International Materials Reviews, 2020, 65:226-255.
[8] JEITSCHKO W. The crystal structure of Fe2AlB2[J]. Acta Crystallographica, 1969, 25:163-165.
[9] NOWOTNY H, ROGL P. Ternary metal borides[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 1977.
[10] TAN X Y, CHAI P, THOMPSON C M, et al. Magnetocaloric effect in AlFe2B2:toward magnetic refrigerants from earth-abundant elements[J]. J Am Chem Soc, 2013, 135:9553-9557.
[11] KOTA S, ZAPATA-SOLVAS E, LY A, et al. Synthesis and characterization of an alumina forming nanolaminated boride:MoAlB[J]. Sci Rep, 2016, 6:9.
[12] LI N, BAI Y L, WANG S, et al. Rapid synthesis, electrical, and mechanical properties of polycrystalline Fe2AlB2 bulk from elemental powders[J]. J Am Ceram Soc, 2017, 100:4407-4411.
[13] HU C F, SAKKA Y, GRASSO S, et al. Shell-like nanolayered Nb4AlC3 ceramic with high strength and toughness[J]. Scr Mater, 2011, 64:765-768.
[14] ZHANG H B, HU C F, SATO K, et al. Tailoring Ti3AlC2 ceramic with high anisotropic physical and mechanical properties[J]. J Eur Ceram Soc, 2015, 35:393-397.
[15] XIE X, YANG R, CUI Y, et al. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties[J]. J Mater Sci Technol, 2020, 38:86-92.
[16] BAI Y L, HE X D, SUN Y, et al. Chemical bonding and elastic properties of Ti3AC2 phases (A=Si, Ge, and Sn):a first-principle study[J]. Solid State Sci, 2010, 12:1220-1225.
[17] BAI Y L, DUFF A, JAYASEELAN D D, et al. DFT predictions of crystal structure, electronic structure, compressibility, and elastic properties of Hf-Al-C carbides[J]. J Am Ceram Soc, 2016, 99:3449-3457.
[18] WANG C Y, HAN H, ZHAO Y Y, et al. Elastic, mechanical, electronic, and defective properties of Zr-Al-C nanolaminates from first principles[J]. J Am Ceram Soc, 2018, 101:756-772.
[19] BAI Y L, QI X X, DUFF A, et al. Density functional theory insights into ternary layered boride MoAlB[J]. Acta Mater, 2017, 132:69-81.
[20] BAI Y L, HE X D, WANG R G, et al. An ab initio study on compressibility of Al-containing MAX-phase carbides[J]. J Appl Phys, 2013, 114:173709.
[21] JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Die H-phasen Ti2InC, Zr2InC, Hf2InC und Ti2GeC[J]. Monatshefte Fur Chemie, 1963, 94:1201-1205.
[22] JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Kohlenstoffhaltige ternare verbindungen (V-Ge-C, Nb-Ga-C, TA-Ga-C, Ta-Ge C, Cr-Ga-C UND Cr-Ge-C)[J]. Monatshefte Fur Chemie, 1963, 94:844-850.
[23] JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Die H-Phasen:Ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN und Nb2GaC[J]. Monatshefte für Chemie/Chemical Monthly, 1964, 95:178-179.
[24] JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Die H-Phasen Ti2TlC, Ti2PbC, Nb2InC, Nb2SnC und Ta2GaC[J]. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1964, 95:431-435.
[25] JEITSCHK W, NOWOTNY H. Crystal structure of Ti3SiC2 a new type of complex carbide[J]. Monatshefte Fur Chemie, 1967, 98:329-337.
[26] JEITSCHKO W, NOWOTNY H. Die Kristallstruktur von Ti3SiC2-ein neuer Komplexcarbid-Typ[J]. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1967, 98:329-337.
[27] WOLFSGRUBER H, NOWOTNY H, BENESOVSKY F. Die Kristallstruktur von Ti3GeC2[J]. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1967, 98:2403-2405.
[28] JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Ti2AlN, eine stickstoffhaltige H-phase[J]. Monatshefte Fur Chemie, 1963, 94:1198-337.
[29] NOWOTNY V H. Strukturchemie einiger Verbindungen der übergangsmetalle mit den elementen C, Si, Ge, Sn[J]. Prog Solid State Chem, 1971, 5:27-70.
[30] PIETZKA M, SCHUSTER J. Summary of constitutional data on the aluminum-carbon-titanium system[J]. Journal of Phase Equilibria, 1994, 15:392-400.
[31] NICKL J J, SCHWEITZER K K, LUXENBERG P. Gasphasenabscheidung im system Ti-Si-C[J]. Journal of the Less Common Metals, 1972, 26:335-353.
[32] GOTO T, HIRAI T. Chemically vapor deposited Ti3SiC2[J]. Mater Res Bull, 1987, 22:1195-1201.
[33] LIS J, PAMPUCH R, PIEKARCZYK J, et al. New ceramics based on TI3SiC2[J]. Ceram Int, 1993, 19:219-222.
[34] LIS J, MIYAMOTO Y, PAMPUCH R, et al. Ti3SiC2-based materials prepared by HIP-SHS techniques[J]. Mater Lett, 1995, 22:163-168.
[35] MORGIEL J, LIS J, PAMPUCH R. Microstructure of Ti3SiC2-based ceramics[J]. Mater Lett, 1996, 27:85-89.
[36] ISEKI T, YANO T, CHUNG Y S. Wetting and properties of reaction products in active metal brazing of SiC[J]. J Ceram Soc Jpn, 1989, 97:710-714.
[37] BARSOUM M W, ZHEN T, KALIDINDI S R, et al. Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa[J]. Nat Mater, 2003, 2:107-111.
[38] ZHOU A G, BASU S, BARSOUM MW. Kinking nonlinear elasticity, damping and microyielding of hexagonal close-packed metals[J]. Acta Mater, 2008, 56:60-67.
[39] BARSOUM M W, YOO H I, POLUSHINA I K, et al. Electrical conductivity, thermopower, and hall effect of Ti3AlC2, Ti4AlN3, and Ti3SiC2[J]. Phys Rev B, 2000, 62:10194-10198.
[40] BARSOUM M W, ELRAGHY T, OGBUJI L. Oxidation of Ti3SiC2 in air[J]. J Electrochem Soc, 1997, 144:2508-2516.
[41] BARSOUM M W, BRODKIN D, EL-RAGHY T. Layered machinable ceramics for high temperature applications[J]. Scr Mater, 1997, 36:535-541.
[42] BARSOUM M W, YAROSCHUK G, TYAGI S. Fabrication and characterization of M2SnC (M=Ti, Zr, Hf and Nb)[J]. Scr Mater, 1997, 37:1583-1591.
[43] BARSOUM M W, ALI M, EL-RAGHY T. Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5[J]. Metall Mater Trans A, 2000, 31:1857-1865.
[44] EL-RAGHY T, CHAKRABORTY S, BARSOUM M W. Synthesis and characterization of Hf2PbC, Zr2PbC and M2SnC (M=Ti, Hf, Nb or Zr)[J]. J Eur Ceram Soc, 2000, 20:2619-2625.
[45] WANG X H, ZHOU Y C. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics:a review[J]. J Mater Sci Technol, 2010, 26:385-416.
[46] XU L D, ZHU D G, GRASSO S, et al. Effect of texture microstructure on tribological properties of tailored Ti3AlC2 ceramic[J]. Journal of Advanced Ceramics, 2017, 6:120-128.
[47] CAI L P, HUANG Z Y, HU W Q, et al. Fabrication, mechanical properties, and tribological behaviors of Ti2AlC and Ti2AlSn0.2C solid solutions[J]. Journal of Advanced Ceramics, 2017, 6:90-99.
[48] BARSOUM M W, SCHUSTER J C. Comment on "New ternary nitride in the Ti-Al-N system"[J]. J Am Ceram Soc, 1998, 81:785-786.
[49] BARSOUM M W, FARBER L, LEVIN I, et al. High-resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2 N2 revisited[J]. J Am Ceram Soc, 1999, 82:2545-2547.
[50] HOLM B, AHUJA R, LI S, et al. Theory of the ternary layered system Ti-Al-N[J]. J Appl Phys, 2002, 91:9874-9877.
[51] PALMQUIST J P, LI S, PERSSON P O A, et al. Mn+1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations[J]. Phys Rev B, 2004, 70:165401.
[52] HOGBERG H, EKLUND P, EMMERLICH J, et al. Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering[J]. J Mater Res, 2005, 20:779-782.
[53] LIN Z J, ZHUO M J, ZHOU Y C, et al. Structural characterization of a new layered-ternary Ta4AlC3 ceramic[J]. J Mater Res, 2006, 21:2587-2592.
[54] MANOUN B, SAXENA S K, EL-RAGHY T, et al. High-pressure X-ray diffraction study of Ta4AlC3[J]. Appl Phys Lett, 2006, 88:201902.
[55] EKLUND P, PALMQUIST J P, HOWING J, et al. Ta4AlC3:phase determination, polymorphism and deformation[J]. Acta Mater, 2007, 55:4723-4729.
[56] ETZKORN J, ADE M, HILLEBRECHT H. Ta3AlC2 and Ta4AlC3-single-crystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique[J]. Inorg Chem, 2007, 46:1410-1418.
[57] ETZKORN J, ADE M, HILLEBRECHT H. V2AlC, V4AlC3-x (x approximate to 0.31), and V12Al3C8:synthesis, crystal growth, structure, and superstructure[J]. Inorg Chem, 2007, 46:7646-7653.
[58] HU C F, LI F Z, ZHANG J, et al. Nb4AlC3:a new compound belonging to the MAX phases[J]. Scr Mater, 2007, 57:893-896.
[59] ZHOU Y C, MENG F L, ZHANG J. New MAX-phase compounds in the V-Cr-Al-C system[J]. J Am Ceram Soc, 2008, 91:1357-1360.
[60] ETZKORN J, ADE M, KOTZOTT D, et al. Ti2GaC, Ti4GaC3 and Cr2GaC-synthesis, crystal growth and structure analysis of Ga-containing MAX-phases Mn+1GaCn with M=Ti, Cr and n=1, 3[J]. J Solid State Chem, 2009, 182:995-1002.
[61] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J Phys-Condes Matter, 2002, 14:2717-2744.
[62] MEDVEDEVA N I, NOVIKOV D L, IVANOVSKY A L, et al. Electronic properties of Ti3SiC2-based solid solutions[J]. Phys Rev B, 1998, 58:16042-16050.
[63] WANG J Y, ZHOU Y C. Ab initio investigation of the electronic structure and bonding properties of the layered ternary compound Ti3SiC2 at high pressure[J]. J Phys-Condes Matter, 2003, 15:1983-1991.
[64] WANG J Y, ZHOU Y C. Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M=Ti, V, Nb, and Cr) ceramics[J]. Phys Rev B, 2004, 69:214111.
[65] SUN Z M, LI S, AHUJA R, et al. Calculated elastic properties of M2AlC (M=Ti, V, Cr, Nb and Ta)[J]. Solid State Commun, 2004, 129:589-592.
[66] WANG J Y, ZHOU Y C. Polymorphism of Ti3SiC2 ceramic:first-principles investigations[J]. Phys Rev B, 2004, 69:144108.
[67] LIAO T, WANG J Y, ZHOU Y C. Deformation modes and ideal strengths of ternary layered Ti2AlC and Ti2AlN from first-principles calculations[J]. Phys Rev B, 2006, 73:214109.
[68] MUSIC D, SUN Z M, VOEVODIN A A, et al. Electronic structure and shearing in nanolaminated ternary carbides[J]. Solid State Commun, 2006, 139:139-143.
[69] LIAO T, WANG J Y, ZHOU Y C. Superior mechanical properties of Nb2AsC to those of other layered ternary carbides:a first-principles study[J]. J Phys-Condes Matter, 2006, 18:L527-L533.
[70] FARBER L, LEVIN I, BARSOUM M W, et al. High-resolution transmission electron microscopy of some Tin+1AXn compounds (n=1, 2; A=Al or Si; X=C or N)[J]. J Appl Phys, 1999, 86:2540-2543.
[71] RAWN C J, BARSOUM M W, EL-RAGHY T, et al. Structure of Ti4AlN3-a layered Mn+1AXn nitride[J]. Mater Res Bull, 2000, 35:1785-1796.
[72] HE X D, BAI Y L, ZHU C C, et al. Polymorphism of newly discovered Ti4GaC3:a first-principles study[J]. Acta Mater, 2011, 59:5523-5533.
[73] BAI Y L, HE X D, WANG R G, et al. Effect of transition metal (M) and M-C slabs on equilibrium properties of Al-containing MAX carbides:An ab initio study[J]. Comput Mater Sci, 2014, 91:28-37.
[74] EKLUND P, BECKERS M, JANSSON U, et al. The Mn+1AXn phases:materials science and thin-film processing[J]. Thin Solid Films, 2010, 518:1851-1878.
[75] YU R, ZHAN Q, HE L L, et al. Polymorphism of Ti3SiC2[J]. J Mater Res, 2002, 17:948-950.
[76] YU R, ZHANG X F, HE L L, et al. Topology of charge density and elastic anisotropy of Ti3SiC2 polymorphs[J]. J Mater Res, 2005, 20:1180-1185.
[77] WANG Z W, ZHA C S, BARSOUM M W. Compressibility and pressure-induced phase transformation of Ti3GeC2[J]. Appl Phys Lett, 2004, 85:3453-3455.
[78] RAWN C J, PAYZANT E A, HUBBARD C R, et al. Structure of Ti3SiC2[J]. Materials Science Forum, 2000, 321/324:889-892.
[79] ONODERA A, HIRANO H, YUASA T, et al. Static compression of Ti3SiC2 to 61 GPa[J]. Appl Phys Lett, 1999, 74:3782-3784.
[80] JORDAN J L, SEKINE T, KOBAYASHI T, et al. High pressure behavior of titanium-silicon carbide (Ti3SiC2)[J]. J Appl Phys, 2003, 93:9639-9643.
[81] BAI Y L, HE X D, WANG R G, et al. High temperature physical and mechanical properties of large-scale Ti2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing[J]. J Eur Ceram Soc, 2013, 33:2435-2445.
[82] FARBER L, BARSOUM M W, ZAVALIANGOS A, et al. Dislocations and stacking faults in Ti3SiC2[J]. J Am Ceram Soc, 1998, 81:1677-1681.
[83] BARSOUM M W. Mechanical properties:ambient temperature[C]//MAX Phases (Properties of Machianable Ternary Carbides and Nitrides). Weinheim, Germany:John Wiley & Sons, 2013:307-361.
[84] 周玉. 陶瓷材料学[M]. 北京:科学出版社, 2004. ZHOU Y.Ceramic materials science[M].Beijing:Science Press, 2004.
[85] GILBERT C J, BLOYER D R, BARSOUM M W, et al. Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2[J]. Scr Mater, 2000, 42:761-767.
[86] LI S B, YU W B, ZHAI H X, et al. Mechanical properties of low temperature synthesized dense and fine-grained Cr2AlC ceramics[J]. J Eur Ceram Soc, 2011, 31:217-224.
[87] CHEN D, SHIRATO K, BARSOUM M W, et al. Cyclic fatigue-crack growth and fracture properties in Ti3SiC2 ceramics at elevated temperatures[J]. J Am Ceram Soc, 2001, 84:2914-2920.
[88] GANGULY A, ZHEN T, BARSOUM M W. Synthesis and mechanical properties of Ti3GeC2 and Ti3(Si<i>xGe1-x) C2(x=0.5, 0.75) solid solutions[J]. J Alloy Compd, 2004, 376:287-295.
[89] BARSOUM M, RADOVIC M.Mechanical properties of the MAX phase[J].Annual Review of Materials Research, 2011, 41:195-227.
[90] LAPAUW T, LAMBRINOU K, CABIOC'H T, et al. Synthesis of the new MAX phase Zr2AlC[J]. Journal of the European Ceramic Society, 2016, 36:1847-1853.
[91] HU C F, HE L F, LIU M Y, et al. In situ reaction synthesis and mechanical properties of V2AlC[J]. J Am Ceram Soc, 2008, 91:4029-4035.
[92] ZHANG W, TRAVITZKY N, HU C F, et al. Reactive hot pressing and properties of Nb2AlC[J]. J Am Ceram Soc, 2009, 92:2396-2399.
[93] HU C F, HE L F, ZHANG J, et al. Microstructure and properties of bulk Ta2AlC ceramic synthesized by an in situ reaction/hot pressing method[J]. J Eur Ceram Soc, 2008, 28:1679-1685.
[94] YING G B, HE X D, LI M W, et al. Synthesis and mechanical properties of high-purity Cr2AlC ceramic[J]. Mater Sci Eng A, 2011, 528:2635-2640.
[95] AMINI S, BARSOUM M W, EL-RAGHYY T. Synthesis and mechanical properties of fully dense Ti2SC[J]. J Am Ceram Soc, 2007, 90:3953-3958.
[96] WANG X H, ZHOU Y C. Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process[J]. Acta Mater, 2002, 50:3141-3149.
[97] HOSSEIN-ZADEH M, MIRZAEE O, MOHAMMADIAN-SEMNANI H. An investigation into the microstructure and mechanical properties of V4AlC3MAX phase prepared by spark plasma sintering[J]. Ceramics International, 2019, 45:7446-7457.
[98] HU C F, LI F Z, HE L F, et al. In situ reaction synthesis, electrical and thermal, and mechanical properties of Nb4AlC3[J]. J Am Ceram Soc, 2008, 91:2258-2263.
[99] HU C F, LIN Z J, HE L F, et al. Physical and mechanical properties of bulk Ta4AlC3 ceramic prepared by an in situ reaction synthesis/hot-pressing method[J]. J Am Ceram Soc, 2007, 90:2542-2548.
[100] WANG C, HAN H, ZHAO Y, et al. Elastic, mechanical, electronic, and defective properties of Zr-Al-C nanolaminates from first principles[J]. Journal of the American Ceramic Society, 2018, 101:756-772.
[101] HE L F, LIN Z J, WANG J Y, et al. Synthesis and characterization of bulk Zr2Al3C4 ceramic[J]. J Am Ceram Soc, 2007, 90:3687-3689.
[102] HE L F, ZHOU Y C, BAO Y W, et al. Synthesis, physical, and mechanical properties of bulk Zr3Al3C5ceramic[J]. J Am Ceram Soc, 2007, 90:1164-1170.
[103] ZHANG R B, CHEN G Q, HAN W B. Synthesis, mechanical and physical properties of bulk Zr2Al4C5 ceramic[J]. Mater Chem Phys, 2010, 119:261-265.
[104] XU L, SHI O, LIU C, et al. Synthesis, microstructure and properties of MoAlB ceramics[J]. Ceramics International, 2018, 44:13396-13401.
[105] BAI Y L, QI X X, HE X D, et al. Phase stability and weak metallic bonding within ternary-layered borides CrAlB, Cr2AlB2, Cr3AlB4, and Cr4AlB6[J]. J Am Ceram Soc, 2019, 102:3715-3727.
[106] 齐欣欣, 宋广平, 尹维龙, 等. 新型三元层状硼化物Cr4AlB4的物相稳定性和力学行为分析[J]. 无机材料学报, 2020, 35(1):53-60. QI X X, SONG G P, YIN W L, et al.Analysis on stability and mechanical property of newly-discovered ternary layered boride Cr4AlB4[J].Journal of Inorganic Materials, 2020, 35(1):53-60.
[107] BAI Y L, HE X D, LI Y B, et al. Rapid synthesis of bulk Ti2AlC by self-propagating high temperature combustion synthesis with a pseudo-hot isostatic pressing process[J]. J Mater Res, 2009, 24:2528-2535.
[108] 成来飞, 张立同, 梅辉. 陶瓷基复合材料强韧化与应用基础[M].北京:化学工业出版社, 2019. CHENG L F, ZHANG L T, MEI H.Strengthening and toughening of ceramic matrix composites and application basis[M].Beijing:Chemical Industry Press, 2019.
[109] ZHOU Y C, HE L F, LIN Z J, et al. Synthesis and structure-property relationships of a new family of layered carbides in Zr-Al(Si)-C and Hf-Al(Si)-C systems[J]. J Eur Ceram Soc, 2013, 33:2831-2865.
[110] 尤姝黎, 于志强, 杨振国. 硼化物陶瓷及其复合材料的研究进展[J]. 理化检验(物理分册), 2007, 43(1):27-31. YOU S L, YU Z Q, YANG Z G.Research progress of boride ceramics and their composite materials[J].Physical Testing and Chemical Analysis Part B, 2007, 43(1):27-31.
[111] 李福民, 唐国章. 钢铁材料表面硼化物覆层技术初探[J]. 河北理工学院学报, 2000(增刊1):133-137. LI F M, TANG G Z.Discussion on boride coating on the steel surface[J].Journal of Hebei Institute of Technology, 2000(Suppl 1):133-137.
[112] 吕春燕, 顾华志, 汪厚植, 等. ZrB2系陶瓷材料的研究进展[J]. 材料导报, 2003, 17:246-249. LU C Y, GU H Z, WANG H Z, et al.Progress in research on ZrB2-containing ceramics[J]. Materials Reports, 2003, 17:246-249.
[113] 邓世钧. 高性能陶瓷涂层技术[J]. 表面工程与再制造, 2003(6):4-5.
[114] 向军辉, 肖汉宁. TiB2材料的研究现状及其应用[J]. 陶瓷工程, 1996(4):40-44, 39. XIANG J H, XIAO H N.Research status and application of TiB2 material[J]. Ceramic Engineering, 1996(4):40-44, 39.
[115] LAMICHHANE T N, XIANG L, LIN Q, et al. Magnetic properties of single crystalline itinerant ferromagnet Fe2AlB2[J]. Physical Review Materials, 2018, 2:084408.
[116] KIM K, CHEN C, NISHIO-HAMANE D, et al. Topochemical synthesis of phase-pure Mo2AlB2 through staging mechanism[J]. Chemical Communications, 2019, 55:9295-9298.
[117] KOTA S, WANG W Z, LU J, et al. Magnetic properties of Cr2AlB2, Cr3AlB4, and CrB powders[J]. J Alloy Compd, 2018, 767:474-482.
[118] LU J, KOTA S, BARSOUM M W, et al. Atomic structure and lattice defects in nanolaminated ternary transition metal borides[J]. Materials Research Letters, 2017, 5(4):235-241.
[119] JEITSCHKO W. Die Kristallstruktur von MoAlB[J]. Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften, 1966, 97:1472-1476.
[120] CHABAN N F, KUZ'MA Y. Ternary systems Cr-Al-B and Mn-Al-B[J]. Inorg Mater, 1973, 9:1696-1698.
[121] ZHANG H M, DAI F Z, XIANG H M, et al. Crystal structure of Cr4AlB4:a new MAB phase compound discovered in Cr-Al-B system[J]. J Mater Sci Technol, 2019, 35:530-534.
[122] JUNG W, PETRY K. Ternäre boride des ruthemums mit aluminium und Zink[J]. Zeitschrift Fur kristallographie, 1988, 182(1/4):153-154.
[123] KADAS K, IUSAN D, HELLSVIK J, et al. AlM2B2 (M=Cr, Mn, Fe, Co, Ni):a group of nanolaminated materials[J]. Journal of Physics-Condensed Matter, 2017, 29(15):11.
[124] HALLA F, THURY W. über boride von molybdän und wolfram[J]. Zeitschrift für anorganische und allgemeine Chemie, 1942, 249:229-237.
[125] ELMASSALAMI M, OLIVEIRA D D, TAKEYA H. On the ferromagnetism of AlFe2B2[J]. J Magn Magn Mater, 2011, 323:2133-2136.
[126] DU Q, CHEN G, YANG W, et al. Magnetic properties of AlFe2B2 and CeMn2Si2 synthesized by melt spinning of stoichiometric compositions[J]. Japanese Journal of Applied Physics, 2015, 54:053003.
[127] XU L D, SHI O L, LIU C Y, et al. Synthesis, microstructure and properties of MoAlB ceramics[J]. Ceram Int, 2018, 44:13396-13401.
[128] LU X, LI S, ZHANG W, et al. Thermal shock behavior of a nanolaminated ternary boride:MoAlB[J]. Ceram Int, 2019, 45(7):9386-9389.
[129] WANG S, XU Y J, YU Z G, et al. Synthesis, microstructure and mechanical properties of a MoAlB ceramic prepared by spark plasma sintering from elemental powders[J]. Ceram Int, 2019, 45:23515-23521.
[130] BEI G P, van der ZWAAG S, KOTA S, et al. Ultra-high temperature ablation behavior of MoAlB ceramics under an oxyacetylene flame[J]. J Eur Ceram Soc, 2019, 39:2010-2017.
[131] LIU J, LI S B, YAO B X, et al. Rapid synthesis and characterization of a nanolaminated Fe2AlB2 compound[J]. J Alloy Compd, 2018, 766:488-497.
[132] KOTA S, CHEN Y X, WANG J Y, et al. Synthesis and characterization of the atomic laminate Mn2AlB2[J]. J Eur Ceram Soc, 2018, 38:5333-5340.
[133] SAMMIS C G, ASHBY M F. The failure of brittle porous solids under compressive stress states[J]. Acta Metallurgica, 1986, 34:511-526.
[134] LIU J, LI S B, YAO B X, et al. Thermal stability and thermal shock resistance of Fe2AlB2[J]. Ceram Int, 2018, 44:16035-16039.
[135] BAI Y L, SUN D D, LI N, et al. High-temperature mechanical properties and thermal shock behavior of ternary-layered MAB phases Fe2AlB2[J]. Int J Refract Met Hard Mat, 2019, 80:151-160.
[136] CHEN Y, KOTA S, BARSOUM M W, et al. Compressive deformation of MoAlB up to 1100℃[J]. J Alloy Compd, 2019, 774:1216-1222.
[137] 曹学强. 热障涂层新材料和新结构[M]. 北京:科学出版社, 2016. CAO X Q.Nevo materials and new structures of thermal barrier coatings[M].Beijng:Science Press, 2016.
[138] RADOVIC M, BARSOUM M W. MAX phases:bridging the gap between metals and ceramics[J]. American Ceramic Society Bulletin, 2013, 92:20-27.
[139] WARBURG E. Magnetische untersuchungen[J]. Annalen der Physik, 1881, 249:141-164.
[140] BAI Y L, QI X X, HE X D, et al. Experimental and DFT insights into elastic, magnetic, electrical, and thermodynamic properties of MAB-phase Fe2AlB2[J]. J Am Ceram Soc, 2020, 103:5837-5851.
[141] GUTFLEISCH O, WILLARD M A, BRUCK E, et al. Magnetic materials and devices for the 21st century:stronger, lighter, and more energy efficient[J]. Adv Mater, 2011, 23:821-842.
[142] CHIEN C L, UNRUH K M. Comparison of amorphous and crystalline FeB[J]. Phys Rev B, 1984, 29:207-211.
[143] MIRYASOV N Z, PARSANOV A P. Ferromagnetism of Mn-B alloys[J]. Izvest akad nauk S s s r ser fiz, 1959, 23.
[144] DU Q H, CHEN G F, YANG W Y, et al. Magnetic properties of AlFe2B2 and CeMn2Si2 synthesized by melt spinning of stoichiometric compositions[J]. Japanese Journal of Applied Physics, 2015, 54:5.
[145] BARUA R, LEJEUNE B T, JENSEN B A, et al. Enhanced room-temperature magnetocaloric effect and tunable magnetic response in Ga-and Ge-substituted AlFe2B2[J]. J Alloy Compd, 2019, 777:1030-1038.
[146] HIRT S, YUAN F, MOZHARIVSKYJ Y, et al. AlFe2-xCo<i>xB2 (x=0-0.30):TC tuning through cosubstitution for a promising magnetocaloric material realized by spark plasma sintering[J]. Inorg Chem, 2016, 55:9677-9684.
[147] LEVIN E M, JENSEN B A, BARUA R, et al. Effects of Al content and annealing on the phases formation, lattice parameters, and magnetization of Al<i>xFe2B2 (x=1.0, 1.1, 1.2) alloys[J]. Physical Review Materials, 2018, 2(3):034403.
[148] ZHANG X, LEJEUNE B T, BARUA R, et al. Estimating the in-operando stabilities of AlFe2B2-based compounds for magnetic refrigeration[J]. Journal of Alloys and Compounds, 2020, 823:153693.
[149] PECHARSKY V K, GSCHNEIDNER K A. Giant magnetocaloric effect in Gd5(Si2Ge2)[J]. Phys Rev Lett, 1997, 78:4494-4497.
[150] TEGUS O, BRUCK E, BUSCHOW K H J, et al. Transition-metal-based magnetic refrigerants for room-temperature applications[J]. Nature, 2002, 415:150-152.
[151] WANG J L, CAMPBELL S J, ZENG R, et al. Re-entrant ferromagnet PrMn2Ge0.8Si1.2:magnetocaloric effect[J]. J Appl Phys, 2009, 105:3.
[152] SOKOL M, NATU V, KOTA S, et al. On the chemical diversity of the MAX phases[J]. Trends Chem, 2019, 1:210-223.
[153] BENAMOR A, KOTA S, CHIKER N, et al. Friction and wear properties of MoAlB against Al2O3 and 100Cr6 steel counterparts[J]. J Eur Ceram Soc, 2019, 39:868-877.
[1] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[2] 董慧民, 闫丽, 安学锋, 钱黄海, 苏正涛, 益小苏. ESTM-fabric/3266复合材料低速冲击响应及冲击后压缩行为研究[J]. 材料工程, 2020, 48(1): 41-47.
[3] 马宏毅, 安学锋, 益小苏. “离位”增韧复合材料准静态压入损伤特性研究[J]. 材料工程, 2012, 0(9): 88-91,98.
[4] 房卫萍, 陈沦, 史耀武, 虞文军, 毛智勇, 唐振云. 损伤容限钛合金的研究进展及应用现状[J]. 材料工程, 2010, 0(9): 95-98.
[5] 张纪奎, 程小全, 郦正能. 基于损伤容限设计的机体金属材料力学性能综合表征与评价[J]. 材料工程, 2010, 0(7): 49-53.
[6] 袁鸿, 余槐, 王金雪, 王新南, 朱知寿, 李晓红. TC4-DT钛合金电子束焊接接头的损伤容限性能[J]. 材料工程, 2007, 0(8): 17-19.
[7] 王瑞刚, 潘伟, 蒋蒙宁, 罗永明, 陈健, 孙瑞峰. 层状结构陶瓷材料结构和应用[J]. 材料工程, 2003, 0(1): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn