Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (11): 125-135    DOI: 10.11868/j.issn.1001-4381.2020.001177
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
陶瓷颗粒添加对热喷涂不锈钢涂层耐蚀性的影响
唐全1,2, 张锁德2,*(), 徐民1,*(), 王建强2
1 东北大学 材料科学与工程学院, 沈阳 110819
2 中国科学院金属研究所 沈阳材料科学国家研究中心, 沈阳 110016
Effect of ceramic particles on corrosion resistance of thermal sprayed stainless steel coating
Quan TANG1,2, Suo-de ZHANG2,*(), Min XU1,*(), Jian-qiang WANG2
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(33487 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用超音速火焰喷涂(HVAF)方法成功制备出不同种类及粒度陶瓷颗粒复合的不锈钢涂层,系统研究陶瓷颗粒的种类及粒度对复合涂层的硬度、孔隙率与耐蚀性能的影响;通过扫描电子显微镜、全自动硬度计、Image Pro Plus软件以及电化学工作站等分析测试技术对不锈钢/陶瓷颗粒复合涂层的微观结构、硬度及腐蚀行为进行系统表征与分析。结果表明:粗粒径棕刚玉(Al2O3)复合的不锈钢涂层的孔隙率低(0.7863%)、硬度高(637HV0.1)且耐蚀性能优异,其自腐蚀电位为-454.14 mV、自腐蚀电流密度为22.208 mA·cm-2;细粒径碳化硅(SiC)复合的不锈钢涂层具有较高的硬度(600HV0.1)及较好的耐蚀性能,其自腐蚀电位为-463.68 mV、自腐蚀电流密度为23.738 mA·cm-2

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐全
张锁德
徐民
王建强
关键词 不锈钢涂层超音速火焰喷涂陶瓷颗粒耐蚀性    
Abstract

The ceramic particles of different types and sizes reinforced stainless steel composite coatings were successfully prepared by high-velocity air fuel (HVAF) spraying technique. The effects of the types and sizes of ceramic particles on the hardness, porosity and corrosion resistance of the composite coating were systematically studied. The microstructure, hardness and corrosion behavior of stainless steel/ceramic particle composite coating were systematically characterized and analyzed by scanning electron microscope, automatic hardness tester, Image Pro Plus software and electrochemical workstation. The results show that the larger brown alumina (Al2O3) particles reinforced stainless steel composite coating has low porosity (0.7863%), high hardness (637HV0.1) and excellent corrosion resistance, and its self-corrosion potential is -454.14 mV and self-corrosion current density is 22.208 mA·cm-2. The fine silicon carbide (SiC) particles reinforced stainless steel composite coating also has a relatively high hardness (600HV0.1) and good corrosion resistance, and its self-corrosion potential is -463.68 mV and self-corrosion current density is 23.738 mA·cm-2.

Key wordsstainless steel coating    high-velocity air fuel (HVAF) spraying    ceramic particle    corrosion resistance
收稿日期: 2020-12-21      出版日期: 2021-11-12
中图分类号:  TG174.442  
基金资助:国家自然科学基金项目(51701214);国家自然科学基金联合基金项目(U1908219)
通讯作者: 张锁德,徐民     E-mail: sdzhang@imr.ac.cn;xum@smm.neu.edu.cn
作者简介: 徐民(1967-), 男, 副教授, 博士, 主要从事非晶和纳米晶磁性材料及微磁学模拟研究, 联系地址: 辽宁省沈阳市和平区文化路三巷11号东北大学材料科学与工程学院(110819), E-mail: xum@smm.neu.edu.cn
张锁德(1982-), 男, 副研究员, 博士, 研究方向为非晶态合金及涂层腐蚀行为与机理, 联系地址: 辽宁省沈阳市沈河区文化路72号中国科学院金属研究所(110016), E-mail: sdzhang@imr.ac.cn
引用本文:   
唐全, 张锁德, 徐民, 王建强. 陶瓷颗粒添加对热喷涂不锈钢涂层耐蚀性的影响[J]. 材料工程, 2021, 49(11): 125-135.
Quan TANG, Suo-de ZHANG, Min XU, Jian-qiang WANG. Effect of ceramic particles on corrosion resistance of thermal sprayed stainless steel coating. Journal of Materials Engineering, 2021, 49(11): 125-135.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001177      或      http://jme.biam.ac.cn/CN/Y2021/V49/I11/125
Fe Cr Mn Mo C Ni Si
Bal 26 0.5 4 1.5 15 1.1
Table 1  不锈钢粉末的化学成分 (质量分数/%)
Sample Type of ceramics Volume ratio of mixture Ceramic particle size/mesh Powder size/μm
A1 Al2O3 1∶1 220 25-53
A2 Al2O3 1∶1 600 25-53
C1 SiC 1∶1 220 25-53
C2 SiC 1∶1 600 25-53
Table 2  不锈钢粉末与陶瓷颗粒配比工艺
Parameter Value
Powder feeding rate/(r·min-1) 5-8
Propane pressure/MPa 0.517-0.586
Propane flow rate/(m3·min-1) 0.125-0.145
Nitrogen flow rate/(m3·min-1) 0.025-0.035
Hydrogen flow rate/(m3·min-1) 0.035-0.045
Air pressure/MPa 0.586-0.655
Spray gun moving speed/(mm·s-1) 1000
Spray distance/mm 160-240
Stepping/mm 1.5
Table 3  HVAF喷涂工艺参数
Fig.1  不锈钢粉末的SEM形貌及陶瓷颗粒的激光共聚焦显微镜照片
(a)不锈钢粉末;(b)220目氧化铝;(c)600目氧化铝;(d)220目碳化硅;(e)600目碳化硅
Fig.2  涂层的X射线衍射图谱
Fig.3  不锈钢复合涂层的截面SEM形貌
(a)A1涂层;(b)A2涂层;(c)C1涂层;(d)C2涂层
Fig.4  不锈钢复合涂层的表面SEM形貌
(a)A1涂层;(b)A2涂层;(c)C1涂层;(d)C2涂层
Fig.5  A2涂层的截面形貌及选框区域元素的分布
Fig.6  C2涂层的截面形貌及选框区域元素的分布
Sample Average porosity/%
A1 0.7863
A2 1.0374
C1 0.8977
C2 1.1924
Table 4  不锈钢复合涂层孔隙率
Fig.7  不锈钢复合涂层及基体的维氏硬度
Fig.8  涂层硬度测试压痕形貌对比
(a)无缺陷区域;(b)缺陷区域
Fig.9  不锈钢复合涂层在3.5%NaCl溶液中的极化曲线
Sample Ecorr/mV Icorr/(mA·cm-2)
A1 -454.14 22.208
A2 -492.72 39.774
C1 -410.80 36.756
C2 -463.68 23.738
Table 5  不锈钢复合涂层在3.5%NaCl溶液中的电化学参数
Fig.10  不锈钢复合涂层的Nyquist图
Fig.11  不锈钢复合涂层的Bode图
Fig.12  腐蚀后复合涂层表面SEM形貌
(a), (b)大粒径碳化硅;(c), (d)小粒径碳化硅
Fig.13  涂层在NaCl溶液中腐蚀演化示意图
(a)C1涂层腐蚀前;(b)C1涂层腐蚀后;(c)C2涂层腐蚀前;(d)C2涂层腐蚀后
1 孙博, 程江波, 刘奇, 等. 高速电弧喷涂FePSiBNb纳米结构的涂层结构及电化学行为[J]. 材料导报, 2018, 32 (12): 1978- 1982.
doi: 10.11896/j.issn.1005-023X.2018.12.007
1 SUN B , CHENG J B , LIU Q , et al. Structure and electrochemical behaviors of FePSiBNb nanostructured coatings prepared by high-speed arc spraying[J]. Materials Review, 2018, 32 (12): 1978- 1982.
doi: 10.11896/j.issn.1005-023X.2018.12.007
2 程江波, 梁秀兵, 徐滨士, 等. 铁基非晶纳米晶涂层组织及磨损性能研究[J]. 材料工程, 2009, (5): 17- 21.
doi: 10.3969/j.issn.1001-4381.2009.05.005
2 CHENG J B , LIANG X B , XU B S , et al. Microstructure and wear properties of Fe-based amorphous/nanocrystalline coatings[J]. Journal of Materials Engineering, 2009, (5): 17- 21.
doi: 10.3969/j.issn.1001-4381.2009.05.005
3 裴晨蕊, 孙德恩, ZHANGS, 等. 硬质陶瓷涂层增韧及其评估研究进展[J]. 中国表面工程, 2016, 29 (2): 1- 9.
3 PEI C R , SUN D E , ZHANG S , et al. Toughening and toughness evaluation of hard ceramic coatings: a critical review[J]. China Surface Engineering, 2016, 29 (2): 1- 9.
4 VEPREK S , VEPREK-HEIJMAN M J G . Industrial applications of superhard nanocomposite coatings[J]. Surface & Coatings Technology, 2008, 202 (21): 5063- 5073.
5 KUMAR A , NAYAK S K , SARKAR K , et al. Investigation of nano- and micro-scale structural evolution and resulting corrosion resistance in plasma sprayed Fe-based (Fe-Cr-B-C-P) amorphous coatings[J]. Surface & Coatings Technology, 2020, 397, 126058.
6 CHENG I C , KELLY J P , NOVITSKAYA E , et al. Mechanical properties of an Fe-based SAM2×5-630 metallic glass matrix composite with tungsten particle additions[J]. Advanced Engineering Materials, 2018, 20 (9): 1800023.
doi: 10.1002/adem.201800023
7 GUO H , WU N C , ZHANG Y L , et al. Influence of coating thickness on the impact damage mode in Fe-based amorphous coatings[J]. Surface & Coatings Technology, 2020, 390, 125650.
8 HUANG F , KANG J J , YUE W , et al. Corrosion behavior of FeCrMoCBY amorphous coating fabricated by high-velocity air fuel spraying[J]. Journal of Thermal Spray Technology, 2019, 28 (4): 842- 850.
doi: 10.1007/s11666-019-00843-7
9 梁秀兵, 程江波, 冯源, 等. 铁基非晶涂层的研究进展[J]. 材料工程, 2017, 45 (9): 1- 12.
9 LIANG X B , CHENG J B , FENG Y , et al. Research progress on Fe-based amorphous coatings[J]. Journal of Materials Engineering, 2017, 45 (9): 1- 12.
10 YOON S , KIM J , KIM B D , et al. Tribological behavior of B4C reinforced Fe-base bulk metallic glass composite coating[J]. Surface & Coatings Technology, 2010, 205 (7): 1962- 1968.
11 YUGESWARAN S , KOBAYASHI A , SURESH K , et al. Characterization of gas tunnel type plasma sprayed TiN reinforced Fe-based metallic glass coatings[J]. Journal of Alloys and Compounds, 2013, 551, 168- 175.
doi: 10.1016/j.jallcom.2012.09.111
12 ZHOU H , ZHANG C , WANG W , et al. Microstructure and mechanical properties of Fe-based amorphous composite coatings reinforced by stainless steel powders[J]. Journal of Materials Science & Technology, 2015, 31 (1): 43- 47.
13 YASIR M , ZHANG C , WANG W , et al. Wear behaviors of Fe-based amorphous composite coatings reinforced by Al2O3 particles in air and in NaCl solution[J]. Materials & Design, 2015, 88, 207- 213.
14 CUI C , HOU W A . Properties of Fe-based amorphous alloy coatings with Al2O3-13%TiO2 deposited by plasma spraying[J]. Rare Metal Materials and Engineering, 2014, 43 (11): 2576- 2579.
doi: 10.1016/S1875-5372(15)60004-2
15 HUANG B , ZHANG C , ZHANG G , et al. Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: a review[J]. Surface & Coatings Technology, 2019, 377, 124896.
16 YASIR M , ZHANG C , WANG W , et al. Tribocorrosion behavior of Fe-based amorphous composite coating reinforced by Al2O3 in 3.5% NaCl solution[J]. Journal of Thermal Spray Technology, 2016, 25 (8): 1554- 1560.
doi: 10.1007/s11666-016-0457-x
17 CHU Z H , YANG Y , CHEN X G , et al. Characterization and tribology performance of Fe-based metallic glassy composite coatings fabricated by gas multiple-tunnel plasma spraying[J]. Surface & Coatings Technology, 2016, 292, 44- 48.
18 YASIR M , ZHANG C , WANG W , et al. Enhancement of impact resistance of Fe-based amorphous coating by Al2O3 dispersion[J]. Materials Letters, 2016, 171, 112- 116.
doi: 10.1016/j.matlet.2016.02.060
19 孙世成. 高氮无镍奥氏体不锈钢的微观结构和力学性能研究[D]. 长春: 吉林大学, 2014.
19 SUN S C. Microstructure and mechanical properties of high nitrogen nickel-free austenitic stainless steel[D]. Changchun: Jilin University, 2014.
20 ZHANG S D , WU J , QI W B , et al. Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel[J]. Corrosion Science, 2016, 110, 57- 70.
doi: 10.1016/j.corsci.2016.04.021
21 BURSTEIN G T , LIU C , SOUTO R M , et al. Origins of pitting corrosion[J]. Corrosion Engineering, Science and Technology, 2004, 39 (1): 25- 30.
doi: 10.1179/147842204225016859
22 ZHANG S D , ZHANG W L , WANG S G , et al. Characterisation of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behaviour[J]. Corrosion Science, 2015, 93, 211- 221.
doi: 10.1016/j.corsci.2015.01.022
[1] 陈高红, 张月, 李应权, 刘建华, 于美. 缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响[J]. 材料工程, 2022, 50(2): 153-163.
[2] 孙辉, 武会宾, 张游游, 袁睿, 张志慧. Cr含量对CrMnFeNi系高熵合金腐蚀行为的影响[J]. 材料工程, 2022, 50(11): 127-134.
[3] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[4] 蒋诗语, 袁媛, 陈涛, 谷达冲. 元素固溶与析出对镁合金耐蚀性影响的研究进展[J]. 材料工程, 2021, 49(12): 40-47.
[5] 孙文昕, 樊丽君, 郑钟印, 邹玉红, 田景睿, 曾荣昌. 医用金属表面含锶涂层耐蚀性和生物相容性研究进展[J]. 材料工程, 2021, 49(12): 72-82.
[6] 陈畅, 张如意, 史思涛, 马奋天. 真空退火对原位Al2O3/Fe-Cr-Ni增强复合材料性能的影响[J]. 材料工程, 2021, 49(1): 89-94.
[7] 杜春燕, 赵晖, 赵海涛. 纯钛表面载银微弧氧化陶瓷膜的制备及性能[J]. 材料工程, 2020, 48(8): 157-162.
[8] 宿辉, 刘辉, 张春波. AZ91D镁合金表面环境友好直接化学镀镍工艺研究[J]. 材料工程, 2020, 48(8): 163-168.
[9] 李伟, 李争显, 刘林涛, 耿娟娟, 相远帆, 王凯凯. 多孔金属流场双极板研究进展[J]. 材料工程, 2020, 48(5): 31-40.
[10] 徐小宁, 何保军, 张国鹏, 刘忠侠, 张国涛. KH560处理对Al-Al2O3-硅烷复合涂层耐蚀性的影响[J]. 材料工程, 2020, 48(5): 151-159.
[11] 柯鹏, 蔡飞, 胡凯, 张世宏, 王硕煜, 朱广宏, 倪振航, 胡小红. 黏结层及真空退火对NiCr-30% Cr3C2金属-陶瓷喷涂层性能的影响[J]. 材料工程, 2019, 47(7): 144-150.
[12] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[13] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[14] 鲍亚运, 纪秀林, 姬翠翠, 赵建华, 程江波, 徐霖. 激光熔覆FeCrNiCoCuAlx高熵合金涂层的耐腐蚀与抗冲蚀性能[J]. 材料工程, 2019, 47(11): 141-147.
[15] 杨胶溪, 贾无名, 王欣, 文强, 张晏玮, 柏广海, 王荣山. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响[J]. 材料工程, 2018, 46(8): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn