Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (1): 117-124    DOI: 10.11868/j.issn.1001-4381.2020.001180
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能
王牧1, 曾夏茂2, 苗霞1, 魏浩光1, 周仕明1,*(), 冯岸超3,*()
1 中石化石油工程技术研究院固井所, 北京 100101
2 中石化西南石油工程有限公司固井分公司, 成都 610000
3 北京化工大学 材料科学与工程学院 先进弹性体材料研究中心, 北京 100029
Preparation and property of epoxy composites reinforced by three-dimensional graphene-pyrrole aerogel
Mu WANG1, Xiamao ZENG2, Xia MIAO1, Haoguang WEI1, Shiming ZHOU1,*(), Anchao FENG3,*()
1 Cementing Institute, Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China
2 Cementing Branch, Sinopec Southwest Petroleum Engineering Co., Ltd., Chengdu 610000, China
3 Center of Advanced Elastomer Materials, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(14198 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过三步法及真空辅助浸渍的方法制备了石墨烯-吡咯气凝胶/环氧树脂复合材料, 该复合材料质轻并且内部的多孔石墨烯-吡咯气凝胶具有较为均一的三维结构, 在与环氧树脂复合之后, 这种三维结构也能很好地保留。石墨烯的三维网络为电子传导提供了快速通道, 使材料的导电性能显著提高, 仅有0.23%(质量分数)填料含量的石墨烯-吡咯气凝胶/环氧树脂复合材料(1G-1%P, 1300 ℃) 的电导率可以达到67.1 S/m。石墨烯-吡咯气凝胶/环氧树脂复合材料(1G-1% P, 1300 ℃)的电磁屏蔽性能在8~12 GHz可以达到33 dB, 更重要的是石墨烯-吡咯气凝胶骨架还起到了增强环氧树脂基体力学性能的作用, 弯曲强度和弯曲模量与环氧树脂基体相比分别提高了60.93%和25.98%(10G-5%P, 180 ℃), 石墨烯-吡咯气凝胶的三维结构可以有效地改善材料整体的电磁屏蔽性能以及力学性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王牧
曾夏茂
苗霞
魏浩光
周仕明
冯岸超
关键词 石墨烯气凝胶环氧树脂电磁屏蔽性能结构与性能关系    
Abstract

Lightweight and cellular-structured graphene-pyrrole (G-P) aerogels /epoxy composites were prepared basing on the three-step fabrication process which involving infiltration of epoxy resin into G-P aerogels under vacuum atmosphere. The microstructure of G-P aerogels possesses uniform three-dimensional structure, which can also be preserved well in epoxy composite. The three-dimensional interconnected graphene network serves as fast channels for charge carriers. The conductive property of the composite is improved significantly, 67.1 S/m with only 0.23%(mass fraction) filler content (1G-1%P, 1300 ℃). The electromagnetic interference shielding effectiveness (EMI SE) of the composite (1G-1%P, 1300 ℃) can reach 33 dB in the frequency range of 8-12 GHz. More importantly, the G-P aerogel network also enhances the mechanical properties of epoxy matrix. Flexural strength and flexural modulus are increased by 60.93% and 25.98% respectively (10G-5%P, 180 ℃). Implication of the results suggests that the three-dimensional structure is an effective method for preparing composites with both excellent EMI SE and mechanical properties.

Key wordsgraphene aerogel    epoxy    electromagnetic interference shielding effectiveness    structure-property relationship
收稿日期: 2020-12-21      出版日期: 2022-01-19
中图分类号:  TB332  
通讯作者: 周仕明,冯岸超     E-mail: zhous.sripe@sinopec.com;fengac@mail.buct.edu.cn
作者简介: 冯岸超(1989—),男,副教授,博士,研究方向:刺激响应性聚合物基复合材料,联系地址:北京市朝阳区北三环东路15号北京化工大学材料科学与工程学院(100029),E-mail: fengac@mail.buct.edu.cn
周仕明(1972—),男,教授级高工,博士,研究方向:石油工程固井技术,联系地址: 北京市昌平区高教园石化科技中心(102206),E-mail: zhous.sripe@sinopec.com
引用本文:   
王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
Mu WANG, Xiamao ZENG, Xia MIAO, Haoguang WEI, Shiming ZHOU, Anchao FENG. Preparation and property of epoxy composites reinforced by three-dimensional graphene-pyrrole aerogel. Journal of Materials Engineering, 2022, 50(1): 117-124.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001180      或      http://jme.biam.ac.cn/CN/Y2022/V50/I1/117
Fig.1  不同温度热处理后石墨烯-吡咯气凝胶的扫描电镜图
(a)180 ℃;(b)500 ℃;(c)900 ℃;(d)1300 ℃
Fig.2  不同温度热处理后石墨烯-吡咯气凝胶的红外光谱(a),拉曼光谱(b),XRD谱图(c)和XPS谱图(d)
Fig.3  不同温度热处理后的石墨烯-吡咯气凝胶的热失重图
Fig.4  不同温度热处理后的石墨烯-吡咯气凝胶/环氧树脂复合材料的扫描电镜图
(a)180 ℃;(b)500 ℃;(c)900 ℃;(d)1300 ℃
Fig.5  不同温度热处理后的石墨烯-吡咯气凝胶/环氧树脂复合材料的透射电镜图
(a)180 ℃; (b)500 ℃;(c)900 ℃;(d)1300 ℃
Sample Electrical conductivity/(S·m-1) Aerogel density/(mg·cm-3) Filler content/%
Epoxy/1G-1%P 180 0.17 4.75 0.39
Epoxy/1G-1%P 500 0.81 3.48 0.29
Epoxy/1G-1%P 900 19.8 3.32 0.27
Epoxy/1G-1%P 1300 67.1 2.77 0.23
Epoxy/1G-1%P 1300(powder) 0.02 2.77 0.23
Epoxy/1G-5%P 180 0.19 8.90 0.74
Epoxy/1G-5%P 1300 87.7 3.73 0.31
Epoxy/5G-5%P 180 0.65 16.10 1.33
Epoxy/5G-5%P 1300 136 6.55 0.54
Epoxy/10G-5%P 180 1.06 23.65 1.95
Epoxy/10G-5%P 1300 346 9.02 0.75
Table 1  不同石墨烯-吡咯气凝胶/环氧树脂复合材料的电导率、密度和填料含量
Fig.6  石墨烯-吡咯气凝胶/环氧树脂复合材料的电磁屏蔽性能
(a)不同热处理温度(1G-1%P); (b)不同厚度(1G-1%P,1300 ℃); (c)石墨烯-吡咯气凝胶粉末(1G-1%P); (d)不同石墨烯和吡咯含量(1G-1%P, 1G-5%P,5G-5%P,10G-5%P,1300 ℃)
Fig.7  未经热处理(a)和1300 ℃热处理后(b)的石墨烯-吡咯气凝胶/环氧树脂复合材料的弯曲强度
Sample Flexural strength/MPa Flexural modulus/GPa
Non-carbonated Epoxy 88.16 2.61
Epoxy/1G-1%P 90.43 2.96
Epoxy /1G-5%P 102.78 3.13
Epoxy/5G-5%P 125.08 3.36
Epoxy/10G-5%P 141.88 3.28
Carbonated Epoxy/1G-1%P 70.80 2.27
Epoxy/1G-5%P 72.46 2.51
Epoxy/5G-5%P 82.80 2.90
Epoxy/10G-5%P 91.63 2.96
Table 2  未经热处理和1300 ℃热处理后的石墨烯-吡咯气凝胶/环氧树脂复合材料的弯曲强度与弯曲模量
1 GU Y , XU Y , WANG Y . Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage[J]. ACS Applied Materials & Interfaces, 2013, 5 (3): 801- 806.
2 JU S A , KIM K , KIM J H , et al. Graphene-wrapped hybrid spheres of electrical conductivity[J]. ACS Applied Materials & Interfaces, 2011, 3 (8): 2904- 2911.
3 DUAN X , XIAO S , WANG L , et al. Ionic liquid-modulated preparation of hexagonal tungsten trioxide mesocrystals for lithium-ion batteries[J]. Nanoscale, 2015, 7 (6): 2230- 2234.
doi: 10.1039/C4NR05717A
4 AN F , LI X , MIN P , et al. Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities[J]. ACS Applied Materials & Interfaces, 2018, 10 (20): 17383- 17392.
5 LIU T , HUANG M , LI X , et al. Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids[J]. Carbon, 2016, 100, 456- 464.
doi: 10.1016/j.carbon.2016.01.038
6 SASIKALA S P , POULIN P , AYMONIER C . Advances in subcritical hydro-/solvothermal processing of graphene materials[J]. Advanced Materials, 2017, 29 (22): 1605473.
doi: 10.1002/adma.201605473
7 WU Y , YI N , HUANG L , et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio[J]. Nature Communications, 2015, 6 (1): 1- 9.
8 YAO B , CHEN J , HUANG L , et al. Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures[J]. Advanced Materials, 2016, 28 (8): 1623- 1629.
doi: 10.1002/adma.201504594
9 CONG H P , REN X C , WANG P , et al. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process[J]. ACS Nano, 2012, 6 (3): 2693- 2703.
doi: 10.1021/nn300082k
10 WU C , HUANG X , WU X , et al. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators[J]. Advanced Materials, 2013, 25 (39): 5658- 5662.
doi: 10.1002/adma.201302406
11 SUN H , XU Z , GAO C . Aerogels: multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25 (18): 2632- 2632.
doi: 10.1002/adma.201370116
12 CHEN L , DU R , ZHU J , et al. Three-dimensional nitrogen-doped graphene nanoribbons aerogel as a highly efficient catalyst for the oxygen reduction reaction[J]. Small, 2015, 11 (12): 1423- 1429.
doi: 10.1002/smll.201402472
13 QIAN Y , ISMAIL I M , STEIN A . Ultralight, high-surface-area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol[J]. Carbon, 2014, 68, 221- 231.
doi: 10.1016/j.carbon.2013.10.082
14 CAO Y , YU H , TAN J , et al. Nitrogen-, phosphorous and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane[J]. Carbon, 2013, 57, 433- 442.
doi: 10.1016/j.carbon.2013.02.016
15 王昱, 李津, 吴茂琪, 等. 氮掺杂还原氧化石墨烯/四氧化三钴双功能催化剂的制备及表征[J]. 无机化学学报, 2020, 36 (5): 36- 44.
15 WANG Y , LI J , WU M Q , et al. Preparation and characterization of nitrogen-doped reduced graphene oxide/cobalt tetraoxide bifunctional catalyst[J]. Chinese Journal of Inorganic Chemistry, 2020, 36 (5): 36- 44.
16 ZHOU S , LIU N , WANG Z , et al. Nitrogen-doped graphene on transition metal substrates as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions[J]. ACS Applied Materials & Interfaces, 2017, 9 (27): 22578- 22587.
17 HAAG D , KUNG H H . Metal free graphene based catalysts: a review[J]. Topics in Catalysis, 2014, 57 (6/9): 762- 773.
18 唐晓宁, 邵姣婧. 掺氮石墨烯-铜基催化剂的制备及催化性能[J]. 无机化学学报, 2019, 35 (10): 1767- 1772.
18 TANG X N , SHAO J J . Preparation and catalytic properties of nitrogen doped graphene/copper-based catalyst[J]. Chinese Journal of Inorganic Chemistry, 2019, 35 (10): 1767- 1772.
19 XIN G , YAO T , SUN H , et al. Highly thermally conductive and mechanically strong graphene fibers[J]. Science, 2015, 349, 1083- 1087.
doi: 10.1126/science.aaa6502
20 CHEN H , GUO F , LIU Y , et al. A defect-free principle for advanced graphene cathode of aluminum-ion battery[J]. Advanced Materials, 2017, 29 (12): 1605958.
doi: 10.1002/adma.201605958
[1] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[2] 张代军, 陈俊, 包建文, 钟翔屿, 陈祥宝. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料Ⅱ型层间断裂韧性的影响[J]. 材料工程, 2021, 49(6): 178-184.
[3] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
[4] 周松, 贾耀雄, 许良, 边钰博, 涂宜鸣. 湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响[J]. 材料工程, 2021, 49(10): 138-143.
[5] 王钰登, 郑亚萍, 宋珊, 姚东东. SiO2无溶剂纳米流体粒径和含量对环氧树脂力学和热性能的影响[J]. 材料工程, 2021, 49(10): 156-163.
[6] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[7] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[8] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[9] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[10] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[11] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 石墨烯改性碳纤维树脂基复合材料的制备和性能评价[J]. 材料工程, 2020, 48(10): 82-87.
[12] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[13] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[14] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[15] 林广鸿, 尹敬峰, 黄鸿, 黄伟滨, 蔡慕华, 向洪平, 刘晓暄. 混杂光固化3D打印树脂固化动力学性能[J]. 材料工程, 2019, 47(12): 143-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn