Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (8): 143-152    DOI: 10.11868/j.issn.1001-4381.2020.001187
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
MgCo2O4海胆状电极材料的制备及其电化学性能
倪航, 刘万能, 柯尊洁, 田玉(), 朱小龙, 郑广
江汉大学 光电化学材料与器件教育部重点实验室,武汉 430056
Preparation and electrochemical properties of urchin-like MgCo2O4 electrode material
Hang NI, Wanneng LIU, Zunjie KE, Yu TIAN(), Xiaolong ZHU, Guang ZHENG
Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan 430056, China
全文: PDF(1194 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用水热法制得一种尖晶石型MgCo2O4海胆状电极材料,并通过X射线衍射(XRD)、X射线光电子能谱分析(XPS)、扫描电镜(SEM)、透射电镜(TEM)以及电化学工作站对产物进行了表征和电化学性能测试。通过改变所制备材料的水热反应时间,制备出团簇结构、分布较均匀以及密集度较高的MgCo2O4海胆状形貌。结果表明,当水热反应时间为6 h时所获得的MgCo2O4电极材料结构较为完善、尺寸较为均匀、电化学性能较为优异,而且在电流密度为1 mA/cm2情况下,面积比电容高达6.75 F/cm2。另外,对该MgCo2O4海胆状材料在20 mA/cm2的电流密度下循环1000周次后,面积比电容保持为原来的88.4%,表现出良好的循环性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
倪航
刘万能
柯尊洁
田玉
朱小龙
郑广
关键词 水热法海胆状MgCo2O4面积比电容循环稳定性    
Abstract

A spinel type of urchin-like MgCo2O4 electrode material was obtained by facile hydrothermal method. The products were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and electrochemical performance of the products was tested by electrochemical workstation measurements. By changing the hydrothermal reaction time, cluster structure, uniform distribution, together with high density of urchin-like MgCo2O4 material can be synthesized. The results show that as the hydrothermal reaction time reaches 6 h, the structure of MgCo2O4 electrode material is relatively perfect, its size is more uniform, and the electrochemical performance is better. Furthermore, at a current density of 1 mA/cm2, area specific capacitance reaches up to 6.75 F/cm2. Additionally, the specific capacitance is maintained at 88.4% after 1000 cycles at the current density of 20 mA/cm2, showing good cycle performance.

Key wordshydrothermal route    urchin-like MgCo2O4    area specific capacitance    cycle stability
收稿日期: 2020-12-23      出版日期: 2022-08-16
中图分类号:  TB383  
  TG115.21+5.3  
基金资助:江汉大学校级科研项目(2021yb021)
通讯作者: 田玉     E-mail: ytian@jhun.edu.cn
作者简介: 田玉(1979—),女,副教授,博士,研究方向为半导体材料与器件,联系地址:湖北省武汉市沌口经济技术开发区江汉大学J05楼(430056),E-mail: ytian@jhun.edu.cn
引用本文:   
倪航, 刘万能, 柯尊洁, 田玉, 朱小龙, 郑广. MgCo2O4海胆状电极材料的制备及其电化学性能[J]. 材料工程, 2022, 50(8): 143-152.
Hang NI, Wanneng LIU, Zunjie KE, Yu TIAN, Xiaolong ZHU, Guang ZHENG. Preparation and electrochemical properties of urchin-like MgCo2O4 electrode material. Journal of Materials Engineering, 2022, 50(8): 143-152.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001187      或      http://jme.biam.ac.cn/CN/Y2022/V50/I8/143
Fig.1  海胆状MgCo2O4合成过程示意图
Fig.2  不同时间下合成的MgCo2O4晶体的XRD图谱(a)和MgCo2O4单位晶胞(b)
Fig.3  MCO-6样品的XPS谱图
(a)全谱图;(b)Mg1s;(c)Co2p;(d)O1s
Fig.4  MCO-6表面形貌图
(a)~(c)纳米针SEM图;(d)部分海胆状结构的TEM图, 插图为SAED图; (e)单根纳米针的TEM图;(f)HRTEM图
Fig.5  不同反应时间合成的海胆状MgCo2O4SEM图
(a)~(c)MCO-5;(d)~(f)MCO-8
Fig.6  MgCo2O4海胆状材料的形貌随反应时间变化示意图
Fig.7  MgCo2O4海胆状电极材料的电化学性能曲线
(a)所有样品在扫描速率5 mV/s下的CV曲线;(b)所有样品在1 mA/cm2下的GCD曲线;(c)MCO-6在不同扫描速率下的CV曲线;(d)MCO-6在不同电流密度下的GCD曲线;(e)MCO-6的倍率性能图;(f)所有样品的EIS谱;(g)MCO-6循环性能图;(h)MCO-6循环前后EIS谱
Material C/(F·cm-2) Δt/s Stability Reference
MgCo2O4 nanobrush 0.85@2.50 mA/cm2 ≈175.00 [15]
Co3O4@NiCo2O4 4.35@1.00 mA/cm2 1740.00 95.8%@6000 cycles@10 mA/cm2 [23]
ZnCo2O4@Ni(OH)2 2.80@2.00 mA/cm2 ≈700.00 72.0%@2000 cycles@10 mA/cm2 [30]
ZnCo2O4@Ni(OH)2 4.60@2.00 mA/cm2 ≈1265.00 70.0%@2200 cycles@20 mA/cm2 [31]
ZnCo2O4 nanowire array 0.97@3.00 mA/cm2 ≈162.50 94.0%@5000 cycles@12 mA/cm2 [32]
NiCo2O4@Ni-S 1.87@8.00 mA/cm2 ≈163.60 71.0%@3000 cycles@40 mA/cm2 [33]
MCO-6 6.75@1.00 mA/cm2 3030.00 88.4%@1000 cycles@20 mA/cm2 This work
Table 1  MCO-6样品与早期文献报道钴基材料的电化学性能数据对比
Fig.8  MCO-6可能的电子传输示意图
(a)长在泡沫镍上的海胆状MgCo2O4结构;(b)浸入电解液中长在泡沫镍上的海胆状MgCo2O4结构;(c)电解液中海胆状MgCo2O4结构与OH-接触方式;(d)海胆状MgCo2O4材料可能的电子运输路径
1 李伟飞, 樊晓懿, 赵家昌, 等. 超级电容器锰酸钴电极材料的制备及性能[J]. 上海工程技术大学学报, 2012, 26 (2): 116- 119.
doi: 10.3969/j.issn.1009-444X.2012.02.005
1 LI W F , FAN X Y , ZHAO J C , et al. Preparation and properties of CoMn2O4 electrode material for supercapacitor[J]. Journal of Shanghai University of Engineering Science, 2012, 26 (2): 116- 119.
doi: 10.3969/j.issn.1009-444X.2012.02.005
2 张杰, 许家胜, 王琳, 等. 钴酸锰/泡沫镍复合电极材料的制备及其电化学性能的研究[J]. 电子元件与材料, 2016, 35 (1): 78- 81.
2 ZHANG J , XU J S , WANG L , et al. Fabrication of MnCo2O4/nickel foam electrodes and the investigation of their electrochemical properties[J]. Electronic Components and Materials, 2016, 35 (1): 78- 81.
3 MILLR J R , SIMON P . Materials science-electrochemical capacitors for energy management[J]. Science, 2008, 321 (5889): 651- 652.
doi: 10.1126/science.1158736
4 任小英, 胡中爱, 胡海雄, 等. 钴酸锰纳米花的合成及其超级电容器行为[J]. 化工新型材料, 2015, 43 (4): 122- 125.
4 REN X Y , HU Z A , HU H X , et al. Sythesis and supercapacitor behavior of MnCo2O4 nanoflowers[J]. New Chemical Materials, 2015, 43 (4): 122- 125.
5 关翔锋, 罗培辉. 尖晶石钴酸镁纳米材料的结构表征及其超级电容性能研究[J]. 电子显微学报, 2018, 37 (3): 213- 218.
doi: 10.3969/j.issn.1000-6281.2018.03.002
5 GUAN X F , LUO P H . Structural characterization of spinel magnesium cobaltate nanomaterials and their research of supercapacitance properties[J]. Journal of Chinese Electro Microscopy Society, 2018, 37 (3): 213- 218.
doi: 10.3969/j.issn.1000-6281.2018.03.002
6 GUJAR T P , SHINDE V R , LOKHANDE C D , et al. Spray deposited amorphous RuO2 for an effective use in electrochemistry supercapacitor[J]. Electrochemistry Communications, 2007, 9 (3): 504- 510.
doi: 10.1016/j.elecom.2006.10.017
7 XU K , ZHU X , SHE P , et al. Macroscopic porous MnO2 aerogels for supercapacitor electrodes[J]. Inorganic Chemistry Frontiers, 2016, 3 (8): 1043- 1047.
doi: 10.1039/C6QI00110F
8 GAO R , ZHANG Q , SOYEKWO F , et al. Novel amorphous nickel sulfide @CoS double-shelled polyhedralnanocages for supercapacitor electrode materials with susuperior electrochemical proporties[J]. Electrochimica Acta, 2017, 237, 94- 101.
doi: 10.1016/j.electacta.2017.03.214
9 WANG M M , MA W L , XUE J Y , et al. Oxidation effect of ammonium persulfate on the supercapacitive properties of β-Ni(OH)2 nanosheets[J]. Applications and Materials Science, 2016, 213 (1): 215- 220.
10 杨一明, 于维平. 掺杂Co(OH)2对超级电容器正极材料Ni(OH)2性能的影响[J]. 材料热处理学报, 2011, 32 (5): 11- 16.
10 YANG Y M , YU W P . Effect of cobalt hydroxide addition on performance of nickel hydroxide as a positive material for supercapacitor[J]. Transactions of Materials and Heat Treatment, 2011, 32 (5): 11- 16.
11 CUI L F , HUANG L H , JI M , et al. High-performance MgCo2O4 nanocone arrays grown on three-dimensional nickel foams: preparation and application as binder-free electrode for pseudo-supercapacitor[J]. Journal of Power Sources, 2016, 333, 118- 124.
doi: 10.1016/j.jpowsour.2016.09.159
12 SILAMBARASAN M , RAMESH P S , GEETHA D , et al. A report on 1D MgCo2O4 with enhanced structural, morphological and electrochemical properties[J]. Journal of Materials Science: Materials in Electronics, 2017, 28 (9): 6880- 6888.
doi: 10.1007/s10854-017-6388-6
13 GAO H W , WANG X H , WANG G H , et al. Urchin-like MgCo2O4@ppy core-shell composite grown on Ni foam for a high-performance all-solid-state asymmetric supercapacitor[J]. Nanoscale, 2018, 10 (21): 10190- 10202.
doi: 10.1039/C8NR02311E
14 KIM M , YOO J , KIM J . Fast and reversible redox reaction of MgCo2O4 nanoneedles on porous β-polytype silicon carbide as high performance electrodes for electrochemical supercapacitors[J]. Journal of Alloys and Compounds, 2017, 710, 528- 538.
doi: 10.1016/j.jallcom.2017.03.287
15 WU X M , MENG L , WANG Q G , et al. A high performance asymmetric supercapacitor based on carbon fiber coated with MgCo2O4 nanobrush[J]. Material Letters, 2017, 206, 71- 74.
doi: 10.1016/j.matlet.2017.06.118
16 TENG Y F , LI Y D , ZHANG Z Q , et al. One-step controllable synthesis of mesoporous MgCo2O4 nanosheet arrays with ethanol on nickel foam as an advanced electrode material for high performance suercapacitors[J]. Chemistry-A European Journal, 2018, 24 (56): 14982- 14988.
doi: 10.1002/chem.201802274
17 WANG Y , SUN J L , LI S S , et al. Hydrothermal synthesis of flower-like MgCo2O4 porous microstructures as high-performance electrode material for asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2020, 824, 153939.
doi: 10.1016/j.jallcom.2020.153939
18 TAVAKOILF F , REZAELB B , JAHROMI ART , et al. Facile synthesis of yolk-shelled CuCo2Se4 microspheres as a novel electrode material for supercapacitor application[J]. ACS Applied Materials & Interfaces, 2020, 12 (1): 418- 427.
19 CHEN Y Y , LIU T , ZHANG L Y , et al. NiCo2S4 anchored 3D nitrogen-doped graphene framework as electrode material with enhanced performance for asymmtric supercapacitor[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (13): 11157- 11165.
20 WANG Y F , WANG H T , YANG S Y , et al. Hierarchical NiCo2S4@nickel-cobalt layered double hydroxide nanotube arrays on metallic cotton yarns for flexible supercapacitors[J]. ACS Applied Material & Interfaces, 2019, 11 (33): 30384- 30390.
21 ZHUO Y S , CHEN L , JIAO Y T , et al. Controllable fabrication of ZnCo2O4 ultra-thin curved sheets on Ni foam for high-performance asymmetric supercapacitor[J]. Electrochemical Acta, 2019, 299, 388- 394.
doi: 10.1016/j.electacta.2018.12.186
22 VIJAYAKUMAR S , NAGAMUTHU S , RYU K S . In-situ preparation of MgCo2O4 nanosheets on Ni-foam as a binder-free electrode for high performance hybrid supercapacitors[J]. Dalton Transactions, 2018, 47 (19): 6722- 6728.
doi: 10.1039/C8DT00591E
23 WU X , HAN Z C , ZHENG X , et al. Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties[J]. Nano Energy, 2017, 31, 410- 417.
doi: 10.1016/j.nanoen.2016.11.035
24 KRISHNAN S G , HARILAL M , MISNON I I , et al. Effect of processing parameters on the charge storage properties of MgCo2O4 electrodes[J]. Ceramics International, 2017, 43 (15): 12270- 12279.
doi: 10.1016/j.ceramint.2017.06.089
25 CORNEILE J S , HE J W , GOODMAN D W . XPS characterization of ultra-thin MgO films on a Mo(100) surface[J]. Surface Science, 1994, 306 (3): 269- 278.
doi: 10.1016/0039-6028(94)90071-X
26 TENG Y F , YU D Y , LI Y D , et al. Facile synthesis of hierarchical MgCo2O4@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors[J]. Journal of the Electrochemical Society, 2020, 167 (2): 020510.
doi: 10.1149/1945-7111/ab63c2
27 GUAN X F , LUO P H , LI X Y , et al. Magnesium cobaltate nanowires@magnanese dioxide nanoflakes core-shell arrays on graphene-decorated nickel foam for high-performance supercapacitors[J]. International Journal of Electrochemical Science, 2018, 13 (5): 5016- 5030.
28 ZHANG J , CHENG P , LI M , et al. Flower-like nickel-cobalt binary hydroxides with high specific capacitance: tuning the composition and asymmetric capacitor application[J]. Journal of Electroanalytical Chemistry, 2015, 743, 38- 45.
29 张伟, 刘开宇, 张莹, 等. MnO2超级电容器充放电过程研究[J]. 化学通报, 2007, 3, 217- 221.
29 ZHANG W , LIU K Y , ZHANG Y , et al. Studies of charge-discharge process in MnO2 supercapacitor[J]. Chemical Communications, 2007, 3, 217- 221.
30 CHUO H X , YANG Q , ZHANG N , et al. Rationally designed hierarchical ZnCo2O4/Ni(OH)2nanostructures for high-performance pseudocapacitor electrodes[J]. Journal of Materials Chemistry: A, 2014, 2 (48): 20462- 20469.
31 PAN Y , GAO H , ZHANG M Y , et al. Three-dimensional porous ZnCo2O4 sheet array coated with Ni(OH)2 for high-performance asymmetric supercapacitor[J]. Journal of Colloid and Interface Science, 2017, 497, 50- 56.
32 WANG S W , PU J , TONG Y , et al. ZnCo2O4 nanowire arrays grown on nickel foam for high-performance pseudocapacitor[J]. Journal of Materials Chemistry: A, 2014, 2 (15): 5434- 5440.
33 CHU Q G , WANG W , WANG X F , et al. Hierarchical NiCo2O4@nickel-sulfide nanoplate arrays for high performance supercapacitors[J]. Journal of Power Sources, 2015, 276, 19- 25.
[1] 宋永智, 毕松, 侯根良, 李浩, 赵彦凯, 刘朝辉. MnO2纳米棒的吸波性能及其超构表面设计[J]. 材料工程, 2022, 50(7): 110-118.
[2] 施琦, 丁龙, 龙红明, 王毅璠, 春铁军. 纳米形貌对Ce-V催化剂降解氯苯活性影响[J]. 材料工程, 2021, 49(8): 162-168.
[3] 谌建平, 张旭, 林东宝, 潘海波, 沈水发. 纳米花/棒SnO2的水热法制备及其气敏性[J]. 材料工程, 2021, 49(6): 164-169.
[4] 朱雪洁, 钟诗江, 杨晓霞, 张学习, 钱明芳, 耿林. NiTi基形状记忆合金弹热效应及其应用研究进展[J]. 材料工程, 2021, 49(3): 1-13.
[5] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[6] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[7] 焦华, 赵康, 石蕊, 马利宁, 卞铁荣, 汤玉斐. 羟基磷灰石纳米棒的水热制备及其晶体生长机理研究[J]. 材料工程, 2020, 48(1): 136-143.
[8] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[9] 刘琳, 李莹, 鄂涛, 杨姝宜, 姜志刚, 许丽岩, 张天琪. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8): 97-102.
[10] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
[11] 武美荣, 魏智强, 武晓娟, 杨华, 姜金龙. Zn1-xMnxS稀磁半导体的合成与光学性能[J]. 材料工程, 2017, 45(7): 54-59.
[12] 齐美丽, 肖桂勇, 吕宇鹏. 氨基酸对水热合成羟基磷灰石纤维形貌的影响[J]. 材料工程, 2017, 45(5): 46-51.
[13] 邓城, 漆小鹏, 李倩, 尹从岭, 杨辉. 沉淀法与水热法合成载银羟基磷灰石及其抗菌性能[J]. 材料工程, 2017, 45(4): 113-120.
[14] 刘唱白, 刘丽, 刘星熠. Al2O3掺杂ZnO微米花对丙酮超高灵敏度和优异选择性[J]. 材料工程, 2017, 45(2): 12-16.
[15] 刘阳龙, 郑玉婴, 曹宁宁, 王翔. 水热法合成铁掺杂的硫化镉及光催化性能[J]. 材料工程, 2017, 45(10): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn