A spinel type of urchin-like MgCo2O4 electrode material was obtained by facile hydrothermal method. The products were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and electrochemical performance of the products was tested by electrochemical workstation measurements. By changing the hydrothermal reaction time, cluster structure, uniform distribution, together with high density of urchin-like MgCo2O4 material can be synthesized. The results show that as the hydrothermal reaction time reaches 6 h, the structure of MgCo2O4 electrode material is relatively perfect, its size is more uniform, and the electrochemical performance is better. Furthermore, at a current density of 1 mA/cm2, area specific capacitance reaches up to 6.75 F/cm2. Additionally, the specific capacitance is maintained at 88.4% after 1000 cycles at the current density of 20 mA/cm2, showing good cycle performance.
LI W F , FAN X Y , ZHAO J C , et al. Preparation and properties of CoMn2O4 electrode material for supercapacitor[J]. Journal of Shanghai University of Engineering Science, 2012, 26 (2): 116- 119.
doi: 10.3969/j.issn.1009-444X.2012.02.005
ZHANG J , XU J S , WANG L , et al. Fabrication of MnCo2O4/nickel foam electrodes and the investigation of their electrochemical properties[J]. Electronic Components and Materials, 2016, 35 (1): 78- 81.
3
MILLR J R , SIMON P . Materials science-electrochemical capacitors for energy management[J]. Science, 2008, 321 (5889): 651- 652.
doi: 10.1126/science.1158736
GUAN X F , LUO P H . Structural characterization of spinel magnesium cobaltate nanomaterials and their research of supercapacitance properties[J]. Journal of Chinese Electro Microscopy Society, 2018, 37 (3): 213- 218.
doi: 10.3969/j.issn.1000-6281.2018.03.002
6
GUJAR T P , SHINDE V R , LOKHANDE C D , et al. Spray deposited amorphous RuO2 for an effective use in electrochemistry supercapacitor[J]. Electrochemistry Communications, 2007, 9 (3): 504- 510.
doi: 10.1016/j.elecom.2006.10.017
7
XU K , ZHU X , SHE P , et al. Macroscopic porous MnO2 aerogels for supercapacitor electrodes[J]. Inorganic Chemistry Frontiers, 2016, 3 (8): 1043- 1047.
doi: 10.1039/C6QI00110F
8
GAO R , ZHANG Q , SOYEKWO F , et al. Novel amorphous nickel sulfide @CoS double-shelled polyhedralnanocages for supercapacitor electrode materials with susuperior electrochemical proporties[J]. Electrochimica Acta, 2017, 237, 94- 101.
doi: 10.1016/j.electacta.2017.03.214
9
WANG M M , MA W L , XUE J Y , et al. Oxidation effect of ammonium persulfate on the supercapacitive properties of β-Ni(OH)2 nanosheets[J]. Applications and Materials Science, 2016, 213 (1): 215- 220.
YANG Y M , YU W P . Effect of cobalt hydroxide addition on performance of nickel hydroxide as a positive material for supercapacitor[J]. Transactions of Materials and Heat Treatment, 2011, 32 (5): 11- 16.
11
CUI L F , HUANG L H , JI M , et al. High-performance MgCo2O4 nanocone arrays grown on three-dimensional nickel foams: preparation and application as binder-free electrode for pseudo-supercapacitor[J]. Journal of Power Sources, 2016, 333, 118- 124.
doi: 10.1016/j.jpowsour.2016.09.159
12
SILAMBARASAN M , RAMESH P S , GEETHA D , et al. A report on 1D MgCo2O4 with enhanced structural, morphological and electrochemical properties[J]. Journal of Materials Science: Materials in Electronics, 2017, 28 (9): 6880- 6888.
doi: 10.1007/s10854-017-6388-6
13
GAO H W , WANG X H , WANG G H , et al. Urchin-like MgCo2O4@ppy core-shell composite grown on Ni foam for a high-performance all-solid-state asymmetric supercapacitor[J]. Nanoscale, 2018, 10 (21): 10190- 10202.
doi: 10.1039/C8NR02311E
14
KIM M , YOO J , KIM J . Fast and reversible redox reaction of MgCo2O4 nanoneedles on porous β-polytype silicon carbide as high performance electrodes for electrochemical supercapacitors[J]. Journal of Alloys and Compounds, 2017, 710, 528- 538.
doi: 10.1016/j.jallcom.2017.03.287
15
WU X M , MENG L , WANG Q G , et al. A high performance asymmetric supercapacitor based on carbon fiber coated with MgCo2O4 nanobrush[J]. Material Letters, 2017, 206, 71- 74.
doi: 10.1016/j.matlet.2017.06.118
16
TENG Y F , LI Y D , ZHANG Z Q , et al. One-step controllable synthesis of mesoporous MgCo2O4 nanosheet arrays with ethanol on nickel foam as an advanced electrode material for high performance suercapacitors[J]. Chemistry-A European Journal, 2018, 24 (56): 14982- 14988.
doi: 10.1002/chem.201802274
17
WANG Y , SUN J L , LI S S , et al. Hydrothermal synthesis of flower-like MgCo2O4 porous microstructures as high-performance electrode material for asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2020, 824, 153939.
doi: 10.1016/j.jallcom.2020.153939
18
TAVAKOILF F , REZAELB B , JAHROMI ART , et al. Facile synthesis of yolk-shelled CuCo2Se4 microspheres as a novel electrode material for supercapacitor application[J]. ACS Applied Materials & Interfaces, 2020, 12 (1): 418- 427.
19
CHEN Y Y , LIU T , ZHANG L Y , et al. NiCo2S4 anchored 3D nitrogen-doped graphene framework as electrode material with enhanced performance for asymmtric supercapacitor[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (13): 11157- 11165.
20
WANG Y F , WANG H T , YANG S Y , et al. Hierarchical NiCo2S4@nickel-cobalt layered double hydroxide nanotube arrays on metallic cotton yarns for flexible supercapacitors[J]. ACS Applied Material & Interfaces, 2019, 11 (33): 30384- 30390.
21
ZHUO Y S , CHEN L , JIAO Y T , et al. Controllable fabrication of ZnCo2O4 ultra-thin curved sheets on Ni foam for high-performance asymmetric supercapacitor[J]. Electrochemical Acta, 2019, 299, 388- 394.
doi: 10.1016/j.electacta.2018.12.186
22
VIJAYAKUMAR S , NAGAMUTHU S , RYU K S . In-situ preparation of MgCo2O4 nanosheets on Ni-foam as a binder-free electrode for high performance hybrid supercapacitors[J]. Dalton Transactions, 2018, 47 (19): 6722- 6728.
doi: 10.1039/C8DT00591E
23
WU X , HAN Z C , ZHENG X , et al. Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties[J]. Nano Energy, 2017, 31, 410- 417.
doi: 10.1016/j.nanoen.2016.11.035
24
KRISHNAN S G , HARILAL M , MISNON I I , et al. Effect of processing parameters on the charge storage properties of MgCo2O4 electrodes[J]. Ceramics International, 2017, 43 (15): 12270- 12279.
doi: 10.1016/j.ceramint.2017.06.089
25
CORNEILE J S , HE J W , GOODMAN D W . XPS characterization of ultra-thin MgO films on a Mo(100) surface[J]. Surface Science, 1994, 306 (3): 269- 278.
doi: 10.1016/0039-6028(94)90071-X
26
TENG Y F , YU D Y , LI Y D , et al. Facile synthesis of hierarchical MgCo2O4@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors[J]. Journal of the Electrochemical Society, 2020, 167 (2): 020510.
doi: 10.1149/1945-7111/ab63c2
27
GUAN X F , LUO P H , LI X Y , et al. Magnesium cobaltate nanowires@magnanese dioxide nanoflakes core-shell arrays on graphene-decorated nickel foam for high-performance supercapacitors[J]. International Journal of Electrochemical Science, 2018, 13 (5): 5016- 5030.
28
ZHANG J , CHENG P , LI M , et al. Flower-like nickel-cobalt binary hydroxides with high specific capacitance: tuning the composition and asymmetric capacitor application[J]. Journal of Electroanalytical Chemistry, 2015, 743, 38- 45.
ZHANG W , LIU K Y , ZHANG Y , et al. Studies of charge-discharge process in MnO2 supercapacitor[J]. Chemical Communications, 2007, 3, 217- 221.
30
CHUO H X , YANG Q , ZHANG N , et al. Rationally designed hierarchical ZnCo2O4/Ni(OH)2nanostructures for high-performance pseudocapacitor electrodes[J]. Journal of Materials Chemistry: A, 2014, 2 (48): 20462- 20469.
31
PAN Y , GAO H , ZHANG M Y , et al. Three-dimensional porous ZnCo2O4 sheet array coated with Ni(OH)2 for high-performance asymmetric supercapacitor[J]. Journal of Colloid and Interface Science, 2017, 497, 50- 56.
32
WANG S W , PU J , TONG Y , et al. ZnCo2O4 nanowire arrays grown on nickel foam for high-performance pseudocapacitor[J]. Journal of Materials Chemistry: A, 2014, 2 (15): 5434- 5440.
33
CHU Q G , WANG W , WANG X F , et al. Hierarchical NiCo2O4@nickel-sulfide nanoplate arrays for high performance supercapacitors[J]. Journal of Power Sources, 2015, 276, 19- 25.