1 College of Mechanics and Materials, Hohai University, Nanjing 211100, China 2 College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China 3 CCCC Tunnel Engineering Company Limited, Beijing 100102, China
Extra-coarse-grained WC-Co cemented carbides are focused by researchers due to the high wear resistance and toughness, whereas the densification and WC grain tailoring are key factors for obtaining excellent performance. Extra-coarse-grained WC-10Co cemented carbides with an average grain size of 8.3-8.8 μm were prepared by a mild-ball-milling and vacuum sintering processes with ultra-fine WC powder obtained by mild-ball-milling method.The effects of sintering time on density, WC grain and mechanical properties were studied. The results show that the relative density first increases and then decreases with sintering time increasing from 30 min to 120 min.Ultra-fine pores also increase by the oxidation and accumulation of Co on the surface, and abnormal grains are formed by the aggregation of some WC grains.Therefore, the elimination of pores is hindered.Furthermore, the average grain size of WC firstly increases and then decreases due to orderly dissolution-precipitation of ultra-fine WC and fragmented fine WC, and finally WC grains are formed with wide distribution.As sintering holding time increases to 60 min, the partial spherical WC grain with curved surface is transformed into performance friendly hexagonal prism grain with rounded edge through faceted steps growth mechanism. Here, the bending strength and impact toughness reach the maximum of 1733 MPa and 28 kJ·m-2, respectively.Furthermore, the primary defects are difficult to be completely eliminated in some grains during sintering.With longer sintering holding time, the increased multiple defects result in the deterioration of properties.
Fig.4 不同烧结保温时间时超粗晶WC-10Co硬质合金的金相形貌 (a)30 min;(b)60 min;(c)90 min;(d)120 min
Fig.5 烧结保温时间对WC晶粒P的影响
Fig.6 不同烧结保温时间时超粗晶WC-10Co硬质合金的WC晶粒形貌 (a)30 min;(b)60 min;(c)120 min
Fig.7 烧结保温时间对硬度、抗弯强度和冲击韧性的影响
Fig.8 烧结过程中WC晶粒的生长演化示意图
1
KE Z , ZHENG Y , ZHANG G , et al. Microstructure and mechanical properties of dual-grain structured WC-Co cemented carbides[J]. Ceramics International, 2019, 45 (17): 21528- 21533.
doi: 10.1016/j.ceramint.2019.07.146
2
KE Z , ZHENG Y , ZHANG G , et al. Fabrication of dual-grain structure WC-Co cemented carbide by in-situ carbothermal reduction of WO3 and subsequent liquid sintering[J]. Ceramics International, 2020, 46 (8): 12767- 12772.
doi: 10.1016/j.ceramint.2020.02.045
3
SUN Y , SU W , ANG H , et al. Effects of WC particle size on sintering behavior and mechanical properties of coarse grained WC-8Co cemented carbides fabricated by unmilled composite powders[J]. Ceramics International, 2015, 41 (10): 14482- 14491.
doi: 10.1016/j.ceramint.2015.07.086
4
KONYASHIN I , SCHÄFER F , COOPER R , et al. Novel ultra-coarse hardmetal grades with reinforced binder for mining and construction[J]. International Journal of Refractory Metals and Hard Materials, 2005, 23 (4/6): 225- 232.
5
HU H , LIU X , HOU C , et al. How hard metal becomes soft: crystallographic analysis on the mechanical behavior of ultra-coarse cemented carbide[J]. Acta Crystallographica B, 2019, 75 (6): 1014- 1023.
doi: 10.1107/S2052520619013118
SUN D P , XIA B H . Development of extra coarse-grained cemented carbide for rock drilling[J]. Rock Drilling Machinery & Pneumatic Tools, 2009, (4): 41- 46.
NIE H B . The preparation, preparation mechanism and properties of extra coarse-grained WC-Co hard metals[J]. China Tungsten Industry, 2016, 31 (4): 51- 57.
doi: 10.3969/j.issn.1009-0622.2016.04.010
8
GUO L , XIAO L R , ZHAO X J , et al. Preparation of WC/Co composite powders by electroless plating[J]. Ceramics International, 2017, 43 (5): 4076- 4082.
doi: 10.1016/j.ceramint.2016.11.220
9
ADORJAN C , BOCK A , MYLLYMÄKI S , et al. WC/Co-compo-site powders via hydrothermal reduction of Co3O4-suspensions[J]. International Journal of Refractory Metals and Hard Materials, 2008, 26 (6): 569- 574.
doi: 10.1016/j.ijrmhm.2008.01.004
ZHANG J L , LIU X M , SONG X Y , et al. Influence of nano and submicron composite powder additives on grain growth of ultra-coarse cemented carbides and its mechanism[J]. Rare Metal Materials and Engineering, 2019, 48 (2): 552- 558.
11
HE R , LI B , OU P , et al. Effects of ultrafine WC on the densification behavior and microstructural evolution of coarse-grained WC-5Co cemented carbides[J]. Ceramics International, 2020, 46 (8): 12852- 12860.
doi: 10.1016/j.ceramint.2020.01.113
12
LIU C , LIN N , HE Y , et al. The effects of micron WC contents on the microstructure and mechanical properties of ultrafine WC-(micron WC-Co) cemented carbides[J]. Journal of Alloys and Compounds, 2014, 594, 76- 81.
doi: 10.1016/j.jallcom.2014.01.090
LIU B , MU Z Y , TANG Z J , et al. Study on morphology transformation of WC grain in ultrafine cemented carbide during sintering[J]. Cemented Carbide, 2016, 33 (6): 373- 380.
LONG J Z . Effects of sintering temperature and time on WC morphology of WC-24%Co cemented carbide[J]. Cemented Carbide, 2017, 34 (6): 370- 377.
15
DELANOË A , LAY S . Evolution of the WC grain shape in WC-Co alloys during sintering: effect of C content[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27 (1): 140- 148.
doi: 10.1016/j.ijrmhm.2008.06.001
16
KIM S , HAN S H , PARK J K , et al. Variation of WC grain shape with carbon content in the WC-Co alloys during liquid-phase sintering[J]. Scripta Materialia, 2003, 48 (5): 635- 639.
doi: 10.1016/S1359-6462(02)00464-5
17
SHATOV A V , PONOMAREV S S , FIRSTOV S A . Fracture of WC-Ni cemented carbides with different shape of WC crystals[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26 (2): 68- 76.
18
SHATOV A V , FIRSTOV S A , SHATOVA I V . The shape of WC crystals in cemented carbides[J]. Materials Science and Engineering A, 1998, 242 (1/2): 7- 14.
19
LEI C , MA Y , LIU W , et al. Preparation and properties of WC-10%Co cemented carbides with flatter shape of WC grains[J]. Chinese Journal of Rare Metals, 2017, 41 (4): 337- 342.
20
ZHANG X , ZHOU J , LIN N , et al. Effects of Ni addition and cyclic sintering on microstructure and mechanical properties of coarse grained WC-10Co cemented carbides[J]. International Jour-nal of Refractory Metals and Hard Materials, 2016, 57, 64- 69.
doi: 10.1016/j.ijrmhm.2016.02.008
21
DUSZOVÁ A , HALGAŠ R , BL'ANDA M , et al. Nanoindentation of WC-Co hardmetals[J]. Journal of the European Ceramic Society, 2013, 33 (12): 2227- 2232.
doi: 10.1016/j.jeurceramsoc.2012.12.018
22
CSANÁDI T , BL'ANDA M , CHINH N Q , et al. Orientation-dependent hardness and nanoindentation-induced deformation mecha-nisms of WC crystals[J]. Acta Materialia, 2015, 83, 397- 407.
doi: 10.1016/j.actamat.2014.09.048
23
SU W , SUN Y , WANG H , et al. Preparation and sintering of WC-Co composite powders for coarse grained WC-8Co hardme-tals[J]. International Journal of Refractory Metals and Hard Materials, 2014, 45, 80- 85.
doi: 10.1016/j.ijrmhm.2014.04.004
24
HERBER R P , SCHUBERT W D , LUX B . Hardmetals with "roun-ded" WC grains[J]. International Journal of Refractory Metals and Hard Materials, 2006, 24 (5): 360- 364.
doi: 10.1016/j.ijrmhm.2005.11.014
25
LIU J , DAI Q , CHEN J , et al. The two dimensional microstructure characterization of cemented carbides with an automatic image analysis process[J]. Ceramics International, 2017, 43 (17): 14865- 14872.
doi: 10.1016/j.ceramint.2017.08.002
LIU Q , CHEN J , YANG M C . Effect of vacuum sintering tempe-rature and holding time on microstructure and properties of WC-6%Ni[J]. Cemented Carbide, 2017, 34 (6): 393- 397.
27
CHRISTENSEN M , WAHNSTROM G , LAY S , et al. Morpho-logy of WC grains in WC-Co alloys: theoretical determination of grain shape[J]. Acta Materialia, 2007, 55 (5): 1515- 1521.
doi: 10.1016/j.actamat.2006.10.013
28
VORNBERGER A , PÖTSCHKE J , GESTRICH T , et al. Influence of microstructure on hardness and thermal conductivity of hardmetals[J]. International Journal of Refractory Metals and Hard Materials, 2020, 88, 105170.
doi: 10.1016/j.ijrmhm.2019.105170
29
FANG Z Z . Correlation of transverse rupture strength of WC-Co with hardness[J]. International Journal of Refractory Metals and Hard Materials, 2005, 23 (2): 119- 127.
doi: 10.1016/j.ijrmhm.2004.11.005
30
PETERSSON A , GREN J . Rearrangement and pore size evolution during WC-Co sintering below the eutectic temperature[J]. Acta Materialia, 2005, 53 (6): 1673- 1683.
doi: 10.1016/j.actamat.2004.12.017
31
ROULON Z , MISSIAEN J M , LAY S . Carbide grain growth in cemented carbides sintered with alternative binders[J]. International Journal of Refractory Metals and Hard Materials, 2020, 86, 105088.
32
SU W , HUANG Z , REN X , et al. Investigation on morphology evolution of coarse grained WC-6Co cemented carbides fabricated by ball milling route and hydrogen reduction route[J]. International Journal of Refractory Metals and Hard Materials, 2016, 56, 110- 117.
33
KIM J , KANG S . WC platelet formation via high-energy ball mill[J]. International Journal of Refractory Metals and Hard Materials, 2014, 47, 108- 112.
doi: 10.1016/j.ijrmhm.2014.06.024
34
YANG Q , YU S , ZHENG C , et al. Effect of carbon content on microstructure and mechanical properties of WC-10Co cemented carbides with plate-like WC grain[J]. Ceramics International, 2020, 46 (2): 1824- 1829.
doi: 10.1016/j.ceramint.2019.09.158