Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (10): 89-95    DOI: 10.11868/j.issn.1001-4381.2021.000036
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
烧结保温时间对超粗晶WC-10Co硬质合金微观结构及性能的影响
于淞百1, 闵凡路2,*(), 姚占虎3, 张建峰1
1 河海大学 力学与材料学院, 南京 211100
2 河海大学 土木与交通学院, 南京 210098
3 中交隧道工程局有限公司, 北京 100102
Effect of sintering time on microstructure and properties of extra-coarse-grained WC-10Co cemented carbide
Song-bai YU1, Fan-lu MIN2,*(), Zhan-hu YAO3, Jian-feng ZHANG1
1 College of Mechanics and Materials, Hohai University, Nanjing 211100, China
2 College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
3 CCCC Tunnel Engineering Company Limited, Beijing 100102, China
全文: PDF(5726 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

超粗晶WC-Co硬质合金因耐磨性高和韧性好成为研究的一个热点,而致密度和晶粒的控制是获得优异性能的关键。采用轻度球磨法获得添加超细WC的复合粉末,通过真空烧结制备平均晶粒尺寸为8.3~8.8 μm的超粗晶WC-10Co硬质合金,研究烧结保温时间对致密度、WC晶粒及力学性能的影响。结果表明:随着烧结保温时间从30 min增至120 min,致密度先增加后下降,Co在合金表面聚集氧化并使内部孔隙增多,部分WC晶粒聚集形成异常晶粒,这些缺陷结构阻碍了孔隙的消除;超细WC和球磨破碎细WC的先后溶解析出,使WC平均晶粒度先增加后减小,晶粒分布变宽。当烧结保温时间为60 min时,曲面类球状WC部分通过台阶生长机制转变为性能友好型的圆边六棱柱晶粒,抗弯强度和冲击韧性达到最高,分别为1733 MPa和28 kJ·m-2。此外,烧结过程中部分晶粒中原生缺陷难以完全消除,而较长的烧结保温时间下,多种缺陷的增多降低合金性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于淞百
闵凡路
姚占虎
张建峰
关键词 超粗晶WC-Co硬质合金烧结保温时间致密度WC晶粒力学性能    
Abstract

Extra-coarse-grained WC-Co cemented carbides are focused by researchers due to the high wear resistance and toughness, whereas the densification and WC grain tailoring are key factors for obtaining excellent performance. Extra-coarse-grained WC-10Co cemented carbides with an average grain size of 8.3-8.8 μm were prepared by a mild-ball-milling and vacuum sintering processes with ultra-fine WC powder obtained by mild-ball-milling method.The effects of sintering time on density, WC grain and mechanical properties were studied. The results show that the relative density first increases and then decreases with sintering time increasing from 30 min to 120 min.Ultra-fine pores also increase by the oxidation and accumulation of Co on the surface, and abnormal grains are formed by the aggregation of some WC grains.Therefore, the elimination of pores is hindered.Furthermore, the average grain size of WC firstly increases and then decreases due to orderly dissolution-precipitation of ultra-fine WC and fragmented fine WC, and finally WC grains are formed with wide distribution.As sintering holding time increases to 60 min, the partial spherical WC grain with curved surface is transformed into performance friendly hexagonal prism grain with rounded edge through faceted steps growth mechanism. Here, the bending strength and impact toughness reach the maximum of 1733 MPa and 28 kJ·m-2, respectively.Furthermore, the primary defects are difficult to be completely eliminated in some grains during sintering.With longer sintering holding time, the increased multiple defects result in the deterioration of properties.

Key wordsextra-coarse-grained WC-Co cemented carbide    sintering time    densification    WC grain    mecha-nical property
收稿日期: 2021-04-15      出版日期: 2021-10-14
中图分类号:  TF1124  
基金资助:国家自然科学基金(51778213);中央高校科研业务费专项资金(B200202073)
通讯作者: 闵凡路     E-mail: minfanlu@126.com
作者简介: 闵凡路(1985-), 男, 副教授, 博士, 从事硬质合金等材料在盾构隧道领域中的应用与研究工作, 联系地址: 江苏省南京市鼓楼区西康路1号河海大学土木与交通学院(210098), E-mail: minfanlu@126.com
引用本文:   
于淞百, 闵凡路, 姚占虎, 张建峰. 烧结保温时间对超粗晶WC-10Co硬质合金微观结构及性能的影响[J]. 材料工程, 2021, 49(10): 89-95.
Song-bai YU, Fan-lu MIN, Zhan-hu YAO, Jian-feng ZHANG. Effect of sintering time on microstructure and properties of extra-coarse-grained WC-10Co cemented carbide. Journal of Materials Engineering, 2021, 49(10): 89-95.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000036      或      http://jme.biam.ac.cn/CN/Y2021/V49/I10/89
Fig.1  不同粉末的SEM图
(a)超粗WC粉末;(b)超细WC粉末;(c)钴粉末;(d)球磨后的复合粉末
Fig.2  烧结保温时间对硬质合金体积收缩率和致密度的影响
Fig.3  烧结保温时间对WC晶粒尺寸(a)及晶粒分布(b)的影响
Fig.4  不同烧结保温时间时超粗晶WC-10Co硬质合金的金相形貌
(a)30 min;(b)60 min;(c)90 min;(d)120 min
Fig.5  烧结保温时间对WC晶粒P的影响
Fig.6  不同烧结保温时间时超粗晶WC-10Co硬质合金的WC晶粒形貌
(a)30 min;(b)60 min;(c)120 min
Fig.7  烧结保温时间对硬度、抗弯强度和冲击韧性的影响
Fig.8  烧结过程中WC晶粒的生长演化示意图
1 KE Z , ZHENG Y , ZHANG G , et al. Microstructure and mechanical properties of dual-grain structured WC-Co cemented carbides[J]. Ceramics International, 2019, 45 (17): 21528- 21533.
doi: 10.1016/j.ceramint.2019.07.146
2 KE Z , ZHENG Y , ZHANG G , et al. Fabrication of dual-grain structure WC-Co cemented carbide by in-situ carbothermal reduction of WO3 and subsequent liquid sintering[J]. Ceramics International, 2020, 46 (8): 12767- 12772.
doi: 10.1016/j.ceramint.2020.02.045
3 SUN Y , SU W , ANG H , et al. Effects of WC particle size on sintering behavior and mechanical properties of coarse grained WC-8Co cemented carbides fabricated by unmilled composite powders[J]. Ceramics International, 2015, 41 (10): 14482- 14491.
doi: 10.1016/j.ceramint.2015.07.086
4 KONYASHIN I , SCHÄFER F , COOPER R , et al. Novel ultra-coarse hardmetal grades with reinforced binder for mining and construction[J]. International Journal of Refractory Metals and Hard Materials, 2005, 23 (4/6): 225- 232.
5 HU H , LIU X , HOU C , et al. How hard metal becomes soft: crystallographic analysis on the mechanical behavior of ultra-coarse cemented carbide[J]. Acta Crystallographica B, 2019, 75 (6): 1014- 1023.
doi: 10.1107/S2052520619013118
6 孙东平, 夏斌华. 超粗晶粒凿岩硬质合金研究的新进展[J]. 凿岩机械气动工具, 2009, (4): 41- 46.
6 SUN D P , XIA B H . Development of extra coarse-grained cemented carbide for rock drilling[J]. Rock Drilling Machinery & Pneumatic Tools, 2009, (4): 41- 46.
7 聂洪波. 超粗晶WC-Co硬质合金的制备方法与机理及性能研究[J]. 中国钨业, 2016, 31 (4): 51- 57.
doi: 10.3969/j.issn.1009-0622.2016.04.010
7 NIE H B . The preparation, preparation mechanism and properties of extra coarse-grained WC-Co hard metals[J]. China Tungsten Industry, 2016, 31 (4): 51- 57.
doi: 10.3969/j.issn.1009-0622.2016.04.010
8 GUO L , XIAO L R , ZHAO X J , et al. Preparation of WC/Co composite powders by electroless plating[J]. Ceramics International, 2017, 43 (5): 4076- 4082.
doi: 10.1016/j.ceramint.2016.11.220
9 ADORJAN C , BOCK A , MYLLYMÄKI S , et al. WC/Co-compo-site powders via hydrothermal reduction of Co3O4-suspensions[J]. International Journal of Refractory Metals and Hard Materials, 2008, 26 (6): 569- 574.
doi: 10.1016/j.ijrmhm.2008.01.004
10 张建龙, 刘雪梅, 宋晓艳, 等. 纳米及亚微米复合粉添加对超粗晶硬质合金晶粒长大的影响及机制[J]. 稀有金属材料与工程, 2019, 48 (2): 552- 558.
10 ZHANG J L , LIU X M , SONG X Y , et al. Influence of nano and submicron composite powder additives on grain growth of ultra-coarse cemented carbides and its mechanism[J]. Rare Metal Materials and Engineering, 2019, 48 (2): 552- 558.
11 HE R , LI B , OU P , et al. Effects of ultrafine WC on the densification behavior and microstructural evolution of coarse-grained WC-5Co cemented carbides[J]. Ceramics International, 2020, 46 (8): 12852- 12860.
doi: 10.1016/j.ceramint.2020.01.113
12 LIU C , LIN N , HE Y , et al. The effects of micron WC contents on the microstructure and mechanical properties of ultrafine WC-(micron WC-Co) cemented carbides[J]. Journal of Alloys and Compounds, 2014, 594, 76- 81.
doi: 10.1016/j.jallcom.2014.01.090
13 刘斌, 木宗云, 唐志军, 等. 超细硬质合金烧结过程中WC晶粒三维形貌的变化[J]. 硬质合金, 2016, 33 (6): 373- 380.
13 LIU B , MU Z Y , TANG Z J , et al. Study on morphology transformation of WC grain in ultrafine cemented carbide during sintering[J]. Cemented Carbide, 2016, 33 (6): 373- 380.
14 龙坚战. 烧结温度和时间对WC-24%Co硬质合金的WC晶粒形貌影响[J]. 硬质合金, 2017, 34 (6): 370- 377.
14 LONG J Z . Effects of sintering temperature and time on WC morphology of WC-24%Co cemented carbide[J]. Cemented Carbide, 2017, 34 (6): 370- 377.
15 DELANOË A , LAY S . Evolution of the WC grain shape in WC-Co alloys during sintering: effect of C content[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27 (1): 140- 148.
doi: 10.1016/j.ijrmhm.2008.06.001
16 KIM S , HAN S H , PARK J K , et al. Variation of WC grain shape with carbon content in the WC-Co alloys during liquid-phase sintering[J]. Scripta Materialia, 2003, 48 (5): 635- 639.
doi: 10.1016/S1359-6462(02)00464-5
17 SHATOV A V , PONOMAREV S S , FIRSTOV S A . Fracture of WC-Ni cemented carbides with different shape of WC crystals[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26 (2): 68- 76.
18 SHATOV A V , FIRSTOV S A , SHATOVA I V . The shape of WC crystals in cemented carbides[J]. Materials Science and Engineering A, 1998, 242 (1/2): 7- 14.
19 LEI C , MA Y , LIU W , et al. Preparation and properties of WC-10%Co cemented carbides with flatter shape of WC grains[J]. Chinese Journal of Rare Metals, 2017, 41 (4): 337- 342.
20 ZHANG X , ZHOU J , LIN N , et al. Effects of Ni addition and cyclic sintering on microstructure and mechanical properties of coarse grained WC-10Co cemented carbides[J]. International Jour-nal of Refractory Metals and Hard Materials, 2016, 57, 64- 69.
doi: 10.1016/j.ijrmhm.2016.02.008
21 DUSZOVÁ A , HALGAŠ R , BL'ANDA M , et al. Nanoindentation of WC-Co hardmetals[J]. Journal of the European Ceramic Society, 2013, 33 (12): 2227- 2232.
doi: 10.1016/j.jeurceramsoc.2012.12.018
22 CSANÁDI T , BL'ANDA M , CHINH N Q , et al. Orientation-dependent hardness and nanoindentation-induced deformation mecha-nisms of WC crystals[J]. Acta Materialia, 2015, 83, 397- 407.
doi: 10.1016/j.actamat.2014.09.048
23 SU W , SUN Y , WANG H , et al. Preparation and sintering of WC-Co composite powders for coarse grained WC-8Co hardme-tals[J]. International Journal of Refractory Metals and Hard Materials, 2014, 45, 80- 85.
doi: 10.1016/j.ijrmhm.2014.04.004
24 HERBER R P , SCHUBERT W D , LUX B . Hardmetals with "roun-ded" WC grains[J]. International Journal of Refractory Metals and Hard Materials, 2006, 24 (5): 360- 364.
doi: 10.1016/j.ijrmhm.2005.11.014
25 LIU J , DAI Q , CHEN J , et al. The two dimensional microstructure characterization of cemented carbides with an automatic image analysis process[J]. Ceramics International, 2017, 43 (17): 14865- 14872.
doi: 10.1016/j.ceramint.2017.08.002
26 刘强, 陈吉, 杨明川. 真空烧结烧结温度和保温时间对WC-6%Ni细晶硬质合金组织及性能的影响[J]. 硬质合金, 2017, 34 (6): 393- 397.
26 LIU Q , CHEN J , YANG M C . Effect of vacuum sintering tempe-rature and holding time on microstructure and properties of WC-6%Ni[J]. Cemented Carbide, 2017, 34 (6): 393- 397.
27 CHRISTENSEN M , WAHNSTROM G , LAY S , et al. Morpho-logy of WC grains in WC-Co alloys: theoretical determination of grain shape[J]. Acta Materialia, 2007, 55 (5): 1515- 1521.
doi: 10.1016/j.actamat.2006.10.013
28 VORNBERGER A , PÖTSCHKE J , GESTRICH T , et al. Influence of microstructure on hardness and thermal conductivity of hardmetals[J]. International Journal of Refractory Metals and Hard Materials, 2020, 88, 105170.
doi: 10.1016/j.ijrmhm.2019.105170
29 FANG Z Z . Correlation of transverse rupture strength of WC-Co with hardness[J]. International Journal of Refractory Metals and Hard Materials, 2005, 23 (2): 119- 127.
doi: 10.1016/j.ijrmhm.2004.11.005
30 PETERSSON A , GREN J . Rearrangement and pore size evolution during WC-Co sintering below the eutectic temperature[J]. Acta Materialia, 2005, 53 (6): 1673- 1683.
doi: 10.1016/j.actamat.2004.12.017
31 ROULON Z , MISSIAEN J M , LAY S . Carbide grain growth in cemented carbides sintered with alternative binders[J]. International Journal of Refractory Metals and Hard Materials, 2020, 86, 105088.
32 SU W , HUANG Z , REN X , et al. Investigation on morphology evolution of coarse grained WC-6Co cemented carbides fabricated by ball milling route and hydrogen reduction route[J]. International Journal of Refractory Metals and Hard Materials, 2016, 56, 110- 117.
33 KIM J , KANG S . WC platelet formation via high-energy ball mill[J]. International Journal of Refractory Metals and Hard Materials, 2014, 47, 108- 112.
doi: 10.1016/j.ijrmhm.2014.06.024
34 YANG Q , YU S , ZHENG C , et al. Effect of carbon content on microstructure and mechanical properties of WC-10Co cemented carbides with plate-like WC grain[J]. Ceramics International, 2020, 46 (2): 1824- 1829.
doi: 10.1016/j.ceramint.2019.09.158
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn