Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (8): 169-177    DOI: 10.11868/j.issn.1001-4381.2021.000047
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基体表面粗糙度对MoS2/Ti薄膜摩擦磨损性能的影响
陈爽1,2, 韩雪艳1, 安帅帅1, 王勇杰1, 李仕华1,*()
1 燕山大学 机械工程学院,河北 秦皇岛 066004
2 唐山师范学院 物理科学与技术学院,河北 唐山 063000
Effect of substrate surface roughness on friction and wear properties of MoS2/Ti films
Shuang CHEN1,2, Xueyan HAN1, Shuaishuai AN1, Yongjie WANG1, Shihua LI1,*()
1 School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
2 School of Physical Science and Technology, Tangshan Normal University, Tangshan 063000, Hebei, China
全文: PDF(1125 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为揭示基体表面粗糙度对MoS2/Ti固体润滑薄膜摩擦磨损性能的影响规律,并探究其摩擦磨损机理,采用磁控溅射方法,在不同表面粗糙度的轴承钢基体上沉积MoS2/Ti薄膜。通过划痕测试仪、X射线衍射仪、场发射扫描电子显微镜和粗糙度轮廓仪,分别评价MoS2/Ti薄膜的膜基结合力、物相成分、表面微观形貌以及表面粗糙度,并采用球-盘摩擦磨损实验研究干摩擦、固体-油复合润滑和固体-脂复合润滑条件下,MoS2/Ti薄膜的摩擦磨损性能。结果表明:随着基体表面粗糙度的增加,MoS2/Ti薄膜的表面粗糙度逐渐增加;薄膜中(002)MoS2和(100)MoS2衍射峰的强度先减弱后增加;薄膜与基体的结合性能降低。当基体表面粗糙度为0.01 μm时,干摩擦条件下MoS2/Ti薄膜具有良好的润滑特性,平均摩擦因数为0.101,磨痕浅且小;随基体粗糙度的升高,样品的平均摩擦因数和磨损率均是先增大后减小,薄膜的主要磨损机制由磨粒磨损转变为屑片形成和破碎。当基体粗糙度较大时(Ra=0.26 μm),分子间相互作用的影响大于机械啮合作用。采用固体-油复合润滑,高基体粗糙度的薄膜磨损表面不再出现片层剥落现象,磨痕较浅,平均摩擦因数最高可减小19%。固体-脂复合润滑条件下,样品摩擦磨损性能较差,基体粗糙度对摩擦因数的影响不显著。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈爽
韩雪艳
安帅帅
王勇杰
李仕华
关键词 基体表面粗糙度MoS2/Ti薄膜干摩擦复合润滑阴影效应磨损机制    
Abstract

The effect of the substrate surface roughness on tribological properties of MoS2/Ti films, and the friction and wear mechanism was studied. MoS2/Ti films were deposited on bearing steel with different surface roughness by magnetron sputtering. The adhesion strength between the film and substrate, phase composition, surface morphology and surface roughness of MoS2/Ti films were obtained respectively by scratch tester, X-ray diffractometer(XRD), scanning electron microscope (SEM) and roughness profiler. And the tribological properties of MoS2/Ti films under dry friction, solid-oil composite lubrication and solid-grease composite lubrication were studied by a ball-on-disk tribometer. The results show that with the increase of the substrate surface roughness, the surface roughness of MoS2/Ti films increases, the intensity of (002)MoS2 and (100)MoS2 diffraction peaks first decreases and then increases, and the adhesion strength between the film and substrate decreases. When the surface roughness of the substrate is 0.01 μm, the MoS2/Ti films have good lubrication characteristics under dry friction condition. The average friction coefficient is 0.101, and the wear scar is shallow and small. With the increase of substrate roughness, the average friction coefficient and the wear rate of the samples increase first and then decrease. Meanwhile, the main wear mechanism of the film changes from abrasive wear to chip formation and fragmentation. And the effect of intermolecular interaction is greater than that of mechanical engagement, when the substrate roughness of the samples is large (Ra=0.26 μm). Under the condition of solid-oil composite lubrication, there is no fragmentation phenomenon on the worn surface with large substrate roughness. The wear scar is shallow, and the average friction coefficient is reduced by about 19%. Under the condition of solid-grease composite lubrication, the tribological properties of the samples are poor, and the effect of the substrate surface roughness on the friction coefficient is not significant.

Key wordssurface roughness of substrate    MoS2/Ti film    dry friction    composite lubrication    shadow effect    wear mechanism
收稿日期: 2021-01-18      出版日期: 2022-08-16
中图分类号:  TG115.5+8  
基金资助:国家自然科学基金项目(51775475)
通讯作者: 李仕华     E-mail: shli@ysu.edu.cn
作者简介: 李仕华(1966—),男,教授,博士,研究方向为并联机器人技术及动态润滑理论,联系地址:河北省秦皇岛市河北大街西段438号燕山大学机械工程学院(066004),E-mail: shli@ysu.edu.cn
引用本文:   
陈爽, 韩雪艳, 安帅帅, 王勇杰, 李仕华. 基体表面粗糙度对MoS2/Ti薄膜摩擦磨损性能的影响[J]. 材料工程, 2022, 50(8): 169-177.
Shuang CHEN, Xueyan HAN, Shuaishuai AN, Yongjie WANG, Shihua LI. Effect of substrate surface roughness on friction and wear properties of MoS2/Ti films. Journal of Materials Engineering, 2022, 50(8): 169-177.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000047      或      http://jme.biam.ac.cn/CN/Y2022/V50/I8/169
Fig.1  基体样品的表面粗糙度曲线
(a)Ra=0.01 μm; (b)Ra=0.06 μm; (c)Ra=0.11 μm; (d)Ra=0.26 μm
Fig.2  不同基体表面粗糙度MoS2/Ti薄膜的SEM照片
(a)Ra=0.01 μm; (b)Ra=0.06 μm; (c)Ra=0.11 μm; (d)Ra=0.26 μm
Fig.3  MoS2/Ti薄膜的XRD谱图
Fig.4  基体表面粗糙度的阴影效应
Fig.5  干摩擦条件下MoS2/Ti薄膜的摩擦因数
Fig.6  干摩擦条件下MoS2/Ti薄膜的磨痕形貌
(a)Ra=0.01 μm; (b)Ra=0.06 μm; (c)Ra=0.11 μm; (d)Ra=0.26 μm
Fig.7  干摩擦条件下MoS2/Ti薄膜磨痕的二维轮廓曲线
(a)Ra=0.01 μm; (b)Ra=0.06 μm; (c)Ra=0.11 μm; (d)Ra=0.26 μm
Fig.8  干摩擦条件下MoS2/Ti薄膜的平均磨损率
Fig.9  复合润滑条件下MoS2/Ti薄膜的摩擦因数
(a)固体-油润滑;(b)固体-脂润滑
Fig.10  油润滑条件下MoS2/Ti薄膜的磨痕形貌
(a)Ra=0.01 μm; (b)Ra=0.06 μm; (c)Ra=0.11 μm; (d)Ra=0.26 μm
Fig.11  脂润滑条件下MoS2/Ti薄膜的磨痕形貌
(a)Ra=0.01 μm; (b)Ra=0.06 μm; (c)Ra=0.11 μm; (d)Ra=0.26 μm
1 张传香, 陈亚玲, 巩云, 等. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48 (5): 56- 61.
1 ZHANG C X , CHEN Y L , GONG Y , et al. One-step hydrothermal synthesis and electrocatalytic performance of MoS2/RGO composites[J]. Journal of Materials Engineering, 2020, 48 (5): 56- 61.
2 张晓琴, 于富成, 柴利强, 等. C/N共掺MoS2复合薄膜的微结构及其摩擦特性研究[J]. 摩擦学学报, 2017, 37 (4): 537- 543.
2 ZHANG X Q , YU F C , CHAI L Q , et al. Microstructure and tribological properties of C/N co-doping MoS2 composite film[J]. Tribology, 2017, 37 (4): 537- 543.
3 于富成, 张晓琴, 柴利强, 等. 掺杂对MoS2基薄膜微观结构及力学性能的影响[J]. 兰州理工大学学报, 2017, 43 (5): 18- 23.
doi: 10.3969/j.issn.1673-5196.2017.05.003
3 YU F C , ZHANG X Q , CHAI L Q , et al. Effects of doping on the microstructure and mechanical performance of MoS2 based films[J]. Journal of Lanzhou University of Technology, 2017, 43 (5): 18- 23.
doi: 10.3969/j.issn.1673-5196.2017.05.003
4 HOLMBERG K , MATHEWS A . Coatings tribology: a concept, critical aspects and future directions[J]. Thin Solid Films, 1994, 253 (1/2): 173- 178.
5 ROBERTS E W , WILLIAMS B J , OGILVY J A . The effect of substrate surface roughness on the friction and wear of sputtered MoS2 films[J]. Journal of Physics D: Applied Physics, 1992, 25 (1A): 65- 70.
doi: 10.1088/0022-3727/25/1A/012
6 CUNNINGHAM J M , FORD I J , OGILVY J A , et al. Interpretation of friction and wear properties of MoS2 coated steel substrates[J]. Wear, 1994, 177 (1): 93- 101.
doi: 10.1016/0043-1648(94)90121-X
7 SUN J , DENG J X , LI X M , et al. Preparation and tribological properties of MoS2-based multiple-layer structured films fabricated by electrohydrodynamic jet deposition[J]. Surface and Coa-tings Technology, 2020, 384 (25): 125334.
8 程蓓, 李迎春, 邱明, 等. CeF3改性MoS2基润滑涂层的制备及其摩擦学性能[J]. 材料保护, 2019, 52 (10): 15- 19.
8 CHENG B , LI Y C , QIU M , et al. Preparation and tribological properties of MoS2-based lubricating coating with modified with CeF3[J]. Materials Protection, 2019, 52 (10): 15- 19.
9 JAFFEE H W S , LAWRENCE K Y L . An investigation of the effect of surface roughness and coating thickness on the friction and wear behaviour of a commercial MoS2-metal coating on AISI 400C steel[J]. Wear, 2000, 237 (2): 283- 287.
doi: 10.1016/S0043-1648(99)00349-X
10 钟爱文, 姚萍屏, 肖叶龙, 等. 空间摩擦学及其材料的研究进展[J]. 航空材料学报, 2017, 37 (2): 88- 99.
10 ZHONG A W , YAO P P , XIAO Y L , et al. Research status and developing trend of space tribology and tribological materials[J]. Journal of Aeronautical Materials, 2017, 37 (2): 88- 99.
11 KIM H Y , NOH Y T , JEON J H , et al. Effect of surface roughness on crystal size of manganese phosphate coating of carbon steel[J]. Journal of Nanoscience and Nanotechnology, 2020, 20 (7): 4312- 4317.
doi: 10.1166/jnn.2020.17551
12 THORNTON J A . High rate thick film growth[J]. Annual Review of Materials Science, 1977, 7, 239- 260.
doi: 10.1146/annurev.ms.07.080177.001323
13 ZHAN L L , WANG Y , CHANG H C , et al. Preparation of ultra-smooth Cu surface for high-quality graphene synthesis[J]. Nanoscale Research Letters, 2018, 13 (1): 340.
doi: 10.1186/s11671-018-2740-x
14 HARLIN P , CARLSSON P , BEXELL U , et al. Influence of surface roughness of PVD coatings on tribological performance in sliding contacts[J]. Surface and Coatings Technology, 2006, 201 (7): 4253- 4259.
doi: 10.1016/j.surfcoat.2006.08.103
15 OSTADI A , HOSSEINI S H , FORDOEI M E . The effect of temperature and roughness of the substrate surface on the microstructure and adhesion strength of EB-PVD ZrO2-%8wtY2O3 coating[J]. Ceramics International, 2020, 46 (2): 2287- 2293.
doi: 10.1016/j.ceramint.2019.09.217
16 高贵, 李瑞红, 龚俊, 等. 对偶表面粗糙度对Nano-SiO2改性PTFE复合材料摩擦学性能的影响[J]. 工程科学与技术, 2020, 52 (2): 207- 214.
16 GAO G , LI R H , GONG J , et al. Effect of counterpart surface roughness on the tribological properties of nano-SiO2 modified PTFE composites[J]. Advanced Engineering Sciences, 2020, 52 (2): 207- 214.
17 克拉盖尔斯基И В. 摩擦磨损计算原理[M]. 北京: 机械工业出版社, 1982: 220- 225.
17 КРАГЕЛЬСКИЙ И В . Calculation principle of friction and wear[M]. Beijing: China Machine Press, 1982: 220- 225.
18 康皓, 郭鹏, 蔡胜, 等. MoS2/C复合薄膜多环境摩擦学行为的研究[J]. 表面技术, 2019, 48 (6): 229- 237.
18 KANG H , GUO P , CAI S , et al. Tribological behavior of MoS2/C composite films in multiple environments[J]. Surface Technology, 2019, 48 (6): 229- 237.
19 李浩, 李霞, 张广安, 等. 磁控溅射沉积抗氧化、长寿命二硫化钼基复合薄膜[J]. 摩擦学学报, 2016, 36 (6): 708- 716.
19 LI H , LI X , ZHANG G A , et al. Antioxidation and long life of MoS2-based composite coatings deposited by magnetron sputtering technique[J]. Tribology, 2016, 36 (6): 708- 716.
20 杨瑞杰, 冶银平, 万宏启, 等. 聚酰亚胺粘结MoS2基固体润滑涂层在油介质中的摩擦学性能[J]. 摩擦学学报, 2011, 31 (3): 278- 282.
20 YANG R J , YE Y P , WAN H Q , et al. Tribological properties of polyimide bonded MoS2 solid lubricant coatings in different oils[J]. Tribology, 2011, 31 (3): 278- 282.
21 BOWDEN F P , TABOR D . The friction and lubrication of solid[M]. Oxford: Clarendon Press, 1954: 295- 300.
22 CHOW P K , SINGH E , VIANA B C , et al. Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates[J]. ACS Nano, 2015, 9 (3): 3023- 3031.
doi: 10.1021/nn5072073
23 PRAKASH C G J , PRASANTH R . Approaches to design a surface with tunable wettability: a review on surface properties[J]. Journal of Materials Science, 2021, 56, 108- 135.
24 吴宝杰, 刘庆廉, 李兴林, 等. 润滑脂流变性对滚动轴承振动性能的影响[J]. 润滑与密封, 2006, (6): 98- 101.
24 WU B J , LIU Q L , LI X L , et al. Influence of grease rheological property on bearing vibratility[J]. Lubrication Engineering, 2006, (6): 98- 101.
25 LI L , LU Z X , PU J B , et al. The superlattice structure and self-adaptive performance of C-Ti/MoS2 composite coatings[J]. Ceramics International, 2020, 46 (5): 5733- 5744.
doi: 10.1016/j.ceramint.2019.11.022
26 CANN P M , DONER J P , WEBSTER M N , et al. Grease degradation in rolling element bearings[J]. Tribology Transactions, 2001, 44 (3): 399- 404.
doi: 10.1080/10402000108982473
27 HURLEY S , CANN P M . Grease composition and film thickness in rolling contacts[J]. NLGI Spokesman, 1999, 63 (4): 12- 22.
[1] 李波, 李圣鑫, 张执南, 张坚, 熊光耀, 沈明学. 热氧老化作用对丁腈橡胶力学性能和摩擦学行为的影响[J]. 材料工程, 2021, 49(5): 114-121.
[2] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[3] 李春华, 王晗, 郝海. AZ91及AZ91-Y合金复合干摩擦性能的对比[J]. 材料工程, 2020, 48(1): 108-114.
[4] 周德琴, 陈伟, 张秋阳, 周银, 崔向红, 王树奇. 不同基体热浸镀铝镀层组织和高温磨损行为[J]. 材料工程, 2018, 46(2): 93-98.
[5] 杨胶溪, 张健全, 常万庆, 王艳芳, 陈虹, 王喜兵. 激光熔覆WC/Ni基复合涂层高温滑动干摩擦磨损性能[J]. 材料工程, 2016, 44(6): 110-116.
[6] 杨唐, 刘炳, 文锋, 郭璐, 赵明露. Al2O3颗粒增强共晶铝锰基复合材料的腐蚀磨损性能[J]. 材料工程, 2013, 0(3): 83-89.
[7] 邰清安, 李晓光, 李治华, 刘艳, 朱艳春, 曾卫东. 应用FEM与圆环镦粗实验测定TC4钛合金高温变形时的摩擦因数[J]. 材料工程, 2011, 0(6): 23-26,31.
[8] 康克家, 杜三明, 张永振, 赵飞. 高速摆动条件下PTFE编织复合材料干摩擦热行为研究[J]. 材料工程, 2011, 0(11): 15-17,22.
[9] 敖宏瑞, 姜洪源, 王树国, 夏宇宏, 贾长海, A. M. Ulanov. 金属橡胶弹性阻尼元件各向异性特性的实验研究[J]. 材料工程, 2003, 0(9): 11-14.
[10] 蒋斌, 徐滨士, 董世运, 丁培道. n-Al2O3/Ni复合镀层的组织与滑动磨损性能研究[J]. 材料工程, 2002, 0(9): 33-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn