Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (7): 78-84    DOI: 10.11868/j.issn.1001-4381.2021.000059
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
料浆对熔渗工艺制备碳纤维织物增强碳化硅复合材料的影响
焦春荣, 焦健()
中国航发北京航空材料研究院 先进复合材料国防科技重点实验室, 北京 100095
Effect of slurry on preparation of carbon fiber fabric reinforced silicon carbide ceramic matrix composite by melt infiltration
Chun-rong JIAO, Jian JIAO()
National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(14055 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

针对航空发动机热端部件复杂结构存在的陶瓷基复合材料成型难度大的问题,以碳纤维织物为增强体,以有无添加粉体的两种树脂料浆为研究对象,开展料浆-熔渗工艺制备碳纤维织物增强碳化硅复合材料技术研究,探索两种料浆的注浆成型及熔渗工艺适应性,并对获得的复合材料基本性能进行表征。结果显示:有无添加粉体的两种料浆的黏度适中,在注浆工艺温度下具有3~5 h以上的注浆工艺窗口,通过注浆成型工艺均可获得少孔隙、质量均匀的树脂基复合材料;无粉体和有粉体的料桨固化物在900℃炭化后,孔隙率分别为39.6%和31.3%,残炭率分别为24%和76%,平均孔径分别为0.068 μm和0.069 μm,能够满足熔渗工艺的要求;采用添加粉体的料浆制备的碳纤维织物增强碳化硅复合材料具有更低的气孔率(3.54%)和更高的弯曲强度(162 MPa),满足航空发动机静止部件的应用要求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
焦春荣
焦健
关键词 碳纤维织物增强碳化硅陶瓷基复合材料料浆-熔渗成型工艺    
Abstract

In order to solve the forming difficulty of the ceramic matrix composites used as the aeroengine complex components, carbon fiber fabric was used as the reinforcement, two different slurries, with or without powder additives, were taken to form the carbon fiber fabric reinforced silicon carbide composites via slurry-casting and melt infiltration technology. The process adaptability of the two slurries in the slurry-casting and melt infiltration process were explored, and corresponding basic properties of the composites were investigated. The results show that the viscosity of the two slurries is moderate during the slurry-casting process, and they could keep the station for more than 3-5 hours at the setting temperatures, which could obtain dense and uniform polymer matrix composites. After being carbonized at 900 ℃, the porosity of the solidified sample synthesized via slurries with or without powder is 39.6% and 31.3%, the residual carbon ratio is 24% and 76%, and the average diameter of pore is 0.068 μm and 0.069 μm, respectively. The carbon fiber fabric-reinforced silicon carbide composite prepared with powder-added slurry has lower porosity of 3.54% and higher bending strength of 162 MPa, which meets the application requirements of aeroengine static components.

Key wordscarbon fiber fabric reinforced silicon carbide composites    ceramic matrix composites    slurry-casting MI    forming process
收稿日期: 2021-01-04      出版日期: 2021-07-19
中图分类号:  TB332  
基金资助:国家科技重大专项(2017-Ⅵ-0007-0077)
通讯作者: 焦健     E-mail: jian.jiao@biam.ac.cn
作者简介: 焦健(1976-), 男, 研究员, 博士, 研究方向为陶瓷基复合材料, 联系地址: 北京市81信箱5分箱(100095), E-mail: jian.jiao@biam.ac.cn
引用本文:   
焦春荣, 焦健. 料浆对熔渗工艺制备碳纤维织物增强碳化硅复合材料的影响[J]. 材料工程, 2021, 49(7): 78-84.
Chun-rong JIAO, Jian JIAO. Effect of slurry on preparation of carbon fiber fabric reinforced silicon carbide ceramic matrix composite by melt infiltration. Journal of Materials Engineering, 2021, 49(7): 78-84.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000059      或      http://jme.biam.ac.cn/CN/Y2021/V49/I7/78
Fig.1  树脂料浆的DSC曲线
Fig.2  树脂料浆的变温流变曲线
Fig.3  树脂料浆的恒温流变曲线  (a)料浆A;(b)料浆B
Fig.4  树脂料浆固化后断口的微观形貌  (a)料浆A;(b)料浆B
Fig.5  碳纤维织物增强树脂基复合材料超声检测结果  (a)料浆A;(b)料浆B
Fig.6  树脂料浆固化物的热失重结果
Fig.7  树脂料浆固化物炭化后断面的SEM照片  (a)料浆A;(b)料浆B
Sample Average pore diameter/μm Range of pore diameter/μm Porosity/%
Slurry A 0.068 0.010-0.110 39.6
Slurry B 0.069 0.010-0.110 31.3
Table 1  树脂料浆固化物炭化后的孔结构分析结果
Fig.8  料浆-熔渗碳纤维织物增强碳化硅复合材料内部形貌
(a)料浆A;(b)料浆B
Sample Density/(g·cm-3) Porosity/% Bending strength/MPa Bending modulus/GPa
Slurry A 2.11 5.86 130 63
Slurry B 2.14 3.54 162 85
Table 2  料浆-熔渗碳纤维织物增强碳化硅复合材料的密度和弯曲性能
1 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24 (2): 1- 6.
doi: 10.3321/j.issn:1000-3851.2007.02.001
1 ZHANG L T , CHENG L F . Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24 (2): 1- 6.
doi: 10.3321/j.issn:1000-3851.2007.02.001
2 何新波, 杨辉, 张长瑞, 等. 连续纤维增强陶瓷基复合材料概述[J]. 材料科学与工程, 2002, 20 (2): 273- 278.
doi: 10.3969/j.issn.1673-2812.2002.02.034
2 HE X B , YANG H , ZHANG C R , et al. Review of continuous fiber reinforced ceramic matrix composites[J]. Materials Science and Engineering, 2002, 20 (2): 273- 278.
doi: 10.3969/j.issn.1673-2812.2002.02.034
3 刘大响. 一代新材料, 一代新型发动机: 航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45 (10): 1- 5.
doi: 10.11868/j.issn.1001-4381.2017.100001
3 LIU D X . One generation of new material, one generation of new type engine: development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering, 2017, 45 (10): 1- 5.
doi: 10.11868/j.issn.1001-4381.2017.100001
4 张玉娣, 周新贵, 张长瑞. Cf/SiC陶瓷基复合材料的发展与应用现状[J]. 材料工程, 2005, (4): 60- 63.
doi: 10.3969/j.issn.1001-4381.2005.04.015
4 ZHANG Y D , ZHOU X G , ZHANG C R . Development and application of Cf/SiC ceramic matrix composites[J]. Journal of Materials Engineering, 2005, (4): 60- 63.
doi: 10.3969/j.issn.1001-4381.2005.04.015
5 IMUTA M , GOTOH J . Development of high temperature materials including CMCs for space application[J]. Key Engineering Material, 1999, 164/165, 439- 444.
6 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47 (2): 1- 10.
doi: 10.3969/j.issn.1673-1433.2019.02.001
6 LIU Q M , HUANG S Z , HE A J . Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering, 2019, 47 (2): 1- 10.
doi: 10.3969/j.issn.1673-1433.2019.02.001
7 焦健, 刘善华. 化学气相渗透工艺(CVI)制备陶瓷基复合材料的进展研究[J]. 航空制造技术, 2015, (14): 101- 104.
7 JIAO J , LIU S H . Progress in ceramic matrix composites fabricated by chemical by chemical vapor infiltration[J]. Aeronautical Manufacturing Technology, 2015, (14): 101- 104.
8 BLAGOEVA D T , HEGEMAN J B J , JONG M , et al. Characterisation of 2D and 3D Tyranno SA3 CVI SiCf/SiC composites[J]. Materials Science and Engineering: A, 2015, 638, 305- 313.
doi: 10.1016/j.msea.2015.04.090
9 BERTRAND D J , SABELKIN V , ZAWADA L , et al. Fatigue behavior of Sylramic-iBN/BN/CVI SiC ceramic matrix composite in combustion environment[J]. Journal of Materials Science, 2015, 50, 7437- 7447.
doi: 10.1007/s10853-015-9302-8
10 冯倩, 王文强, 王震, 等. C纤维和SiC纤维增强SiC基复合材料微观结构分析[J]. 实验室研究与探索, 2010, 29 (1): 44- 46.
doi: 10.3969/j.issn.1006-7167.2010.01.016
10 FENG Q , WANG W Q , WANG Z , et al. Microstructure analysis of SiC matrix composites reinforced by carbon fibers and SiC fibers[J]. Research and Exploration in Laboratory, 2010, 29 (1): 44- 46.
doi: 10.3969/j.issn.1006-7167.2010.01.016
11 王亦菲, 刘伟峰, 马青松. PIP法制备SiCf/SiC复合材料导热性能影响因素研究[J]. 稀有金属材料与工程, 2009, 38 (2): 466- 469.
11 WANG Y F , LIU W F , MA Q S . Effects on the thermal conductivity properties of SiCf/SiC composites manufactured by PIP process[J]. Rare Metal Materials and Engineering, 2009, 38 (2): 466- 469.
12 ENRICO K , ALEXANDER F , MARTIN F , et al. Mechanical and microstructural characterisation of SiC- and SiBNC-fibre reinforced CMCs manufactured via PIP method before and after exposure to air[J]. Journal of the European Ceramic Society, 2012, 32 (14): 3861- 3874.
doi: 10.1016/j.jeurceramsoc.2012.05.028
13 LUO Z , CAO H , REN H , et al. Tension-tension fatigue behavior of a PIP SiC/SiC composite at elevated temperature in air[J]. Ceramics International, 2016, 42 (2): 3250- 3260.
doi: 10.1016/j.ceramint.2015.10.116
14 焦健, 杨金华, 李宝伟. 熔渗法制备陶瓷基复合材料的研究进展[J]. 航空制造技术, 2015, (增刊2): 1- 6.
14 JIAO J , YANG J H , LI B W . Progress in ceramic matrix composites fabricated by melt infiltration progress[J]. Aeronautical Manufacturing Technology, 2015, (Suppl 2): 1- 6.
15 董绍明, 胡建宝, 张翔宇. SiC/SiC复合材料MI工艺制备技术[J]. 航空制造技术, 2014, (6): 35- 40.
doi: 10.3969/j.issn.1671-833X.2014.06.005
15 DONG S M , HU J B , ZHANG X Y . Melt infiltration process for SiC/SiC composites[J]. Aeronautical Manufacturing Technology, 2014, (6): 35- 40.
doi: 10.3969/j.issn.1671-833X.2014.06.005
16 BRENNAN J J . Interfacial characterization of a slurry-cast melt-infiltrated SiC/SiC ceramic-matrix composite[J]. Acta Materialia, 2000, 48 (18/19): 4619- 4628.
17 张小立, 吕振林, 金志浩. 熔渗反应法制备MoSi2-SiC复合材料性能的影响因素[J]. 稀有金属材料与工程, 2005, 34 (4): 639- 642.
doi: 10.3321/j.issn:1002-185X.2005.04.031
17 ZHANG X L , LV Z L , JIN Z H . Influence factor of MoSi2-SiC composites synthesised by reactive infiltration[J]. Rare Metal Materials and Engineering, 2005, 34 (4): 639- 642.
doi: 10.3321/j.issn:1002-185X.2005.04.031
18 NAROTTAM P B . Handbook of ceramic composites[M]. London: Kluwer Academic Publishers, 2005: 100- 103.
19 刘虎, 杨金华, 陈子木, 等. 熔融渗硅工艺制备的SiCf/SiC复合材料微观结构与性能[J]. 宇航材料工艺, 2020, 50 (6): 48- 54.
19 LIU H , YANG J H , CHEN Z M , et al. Microstructure and properties of SiCf/SiC composite fabricated by melt infiltration process[J]. Aerospace Materials & Technology, 2020, 50 (6): 48- 54.
[1] 李国青, 杨丽霞, 余敏. 生物态碳-陶瓷基复合材料制备方法的研究现状[J]. 材料工程, 2022, 50(10): 1-14.
[2] 张路, 袁芳, 王文清, 董星杰, 何汝杰. 面向一体化热防护的陶瓷基复合材料轻量化结构研究进展与挑战[J]. 材料工程, 2022, 50(10): 15-28.
[3] 张金栋, 孙洪霖, 刘刚, 姚佳楠, 陈春海, 王明. 聚芳醚酮树脂非等温结晶动力学及其复合材料湿热老化性能[J]. 材料工程, 2022, 50(10): 139-147.
[4] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[5] 李天天, 夏龙, 黄小萧, 钟博, 王春雨, 张涛. 介电损耗型微波吸收材料的研究进展[J]. 材料工程, 2021, 49(6): 1-13.
[6] 叶锦宗, 李锦棒, 周宁宁, 曹均, 卿涛, 蒋世宇, 于爱兵. 成型工艺对多孔PI材料摩擦学及力学性能的影响[J]. 材料工程, 2020, 48(9): 144-151.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 陈一哲, 赵越, 王辉. 汽车领域纤维复合材料构件轻量化设计与工艺研究进展[J]. 材料工程, 2020, 48(12): 36-43.
[9] 卢国锋, 乔生儒. Si-O-C界面层对C/SiC-N复合材料力学性能和热膨胀性能的影响[J]. 材料工程, 2018, 46(7): 83-87.
[10] 杨瑞, 齐哲, 杨金华, 焦健. 氧化物/氧化物陶瓷基复合材料及其制备工艺研究进展[J]. 材料工程, 2018, 46(12): 1-9.
[11] 刘虎, 杨金华, 周怡然, 吕晓旭, 齐哲, 焦健. 国外航空发动机用SiCf/SiC复合材料的材料级性能测试研究进展[J]. 材料工程, 2018, 46(11): 1-12.
[12] 刘伟, 曹腊梅, 王岭, 徐彩虹, 益小苏. RTM成型工艺对Cf/SiBCN陶瓷基复合材料性能的影响[J]. 材料工程, 2015, 43(6): 1-6.
[13] 卢国锋, 乔生儒, 许艳. 连续纤维增强陶瓷基复合材料界面层研究进展[J]. 材料工程, 2014, 0(11): 107-112.
[14] 王炯, 李敏, 顾轶卓, 王绍凯, 张佐光. 炭纤维复合材料共固化液体成型工艺及层间性能研究[J]. 材料工程, 2013, (2): 93-98.
[15] 熊华平, 毛建英, 陈冰清, 王群, 吴世彪, 李晓红. 航空航天轻质高温结构材料的焊接技术研究进展[J]. 材料工程, 2013, 0(10): 1-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn