Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (11): 109-118    DOI: 10.11868/j.issn.1001-4381.2021.000072
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高Cu铸造铝合金的摩擦磨损性能
王海波, 赵君文(), 陶星宇, 戴光泽
西南交通大学 材料科学与工程学院, 成都 610031
Friction and wear properties of cast aluminum alloy with high Cu content
Haibo WANG, Junwen ZHAO(), Xingyu TAO, Guangze DAI
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
全文: PDF(21572 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用压铸工艺制备Cu含量为5%~20%(质量分数,下同)的Al-Cu合金试样。在布氏硬度计上测定试样的硬度,利用球盘往复式磨损试验机进行3种载荷(1~5 N)的磨损实验,通过SEM和EDS分析不同Cu含量试样的磨损机理。结果表明:随着Cu含量从5%增加至20%,Al-Cu合金中θ相的体积分数由2.00%增加到25.80%,且θ相的尺寸逐渐增大;硬度从59HB增加到170HB。摩擦因数在0.4~0.85范围内变化;Al-Cu合金试样的比磨损率随Cu含量增加先急剧降低后趋于平缓,Cu含量达到15%以上合金试样比磨损率变化不大,最低比磨损率在4.1×10-4 mm3·N-1·m-1左右;较低Cu含量试样的比磨损率随载荷变化显著,随着Cu含量增加比磨损率差别减小。Al-Cu合金的主要磨损机制为黏着磨损和磨粒磨损,低Cu含量试样以黏着磨损为主,高Cu含量试样以磨粒磨损为主;随着载荷的增加,低Cu含量试样黏着磨损程度增加,高Cu含量试样磨粒磨损程度增加。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王海波
赵君文
陶星宇
戴光泽
关键词 Al-Cu合金Cu含量比磨损率摩擦磨损    
Abstract

Al-Cu alloy samples with 5%-20% (mass fraction) Cu were prepared by die-casting process. The hardness of the samples was measured on a Brinell hardness tester. The wear experiments with three kinds of load (1-5 N) were carried out with a ball-disk reciprocating wear tester. The wear mechanism of the samples with different Cu contents was analyzed by SEM and EDS. The results show that as the Cu content increases from 5% to 20%, the volume fraction of θ phase in Al-Cu alloy increases from 2.00% to 25.80%, and the size of θ phase increases gradually; the hardness increases from 59HB to 170HB. The coefficient of friction changes within the range of 0.4-0.85; with the increase of Cu content, the specific wear rate of Al-Cu alloy samples decreases sharply at first and then tends to be gentle. When Cu content is more than 15%, the specific wear rate of alloy samples does not change much, and the lowest specific wear rate is about 4.1×10-4 mm3·N-1·m-1. The specific wear rate of samples with lower Cu content changes significantly with the load, and the specific wear rate difference decreases with the increase of Cu content. The main wear mechanisms of Al-Cu alloys are adhesive wear and abrasive wear. For samples with low Cu content, adhesive wear is dominant; while for samples with high Cu content, abrasive wear is dominant. With the increase of load, the adhesive wear degree of the samples with low Cu content increases, and the abrasive wear degree of the samples with high Cu content increases.

Key wordsAl-Cu alloy    Cu content    specific wear rate    friction and wear
收稿日期: 2021-01-26      出版日期: 2022-11-17
中图分类号:  TG146.2+1  
基金资助:金属材料强度国家重点实验室开放项目(20212317)
通讯作者: 赵君文     E-mail: swjtuzjw@home.swjtu.edu.cn
作者简介: 赵君文(1982—), 男, 副教授, 博士, 研究方向为轨道交通关键材料加工及服役性能, 联系地址: 四川省成都市二环路北一段111号西南交通大学材料科学与工程学院(610031), E-mail: swjtuzjw@home.swjtu.edu.cn
引用本文:   
王海波, 赵君文, 陶星宇, 戴光泽. 高Cu铸造铝合金的摩擦磨损性能[J]. 材料工程, 2022, 50(11): 109-118.
Haibo WANG, Junwen ZHAO, Xingyu TAO, Guangze DAI. Friction and wear properties of cast aluminum alloy with high Cu content. Journal of Materials Engineering, 2022, 50(11): 109-118.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000072      或      http://jme.biam.ac.cn/CN/Y2022/V50/I11/109
Alloy Liquidus temperature/℃ Pouring temperature/℃
Al-5Cu 647 667
Al-10Cu 633 653
Al-15Cu 618 638
Al-20Cu 602 622
Table 1  Al-Cu合金的液相线温度及浇注温度
Fig.1  试样的尺寸(a)及表面形貌(b)
(A部位为金相取样位置)
Fig.2  Al-Cu合金试样的SEM图像
(a)Al-5Cu; (b)Al-10Cu; (c)Al-15Cu; (d)Al-20Cu; (e), (f)图(c)中1, 2点EDS
Fig.3  Al-Cu合金试样θ相的形貌
(a)Al-5Cu; (b)Al-10Cu; (c)Al-15Cu; (d)Al-20Cu
Fig.4  Al-Cu合金试样的XRD谱图
Phase Al-5Cu Al-10Cu Al-15Cu Al-20Cu
α-Al 98.00 91.30 83.80 74.20
θ 2.00 8.70 16.20 25.80
Table 2  不同组分Al-Cu合金α-Al相和θ相的体积分数(%)
Fig.5  Al-Cu合金试样的密度和硬度
Fig.6  Al-Cu合金试样的平均摩擦因数
Fig.7  3 N载荷下Al-Cu合金试样的摩擦因数曲线
Fig.8  Al-Cu合金试样不同载荷下表面磨痕区域横截面沿纵深方向的二维轮廓线
(a)Al-5Cu; (b)Al-10Cu; (c)Al-15Cu; (d)Al-20Cu
Fig.9  Al-Cu合金试样不同载荷下的体积磨损量
Fig.10  Al-Cu合金试样的比磨损率
Fig.11  在1 N载荷下Al-Cu合金试样的磨损表面SEM图及EDS分析
(a)Al-5Cu; (b)Al-10Cu; (c)Al-15Cu; (d)Al-20Cu; (e), (f)图(c)中3, 4点EDS分析
Fig.12  在1 N载荷下Al-15Cu(a)与Al-20Cu(b)合金试样磨损表面的高倍SEM图
Fig.13  在5 N载荷下Al-Cu合金试样磨损表面的SEM图
(a)Al-5Cu; (b)Al-10Cu; (c)Al-15Cu; (d)Al-20Cu
1 ALEXOPOULOS N D , VELONAKI Z , STERGIOU C I , et al. Effect of ageing on precipitation kinetics, tensile and work harde-ning behavior of Al-Cu-Mg (2024) alloy[J]. Materials Science and Engineering: A, 2017, 700, 457- 467.
doi: 10.1016/j.msea.2017.05.090
2 HU Y , WANG G , YE M , et al. A precipitation hardening model for Al-Cu-Cd alloys[J]. Materials & Design, 2018, 151, 123- 132.
3 AAL M , MAHALLAWY N E , SHEHATA F A , et al. Wear pro-perties of ECAP-processed ultrafine grained Al-Cu alloys[J]. Materials Science and Engineering: A, 2010, 527 (16/17): 3726- 3732.
4 LIU X Y , PAN Q L , LU Z L , et al. Effects of solution treatment on the microstructure and mechanical properties of Al-Cu-Mg-Ag alloy[J]. Materials & Design, 2010, 31 (9): 4392- 4397.
5 王德升, 魏少华, 樊建中, 等. 固溶处理对SiCp/Al-Cu-Mg复合材料组织和性能的影响[J]. 稀有金属, 2016, 40 (2): 125- 131.
5 WANG D S , WEI S H , FAN J Z , et al. Microstructure and properties of SiCp/Al-Cu-Mg composites with solution treatment[J]. Chinese Journal of Rare Metals, 2016, 40 (2): 125- 131.
6 MURAYAMA M , HORITA Z , HONO K . Microstructure of two-phase Al-1.7 at% Cu alloy deformed by equal-channel angular pressing[J]. Acta Materialia, 2001, 49 (1): 21- 29.
doi: 10.1016/S1359-6454(00)00308-6
7 XU X , LIU Z , LI Y , et al. Evolution of precipitates of Al-Cu alloy during equal-channel angular pressing at room temperature[J]. Transactions of Nonferrous Metals Society of China, 2008, 18 (5): 1047- 1052.
doi: 10.1016/S1003-6326(08)60179-X
8 PRADOS E , SORDI V , FERRANTE M . Tensile behaviour of an Al-4 wt.%Cu alloy deformed by equal-channel angular pressing[J]. Materials Science and Engineering: A, 2009, 503 (1/2): 68- 70.
9 FANG D R , ZHANG Z F , WU S D , et al. Effect of equal channel angular pressing on tensile properties and fracture modes of cas-ting Al-Cu alloys[J]. Materials Science and Engineering: A, 2006, 426 (1/2): 305- 313.
10 BAHL S , HU X , HOAR E , et al. Effect of copper content on the tensile elongation of Al-Cu-Mn-Zr alloys: experiments and finite element simulations[J]. Materials Science and Engineering: A, 2020, 772, 138801.
doi: 10.1016/j.msea.2019.138801
11 BAHL S , HU X , SISCO K , et al. Influence of copper content on the high temperature tensile and low cycle fatigue behavior of cast Al-Cu-Mn-Zr alloys[J]. International Journal of Fatigue, 2020, 140, 105836.
doi: 10.1016/j.ijfatigue.2020.105836
12 许虹宇, 黄陆军, 耿林, 等. Cu含量对Al2O3·SiO2sf/Al-Cu复合材料耐磨性能的影响[J]. 金属学报, 2013, 49 (9): 1131- 1136.
12 XU H Y , HUANG L J , GENG L , et al. Effect of Cu content on the wear properties of Al2O3·SiO2sf/Al-Cu composites[J]. Acta Metallurgica Sinica, 2013, 49 (9): 1131- 1136.
13 KUMAR A N , SRINIVASU R , RAO J B . Dry sliding wear behavior of pure aluminium and Al-Cu alloys[J]. Journal of the Institution of Engineers, 2009, 90, 7- 11.
14 RAJU P , RAJESH S , RAO J B , et al. Tribological behavior of Al-Cu alloys and innovative Al-Cu metal matrix composite fabricated using stir-casting technique[J]. Materials Today: Procee-dings, 2018, 5 (1): 885- 896.
doi: 10.1016/j.matpr.2017.11.161
15 王富鑫, 骆良顺, 王亮, 等. 合金成分和冷却速率对Al-Cu合金凝固过程中初生Al2Cu相生长形貌的影响[J]. 金属学报, 2016, 52 (3): 361- 368.
15 WANG F X , LUO L S , WANG L , et al. Effect of alloy composition and cooling rate on the growth morphology of primary Al2Cu phase in Al-Cu alloy during solidification[J]. Acta Metallurgica Sinica, 2016, 52 (3): 361- 368.
16 OTTERLOO J L D M V , BAGNOLI D , HOSSON J T M D . Enhanced mechanical properties of laser treated Al-Cu alloys: a microstructural analysis[J]. Acta Metallurgica et Materialia, 1995, 43 (7): 2649- 2656.
doi: 10.1016/0956-7151(94)00467-V
17 温诗铸, 黄平. 摩擦学原理[M]. 4版 北京: 清华大学出版社, 2012: 210- 211.
17 WEN S Z , HUANG P . Principles of tribology[M]. 4th ed Beijing: Tsinghua University Press, 2012: 210- 211.
18 刘用, 马胜国, 刘英杰, 等. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46 (2): 99- 104.
18 LIU Y , MA S G , LIU Y J , et al. Friction and wear properties of AlxCrCuFeNi2 high-entropy alloys with multi-principal-elements[J]. Journal of Materials Engineering, 2018, 46 (2): 99- 104.
19 张翔, 王晓溪, 张德坤, 等. ECAP挤压道次对6061铝合金力学性能及耐磨性的影响[J]. 锻压技术, 2019, 44 (2): 61- 67.
19 ZHANG X , WANG X X , ZHANG D K , et al. Influences of ECAP pass on mechanical properties and wear resistance of 6061 aluminum alloy[J]. Forging & Stamping Technology, 2019, 44 (2): 61- 67.
20 潘志勇. 半固态加工Al-Cu合金的组织及性能的研究[D]. 长沙: 湖南大学, 2007.
20 PAN Z Y. The research on microstructure and property of Al-Cu alloy by semi-solid processing[D]. Changsha: Hunan University, 2007.
21 边培莹, 尹恩怀. 3D打印铝合金材料的摩擦学性能[J]. 中国表面工程, 2016, 29 (3): 74- 79.
21 BIAN P Y , YIN E H . Tribological properties of 3D printing aluminum alloy[J]. China Surface Engineering, 2016, 29 (3): 74- 79.
22 宋芊汀, 徐映坤, 徐坚. (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为[J]. 金属学报, 2020, 56 (11): 1507- 1520.
22 SONG Q T , XU Y K , XU J . Dry-sliding wear behavior of (TiZrNbTa)90Mo10 high entropy alloy against Al2O3[J]. Acta Metallurgica Sinica, 2020, 56 (11): 1507- 1520.
23 REN X , FU H , XING J , et al. Effect of boron concentration on microstructures and properties of Fe-B-C alloy steel[J]. Journal of Materials Research, 2017, 32 (16): 3078- 3088.
doi: 10.1557/jmr.2017.304
24 MELGAREJO Z H , SUAREZ O M , SRIDHARAN K . Wear resistance of a functionally-graded aluminum matrix composite[J]. Scripta Materialia, 2006, 55 (1): 95- 98.
doi: 10.1016/j.scriptamat.2006.03.031
25 LU J , SONG Y , HUA L , et al. Effect of temperature on friction and galling behavior of 7075 aluminum alloy sheet based on ball-on-plate sliding test[J]. Tribology International, 2019, 140, 105872.
doi: 10.1016/j.triboint.2019.105872
26 黄凯, 蒋日鹏, 李晓谦, 等. 超声外场对原位TiB2/2A14铝基复合材料的摩擦磨损性能的影响[J]. 材料工程, 2019, 47 (12): 78- 84.
26 HUANG K , JIANG R P , LI X Q , et al. Effect of ultrasonic field on friction and wear properties of in-situ TiB2/2A14 composite materials[J]. Journal of Materials Engineering, 2019, 47 (12): 78- 84.
27 ASHIRI R , NIROUMAND B , KARIMZADEH F . Physical, mechanical and dry sliding wear properties of an Al-Si-Mg-Ni-Cu alloy under different processing conditions[J]. Journal of Alloys and Compounds, 2014, 582, 213- 222.
doi: 10.1016/j.jallcom.2013.08.016
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[3] 惠阳, 刘贵民, 兰海, 杜建华. 连续制动条件下泡沫陶瓷/金属双连续相复合材料的摩擦磨损性能[J]. 材料工程, 2022, 50(4): 112-122.
[4] 张家铭, 余伟, 张泽宇. 工业纯钛TA1的高温摩擦与磨损行为[J]. 材料工程, 2021, 49(3): 93-99.
[5] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[6] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[7] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[8] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[9] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[10] 黄凯, 蒋日鹏, 李晓谦, 李瑞卿, 张立华. 超声外场对原位TiB2/2A14铝基复合材料的摩擦磨损性能的影响[J]. 材料工程, 2019, 47(12): 78-84.
[11] 田晋, 高立, 蔡滨, 齐泽昊, 谭业发. 功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制[J]. 材料工程, 2019, 47(11): 92-99.
[12] 江泽琦, 冯彦寒, 方建华, 刘坪, 陈波水, 谷科城, 吴江. 含硫代磷酸铵盐润滑油在电磁场作用下的摩擦学性能[J]. 材料工程, 2018, 46(9): 95-100.
[13] 杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程, 2018, 46(5): 120-125.
[14] 刘小辉, 王帅星, 杜楠, 赵晴, 康佳, 刘欢欢. 电解液中Na2WO4对Ti2AlNb微弧氧化膜结构及摩擦磨损性能的影响[J]. 材料工程, 2018, 46(2): 84-92.
[15] 刘用, 马胜国, 刘英杰, 张腾, 杨慧君. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2): 99-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn