Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (11): 51-61    DOI: 10.11868/j.issn.1001-4381.2021.000078
  综述 本期目录 | 过刊浏览 | 高级检索 |
微合金化对TiB2颗粒增强铝基复合材料微观组织和力学性能影响的研究进展
薛彦庆, 李博, 王新亮, 张晗, 郝启堂()
西北工业大学 凝固技术国家重点实验室, 西安 710072
Micro-alloying influence in microstructure evolution and mechanical properties of TiB2 particle reinforced aluminum matrix composites: a review
Yan-qing XUE, Bo LI, Xin-liang WANG, Han ZHANG, Qi-tang HAO()
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(16712 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

微量添加合金元素是改善铝基复合材料综合性能的有效方法,是基于电磁搅拌、超声振动等物理工艺,双峰结构、仿生层状材料等制备技术之外改善增强相/基体界面结构、调控强度-韧性力学性能的一种行之有效的低成本技术。近年来,合金元素在TiB2颗粒增强铝基复合材料中的研究备受关注,取得了一定的成果,对其作用机理的理解也向纳米层级甚至原子层级迈进。本文归纳了国内外微量添加合金元素对TiB2/Al复合材料中TiB2颗粒形貌、微观组织、力学性能的一系列最新进展,阐述了微合金化机制,并展望了其在调控复合材料裂纹萌生与扩展、发挥微纳尺度本征力学性能、协调材料强度和韧性矛盾中的潜在价值,以期为制备高性能铝基复合材料提供借鉴和参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛彦庆
李博
王新亮
张晗
郝启堂
关键词 铝基复合材料微合金化微观组织力学性能    
Abstract

Micro-addition of alloying elements is not only an effective method to improve the overall performance of aluminum matrix composites but also a proven workable low-cost technology in improving the reinforced phase/matrix interface structure and regulating the mechanical property of strength-toughness other than the physical processes such as electromagnetic stirring and ultrasonic vibration, as well as preparation technologies like bimodal structure and biomimetic layered materials, etc. In recent years, the research of alloying elements in TiB2 particles reinforced aluminum matrix composites has attracted much attention and achieved remarkable results which lay a good foundation for better understanding of its mechanism on the nano-level or even the atomic level. A series of latest developments on the properties of TiB2/Al composites by adding alloying elements at home and abroad were summarized, i.e. TiB2 particle morphology, microstructure and mechanical properties.The mechanism of micro-alloying and its prospect on regulating crack initiation and propagation, exerting intrinsic mechanical properties of micro and nano scale, along with coordinating the dilemma of strength-ductility trade-off were also forecasted, aimed at providing reference for the preparation of high-performance aluminum matrix composites.

Key wordsaluminum matrix composite    micro-alloying    microstructure    mechanical property
收稿日期: 2021-01-27      出版日期: 2021-11-12
中图分类号:  TG146.2+1  
基金资助:国家自然科学基金(51375391);陕西省重点研发计划(2020GY-117);西北工业大学凝固技术国家重点实验室自主研究课题(2019-TZ-03)
通讯作者: 郝启堂     E-mail: haoqitang@nwpu.edu.cn
作者简介: 郝启堂(1965-), 男, 教授, 博士, 研究方向: 铝基复合材料, 联系地址: 陕西省西安市碑林区友谊西路127号西北工业大学材料科技大楼(710072), E-mail: haoqitang@nwpu.edu.cn
引用本文:   
薛彦庆, 李博, 王新亮, 张晗, 郝启堂. 微合金化对TiB2颗粒增强铝基复合材料微观组织和力学性能影响的研究进展[J]. 材料工程, 2021, 49(11): 51-61.
Yan-qing XUE, Bo LI, Xin-liang WANG, Han ZHANG, Qi-tang HAO. Micro-alloying influence in microstructure evolution and mechanical properties of TiB2 particle reinforced aluminum matrix composites: a review. Journal of Materials Engineering, 2021, 49(11): 51-61.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000078      或      http://jme.biam.ac.cn/CN/Y2021/V49/I11/51
Fig.1  微合金化作用机制下TiB2颗粒的扫描电镜图
(a)没有外加元素[26];(b)添加Sc[26];(c)添加La[26];(d)添加Y[26];(e)添加Mg[27];(f)添加Ce[24]
Fig.2  TiB2晶体的形态演变过程示意图[26]
Fig.3  Mg-Ag微合金化TiB2/Al-4.5Cu复合材料中σ-Al5Cu6Mg2, Ω-Al2Cu相的HAADF(a),TEM(b)和HRTEM图(c)[47]
Fig.4  TiB2/Al界面OR1(1)和OR2(2)取向(Zn1.5Cu0.5)Mg相的STEM-HAADF图(a),对应的FFT花样(b)及示意图(c)[49]
Material YS/MPa UTS/MPa EM/GPa Hardness δ/% Ref
W-M* M* W-M M W-M M W-M M W-M M
0.5%Ce-5%TiB2/A356 227 259 282 307 70.3 75.7 92HV 118HV 4.6 6.4 [24]
0.6%Sc-TiB2/6061Al 740HV 920HV [26]
0.03%Sr-TiB2/A356 253.4 259.7 313.7 326 3.5±1 5.6 [36]
0.12%Zr-10%TiB2/Al-Zn-Mg-Cu 592 724 629 756 72.8 90.7 189HB 206HB 10.8 4.3 [54]
12%Zn-TiB2/Al-Zn-Mg-Cu 597 707 679 735 8.2 2.8 [55]
Mg-TiB2/A356 233±5 257±5 280±5 313±5 3.8±0.5 7.8±0.5 [56]
Table 1  微合金化对TiB2颗粒增强铝基复合材料力学性能的影响
Fig.5  不同构型设计示意图[58]
(a)离散颗粒;(b)棒状/层状/环状分布状态;(c)离散颗粒形成的网状结构;(d)连续颗粒形成的3D网状结构(双连续结构)
1 FAN Z , WANG Y , ZHANG Y , et al. Grain refining mechanism in the Al/Al-Ti-B system[J]. Acta Materialia, 2015, 84, 292- 304.
doi: 10.1016/j.actamat.2014.10.055
2 黄凯, 蒋日鹏, 李晓谦, 等. 超声外场对原位TiB2/2A14铝基复合材料的摩擦磨损性能的影响[J]. 材料工程, 2019, 47 (12): 78- 84.
doi: 10.11868/j.issn.1001-4381.2018.000823
2 HUANG K , JIANG R P , LI X Q , et al. Effect of ultrasonic field on friction and wear properties of in-situ TiB2/2A14 composite materials[J]. Journal of Materials Engineering, 2019, 47 (12): 78- 84.
doi: 10.11868/j.issn.1001-4381.2018.000823
3 DONG X , YOUSSEF H , ZHANG Y , et al. High performance Al/TiB2 composites fabricated by nanoparticle reinforcement and cu-tting-edge super vacuum assisted die casting process[J]. Compo-sites Part B: Engineering, 2019, 177, 107453.
doi: 10.1016/j.compositesb.2019.107453
4 李惠, 肖文龙, 张艺镡, 等. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47 (4): 152- 159.
4 LI H , XIAO W L , ZHANG Y T , et al. Microstructure and mechanical properties of Ti-B4C/Al2024 composite with hybrid struc- ture[J]. Journal of Materials Engineering, 2019, 47 (4): 152- 159.
5 LI Y , HU B , LIU B , et al. Insight into Si poisoning on grain refinement of Al-Si/Al-5Ti-B system[J]. Acta Materialia, 2020, 187, 51- 65.
doi: 10.1016/j.actamat.2020.01.039
6 刘慧敏, 王楠, 苏娟. 原位Al2O3/Al-Cu复合材料的制备与组织研究[J]. 材料工程, 2014, (11): 23- 27.
doi: 10.11868/j.issn.1001-4381.2014.11.004
6 LIU H M , WANG N , SU J . Preparation and microstructure of in-situ Al2O3/Al-Cu composite[J]. Journal of Materials Engineering, 2014, (11): 23- 27.
doi: 10.11868/j.issn.1001-4381.2014.11.004
7 XIE X , CHEN C , CHEN Z , et al. Achieving simultaneously improved tensile strength and ductility of a nano-TiB2/AlSi10 Mg composite produced by cold spray additive manufacturing[J]. Composites Part B: Engineering, 2020, 202, 108404.
doi: 10.1016/j.compositesb.2020.108404
8 ZHANG L , ZHENG Q , JIANG H , et al. Interfacial energy between Al melt and TiB2 particles and efficiency of TiB2 particles to nucleate α-Al[J]. Scripta Materialia, 2019, 160, 25- 28.
doi: 10.1016/j.scriptamat.2018.09.042
9 LIN T C , CAO C , SOKOLUK M , et al. Aluminum with dispersed nanoparticles by laser additive manufacturing[J]. Nature Communications, 2019, 101, 4124.
10 SCHAFFER P L , MILLER D N , DAHLE A K . Crystallography of engulfed and pushed TiB2 particles in aluminium[J]. Scripta Materialia, 2007, 57 (12): 1129- 1132.
doi: 10.1016/j.scriptamat.2007.08.009
11 王宏明, 李桂荣, 赵玉涛, 等. 电磁连铸颗粒增强铝基复合材料圆坯及其摩擦性能[J]. 材料工程, 2005, (12): 53- 56.
doi: 10.3969/j.issn.1001-4381.2005.12.013
11 WANG H M , LI G R , ZHAO Y T , et al. Electromagnetic conti-nuous casting for particle-reinforced Al matrix composites billet and its wear properties[J]. Journal of Materials Engineering, 2005, (12): 53- 56.
doi: 10.3969/j.issn.1001-4381.2005.12.013
12 赵敏, 姜龙涛, 武高辉, 等. AlNP/Al和TiB2P/Al复合材料摩擦磨损性能研究[J]. 材料工程, 2004, (9): 57- 59, 64.
doi: 10.3969/j.issn.1001-4381.2004.09.013
12 ZHAO M , JIANG L T , WU G H , et al. Friction and wear properties of AlNP/Al and TiB2P/Al composites[J]. Journal of Materials Engineering, 2004, (9): 57- 59, 64.
doi: 10.3969/j.issn.1001-4381.2004.09.013
13 RONG X , ZHAO D , HE C , et al. Revealing the strengthening and toughening mechanisms of Al-CuO composite fabricated via in-situ solid-state reaction[J]. Acta Materialia, 2021, 204, 116524.
doi: 10.1016/j.actamat.2020.116524
14 WANG K , JIANG H Y , JIA Y W , et al. Nanoparticle-inhibited growth of primary aluminum in Al-10Si alloys[J]. Acta Materialia, 2016, 103, 252- 263.
doi: 10.1016/j.actamat.2015.10.005
15 屈敏, 刘鑫, 崔岩, 等. 稀土元素对原位合成TiB2/Al复合材料组织和性能的影响[J]. 材料工程, 2018, 46 (3): 98- 104.
15 QU M , LIU X , CUI Y , et al. Effect of rare earth element on microstructure and properties of in situ synthesized TiB2/Al composites[J]. Journal of Materials Engineering, 2018, 46 (3): 98- 104.
16 WANG P , GAMMER C , BRENNE F , et al. A heat treatable TiB2/Al-3.5Cu-1.5Mg-1Si composite fabricated by selective laser melting: microstructure, heat treatment and mechanical pro-perties[J]. Composites Part B: Engineering,, 2018, 147, 162- 168.
doi: 10.1016/j.compositesb.2018.04.026
17 李贺, 柴丽华, 马腾飞, 等. 高温熔体反应法制备Al-5Ti-1B细化剂[J]. 材料工程, 2017, 45 (2): 39- 45.
doi: 10.3969/j.issn.1673-1433.2017.02.009
17 LI H , CHAI L H , MA T F , et al. Synthesis of Al-5Ti-1B refiner by melt reaction method[J]. Journal of Materials Engineering, 2017, 45 (2): 39- 45.
doi: 10.3969/j.issn.1673-1433.2017.02.009
18 WANG Y , FANG C M , ZHOU L , et al. Mechanism for Zr poisoning of Al-Ti-B based grain refiners[J]. Acta Materialia, 2019, 164, 428- 439.
doi: 10.1016/j.actamat.2018.10.056
19 CUI Y , KING D J M , HORSFIELD A P , et al. Solidification orientation relationships between Al3Ti and TiB2[J]. Acta Materialia, 2020, 186, 149- 161.
doi: 10.1016/j.actamat.2019.12.013
20 HE C , ZHAO N , SHI C , et al. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites[J]. Advanced Materials, 2007, 19 (8): 1128- 1132.
doi: 10.1002/adma.200601381
21 李敬勇, 赵勇, 陈华斌. A356Al/TiB2颗粒增强铝基复合材料的搅拌摩擦焊[J]. 材料工程, 2005, (1): 29- 32, 36.
doi: 10.3969/j.issn.1001-4381.2005.01.007
21 LI J Y , ZHAO Y , CHEN H B . Friction stir welding of TiB2 particulate A356 aluminum alloy composite[J]. Journal of Materials Engineering, 2005, (1): 29- 32, 36.
doi: 10.3969/j.issn.1001-4381.2005.01.007
22 AGRAWAL S , GHOSE A K , CHAKRABARTY I . Effect of rotary electromagnetic stirring during solidification of in-situ Al-TiB2 composites[J]. Materials & Design, 2017, 113, 195- 206.
23 DING W , ZHAO X , CHEN T , et al. Effect of rare earth Y and Al-Ti-B master alloy on the microstructure and mechanical pro-perties of 6063 aluminum alloy[J]. Journal of Alloys and Compounds, 2020, 830, 154685.
doi: 10.1016/j.jallcom.2020.154685
24 XUE J , WU W , MA J , et al. Study on the effect of CeO2 for fabricating in-situ TiB2/A356 composites with improved mechanical properties[J]. Materials Science and Engineering: A, 2020, 786, 139416.
doi: 10.1016/j.msea.2020.139416
25 ZOU C , KANG H , WANG W , et al. Effect of La addition on the particle characteristics, mechanical and electrical properties of in situ Cu-TiB2 composites[J]. Journal of Alloys and Compounds, 2016, 687, 312- 319.
doi: 10.1016/j.jallcom.2016.06.129
26 ZHANG T , FENG K , LI Z , et al. Effects of rare earth elements on the microstructure and wear properties of TiB2 reinforced aluminum matrix composite coatings: experiments and first principles calculations[J]. Applied Surface Science, 2020, 530, 147051.
doi: 10.1016/j.apsusc.2020.147051
27 XU R , TAN Z , FAN G , et al. High-strength CNT/Al-Zn-Mg-Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying[J]. Composites Part: A, 2018, 111, 1- 11.
doi: 10.1016/j.compositesa.2018.05.012
28 SUN J , WANG X , GUO L , et al. Synthesis of nanoscale spherical TiB2 particles in Al matrix by regulating Sc contents[J]. Journal of Materials Research, 2019, 3407, 1258- 1265.
29 SUN J , WANG X Q , CHEN Y , et al. Effect of Cu element on morphology of TiB2 particles in TiB2/Al-Cu composites[J]. Transactions of Nonferrous Metals Society of China, 2020, 305, 1148- 1156.
30 SUN J , ZHANG X , ZHANG Y , et al. Modification mechanism of primary silicon by TiB2 particles in a TiB2/ZL109 composite[J]. Journal of Materials Science, 2014, 503, 1237- 1247.
31 SUN J , ZHANG X , ZHANG Y , et al. Effect of alloy elements on the morphology transformation of TiB2 particles in Al matrix[J]. Micron, 2015, 70, 21- 25.
doi: 10.1016/j.micron.2014.12.002
32 SUN J , ZHANG X B , CAI Q , et al. Distribution and engulfment behavior of TiB2 particles or clusters in wedge-shaped copper casting ingot[J]. Transactions of Nonferrous Metals Society of China, 2015, 251, 54- 60.
33 HUANG D , YAN D , MA S , et al. Scandium on the formation of in situ TiB2 particulates in an aluminum matrix[J]. Journal of Materials Research, 2018, 3318, 2721- 2727.
34 WANG X , LENG H , HAN B , et al. Solidified microstructures and elastic modulus of hypo-eutectic and hyper-eutectic TiB2-reinforced high-modulus steel[J]. Acta Materialia, 2019, 176, 84- 95.
doi: 10.1016/j.actamat.2019.06.052
35 LI P , WU Y , LIU X . Controlled synthesis of different morphologies of TiB2 microcrystals by aluminum melt reaction method[J]. Materials Research Bulletin, 2013, 486, 2044- 2048.
36 WANG T , ZHENG Y , CHEN Z , et al. Effects of Sr on the microstructure and mechanical properties of in situ TiB2 reinforced A356 composite[J]. Materials & Design, 2014, 64, 185- 193.
37 XUE J , WANG J , HAN Y , et al. Effects of CeO2 additive on the microstructure and mechanical properties of in situ TiB2/Al composite[J]. Journal of Alloys and Compounds, 2011, 509 (5): 1573- 1578.
doi: 10.1016/j.jallcom.2010.10.152
38 董天顺, 崔春翔, 刘双进, 等. Al-Ti-B细化剂的快速凝固及其细化机理研究[J]. 稀有金属材料与工程, 2008, 37 (1): 29- 32.
doi: 10.3321/j.issn:1002-185X.2008.01.007
38 DONG T S , CUI C X , LIU S J , et al. Study on the rapid solidification and refining mechanism of Al-Ti-B refiner[J]. Rare Metal Materials and Engineering, 2008, 37 (1): 29- 32.
doi: 10.3321/j.issn:1002-185X.2008.01.007
39 申玉田, 崔春翔, 吴人洁, 等. Cu-Al合金内氧化工艺及动力学的研究[J]. 稀有金属材料与工程, 2001, (1): 44- 49.
doi: 10.3321/j.issn:1002-185X.2001.01.012
39 SHEN Y T , CUI C X , WU R J , et al. Internal oxidation techno-logy and kinetic of the alloy Cu-Al[J]. Rare Metal Materials and Engineering, 2001, (1): 44- 49.
doi: 10.3321/j.issn:1002-185X.2001.01.012
40 SHANGGUAN D , AHUJAS , STEFANESCU D M . An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface[J]. Metallurgical Transactions A, 1992, 23, 669- 680.
doi: 10.1007/BF02801184
41 STEFANESCU D M , DHINDAWB K , KACAR S A . Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites[J]. Metallurgical Transactions A, 1988, 19, 2847- 2855.
doi: 10.1007/BF02645819
42 ZHOU Y M , ZHANG T , XU K , et al. Effect of Y2O3 addition on microstructure and mechanical properties of spark plasma sintered AlMgB14 and AlMgB14-TiB2[J]. Ceramics International, 2018, 447, 8591- 8598.
43 薛彦庆, 郝启堂, 李新雷, 等. Mg对原位自生TiB2/Al-4.5Cu复合材料微观组织及力学性能的影响[J]. 复合材料学报, 2021, 38 (5): 1507- 1516.
43 XUE Y Q , HAO Q T , LI X L , et al. Effect of Mg on the microstructure and mechanical properties of in-situ TiB2/Al-4.5Cu composites[J]. Acta Materiae Compositae Sinica, 2021, 38 (5): 1507- 1516.
44 XUE Y Q , SU R , WEI D , et al. Investigation on the elevated-temperature mechanical properties of TiB2/Al-4.5%Cu compo-sites[J]. Journal of Physics Conference Series, 2020, 1699, 012029.
doi: 10.1088/1742-6596/1699/1/012029
45 XUE Y Q , HAO Q T , LI B , et al. Elevated temperature mechanical properties of in-situ synthesized TiB2/Al-4.5Cu matrix composites[J]. Journal of Physics Conference Series, 2021, 1885, 032041.
doi: 10.1088/1742-6596/1885/3/032041
46 薛彦庆, 郝启堂, 魏典, 等. 原位自生TiB2/Al-4.5Cu复合材料微观组织和力学性能[J]. 材料工程, 2021, 49 (2): 97- 104.
46 XUE Y Q , HAO Q T , WEI D , et al. Microstructure and mechanical properties of in-situ synthesized TiB2/Al-4.5Cu composites[J]. Journal of Materials Engineering, 2021, 49 (2): 97- 104.
47 XUE Y Q , HAO Q T , LI B , et al. Improving the strength-ductility trade-off of TiB2/Al-4.5%Cu composites via Mg-Ag micro-alloying and multi-step heat treatment[J]. Materials Research Express, 2021, 8 (5): 056519.
doi: 10.1088/2053-1591/ac0264
48 ZHANG X , SUN J , WANG M , et al. Improvement of yttrium on the hot tearing susceptibility of 6TiB2/Al-5Cu composite[J]. Journal of Rare Earths, 2015, 3312, 1335- 1340.
49 MA Y , ADDAD A , JI G , et al. Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite[J]. Acta Materialia, 2020, 185, 287- 299.
doi: 10.1016/j.actamat.2019.11.068
50 DENG C , XU B , WU P , et al. Stability of the Al/TiB2 interface and doping effects of Mg/Si[J]. Applied Surface Science, 2017, 425, 639- 645.
doi: 10.1016/j.apsusc.2017.06.227
51 LIU Z , DONG Z , CHENG X , et al. On the supplementation of magnesium and usage of ultrasound stirring for fabricating in situ TiB2/A356 composites with improved mechanical properties[J]. Metallurgical and Materials Transactions A, 2018, 4911, 5585- 5598.
52 SAJJADIS A , EZATPOURH R , TORABI P M . Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes[J]. Materials and Design, 2012, 34, 106- 111.
doi: 10.1016/j.matdes.2011.07.037
53 SUN Y , CHOI H , KONISHI H , et al. Effect of core-shelled na-noparticles of carbon-coated nickel on magnesium[J]. Materials Science and Engineering: A, 2012, 546, 284- 290.
doi: 10.1016/j.msea.2012.03.070
54 LI H , WANG X , CHAI L , et al. Microstructure and mechanical properties of an in-situ TiB2/Al-Zn-Mg-Cu-Zr composite fabricated by melt-SHS process[J]. Materials Science and Engineering: A, 2018, 720, 60- 68.
doi: 10.1016/j.msea.2018.02.025
55 WANG M , WANG Y , LIU J , et al. Effects of Zn content on microstructures and mechanical properties of in-situ TiB2/Al-Zn-Mg-Cu composites subjected to hot extrusion[J]. Materials Science and Engineering: A, 2019, 742, 364- 372.
doi: 10.1016/j.msea.2018.11.030
56 ZHANG Y , JI S , FAN Z . Improvement of mechanical properties of Al-Si alloy with effective grain refinement by in-situ integrated Al2.2Ti1B-Mg refiner[J]. Journal of Alloys and Compounds, 2017, 710, 166- 171.
doi: 10.1016/j.jallcom.2017.03.244
57 LI Y , LIAN G , GENG J , et al. Effects of ultrasonic rolling on the surface integrity of in-situ TiB2/2024Al composite[J]. Journal of Materials Processing Technology, 2021, 293, 117068.
doi: 10.1016/j.jmatprotec.2021.117068
58 HUANG L , AN Q , GENG L , et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites[J]. Advanced Materials, 2021, 33 (6): 2000688.
doi: 10.1002/adma.202000688
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[4] 潘士伟, 王自东, 陈晓华, 王艳林, 陈凯旋, 朱谕至. 锆微合金化增强铝合金的研究进展[J]. 材料工程, 2022, 50(8): 17-33.
[5] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[6] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[7] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[8] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[9] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[10] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[11] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[12] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[13] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[14] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[15] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn