Micro-addition of alloying elements is not only an effective method to improve the overall performance of aluminum matrix composites but also a proven workable low-cost technology in improving the reinforced phase/matrix interface structure and regulating the mechanical property of strength-toughness other than the physical processes such as electromagnetic stirring and ultrasonic vibration, as well as preparation technologies like bimodal structure and biomimetic layered materials, etc. In recent years, the research of alloying elements in TiB2 particles reinforced aluminum matrix composites has attracted much attention and achieved remarkable results which lay a good foundation for better understanding of its mechanism on the nano-level or even the atomic level. A series of latest developments on the properties of TiB2/Al composites by adding alloying elements at home and abroad were summarized, i.e. TiB2 particle morphology, microstructure and mechanical properties.The mechanism of micro-alloying and its prospect on regulating crack initiation and propagation, exerting intrinsic mechanical properties of micro and nano scale, along with coordinating the dilemma of strength-ductility trade-off were also forecasted, aimed at providing reference for the preparation of high-performance aluminum matrix composites.
FAN Z , WANG Y , ZHANG Y , et al. Grain refining mechanism in the Al/Al-Ti-B system[J]. Acta Materialia, 2015, 84, 292- 304.
doi: 10.1016/j.actamat.2014.10.055
HUANG K , JIANG R P , LI X Q , et al. Effect of ultrasonic field on friction and wear properties of in-situ TiB2/2A14 composite materials[J]. Journal of Materials Engineering, 2019, 47 (12): 78- 84.
doi: 10.11868/j.issn.1001-4381.2018.000823
3
DONG X , YOUSSEF H , ZHANG Y , et al. High performance Al/TiB2 composites fabricated by nanoparticle reinforcement and cu-tting-edge super vacuum assisted die casting process[J]. Compo-sites Part B: Engineering, 2019, 177, 107453.
doi: 10.1016/j.compositesb.2019.107453
LI H , XIAO W L , ZHANG Y T , et al. Microstructure and mechanical properties of Ti-B4C/Al2024 composite with hybrid struc- ture[J]. Journal of Materials Engineering, 2019, 47 (4): 152- 159.
5
LI Y , HU B , LIU B , et al. Insight into Si poisoning on grain refinement of Al-Si/Al-5Ti-B system[J]. Acta Materialia, 2020, 187, 51- 65.
doi: 10.1016/j.actamat.2020.01.039
LIU H M , WANG N , SU J . Preparation and microstructure of in-situ Al2O3/Al-Cu composite[J]. Journal of Materials Engineering, 2014, (11): 23- 27.
doi: 10.11868/j.issn.1001-4381.2014.11.004
7
XIE X , CHEN C , CHEN Z , et al. Achieving simultaneously improved tensile strength and ductility of a nano-TiB2/AlSi10 Mg composite produced by cold spray additive manufacturing[J]. Composites Part B: Engineering, 2020, 202, 108404.
doi: 10.1016/j.compositesb.2020.108404
8
ZHANG L , ZHENG Q , JIANG H , et al. Interfacial energy between Al melt and TiB2 particles and efficiency of TiB2 particles to nucleate α-Al[J]. Scripta Materialia, 2019, 160, 25- 28.
doi: 10.1016/j.scriptamat.2018.09.042
9
LIN T C , CAO C , SOKOLUK M , et al. Aluminum with dispersed nanoparticles by laser additive manufacturing[J]. Nature Communications, 2019, 101, 4124.
10
SCHAFFER P L , MILLER D N , DAHLE A K . Crystallography of engulfed and pushed TiB2 particles in aluminium[J]. Scripta Materialia, 2007, 57 (12): 1129- 1132.
doi: 10.1016/j.scriptamat.2007.08.009
WANG H M , LI G R , ZHAO Y T , et al. Electromagnetic conti-nuous casting for particle-reinforced Al matrix composites billet and its wear properties[J]. Journal of Materials Engineering, 2005, (12): 53- 56.
doi: 10.3969/j.issn.1001-4381.2005.12.013
ZHAO M , JIANG L T , WU G H , et al. Friction and wear properties of AlNP/Al and TiB2P/Al composites[J]. Journal of Materials Engineering, 2004, (9): 57- 59, 64.
doi: 10.3969/j.issn.1001-4381.2004.09.013
13
RONG X , ZHAO D , HE C , et al. Revealing the strengthening and toughening mechanisms of Al-CuO composite fabricated via in-situ solid-state reaction[J]. Acta Materialia, 2021, 204, 116524.
doi: 10.1016/j.actamat.2020.116524
14
WANG K , JIANG H Y , JIA Y W , et al. Nanoparticle-inhibited growth of primary aluminum in Al-10Si alloys[J]. Acta Materialia, 2016, 103, 252- 263.
doi: 10.1016/j.actamat.2015.10.005
QU M , LIU X , CUI Y , et al. Effect of rare earth element on microstructure and properties of in situ synthesized TiB2/Al composites[J]. Journal of Materials Engineering, 2018, 46 (3): 98- 104.
16
WANG P , GAMMER C , BRENNE F , et al. A heat treatable TiB2/Al-3.5Cu-1.5Mg-1Si composite fabricated by selective laser melting: microstructure, heat treatment and mechanical pro-perties[J]. Composites Part B: Engineering,, 2018, 147, 162- 168.
doi: 10.1016/j.compositesb.2018.04.026
LI H , CHAI L H , MA T F , et al. Synthesis of Al-5Ti-1B refiner by melt reaction method[J]. Journal of Materials Engineering, 2017, 45 (2): 39- 45.
doi: 10.3969/j.issn.1673-1433.2017.02.009
18
WANG Y , FANG C M , ZHOU L , et al. Mechanism for Zr poisoning of Al-Ti-B based grain refiners[J]. Acta Materialia, 2019, 164, 428- 439.
doi: 10.1016/j.actamat.2018.10.056
19
CUI Y , KING D J M , HORSFIELD A P , et al. Solidification orientation relationships between Al3Ti and TiB2[J]. Acta Materialia, 2020, 186, 149- 161.
doi: 10.1016/j.actamat.2019.12.013
20
HE C , ZHAO N , SHI C , et al. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites[J]. Advanced Materials, 2007, 19 (8): 1128- 1132.
doi: 10.1002/adma.200601381
LI J Y , ZHAO Y , CHEN H B . Friction stir welding of TiB2 particulate A356 aluminum alloy composite[J]. Journal of Materials Engineering, 2005, (1): 29- 32, 36.
doi: 10.3969/j.issn.1001-4381.2005.01.007
22
AGRAWAL S , GHOSE A K , CHAKRABARTY I . Effect of rotary electromagnetic stirring during solidification of in-situ Al-TiB2 composites[J]. Materials & Design, 2017, 113, 195- 206.
23
DING W , ZHAO X , CHEN T , et al. Effect of rare earth Y and Al-Ti-B master alloy on the microstructure and mechanical pro-perties of 6063 aluminum alloy[J]. Journal of Alloys and Compounds, 2020, 830, 154685.
doi: 10.1016/j.jallcom.2020.154685
24
XUE J , WU W , MA J , et al. Study on the effect of CeO2 for fabricating in-situ TiB2/A356 composites with improved mechanical properties[J]. Materials Science and Engineering: A, 2020, 786, 139416.
doi: 10.1016/j.msea.2020.139416
25
ZOU C , KANG H , WANG W , et al. Effect of La addition on the particle characteristics, mechanical and electrical properties of in situ Cu-TiB2 composites[J]. Journal of Alloys and Compounds, 2016, 687, 312- 319.
doi: 10.1016/j.jallcom.2016.06.129
26
ZHANG T , FENG K , LI Z , et al. Effects of rare earth elements on the microstructure and wear properties of TiB2 reinforced aluminum matrix composite coatings: experiments and first principles calculations[J]. Applied Surface Science, 2020, 530, 147051.
doi: 10.1016/j.apsusc.2020.147051
27
XU R , TAN Z , FAN G , et al. High-strength CNT/Al-Zn-Mg-Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying[J]. Composites Part: A, 2018, 111, 1- 11.
doi: 10.1016/j.compositesa.2018.05.012
28
SUN J , WANG X , GUO L , et al. Synthesis of nanoscale spherical TiB2 particles in Al matrix by regulating Sc contents[J]. Journal of Materials Research, 2019, 3407, 1258- 1265.
29
SUN J , WANG X Q , CHEN Y , et al. Effect of Cu element on morphology of TiB2 particles in TiB2/Al-Cu composites[J]. Transactions of Nonferrous Metals Society of China, 2020, 305, 1148- 1156.
30
SUN J , ZHANG X , ZHANG Y , et al. Modification mechanism of primary silicon by TiB2 particles in a TiB2/ZL109 composite[J]. Journal of Materials Science, 2014, 503, 1237- 1247.
31
SUN J , ZHANG X , ZHANG Y , et al. Effect of alloy elements on the morphology transformation of TiB2 particles in Al matrix[J]. Micron, 2015, 70, 21- 25.
doi: 10.1016/j.micron.2014.12.002
32
SUN J , ZHANG X B , CAI Q , et al. Distribution and engulfment behavior of TiB2 particles or clusters in wedge-shaped copper casting ingot[J]. Transactions of Nonferrous Metals Society of China, 2015, 251, 54- 60.
33
HUANG D , YAN D , MA S , et al. Scandium on the formation of in situ TiB2 particulates in an aluminum matrix[J]. Journal of Materials Research, 2018, 3318, 2721- 2727.
34
WANG X , LENG H , HAN B , et al. Solidified microstructures and elastic modulus of hypo-eutectic and hyper-eutectic TiB2-reinforced high-modulus steel[J]. Acta Materialia, 2019, 176, 84- 95.
doi: 10.1016/j.actamat.2019.06.052
35
LI P , WU Y , LIU X . Controlled synthesis of different morphologies of TiB2 microcrystals by aluminum melt reaction method[J]. Materials Research Bulletin, 2013, 486, 2044- 2048.
36
WANG T , ZHENG Y , CHEN Z , et al. Effects of Sr on the microstructure and mechanical properties of in situ TiB2 reinforced A356 composite[J]. Materials & Design, 2014, 64, 185- 193.
37
XUE J , WANG J , HAN Y , et al. Effects of CeO2 additive on the microstructure and mechanical properties of in situ TiB2/Al composite[J]. Journal of Alloys and Compounds, 2011, 509 (5): 1573- 1578.
doi: 10.1016/j.jallcom.2010.10.152
DONG T S , CUI C X , LIU S J , et al. Study on the rapid solidification and refining mechanism of Al-Ti-B refiner[J]. Rare Metal Materials and Engineering, 2008, 37 (1): 29- 32.
doi: 10.3321/j.issn:1002-185X.2008.01.007
SHEN Y T , CUI C X , WU R J , et al. Internal oxidation techno-logy and kinetic of the alloy Cu-Al[J]. Rare Metal Materials and Engineering, 2001, (1): 44- 49.
doi: 10.3321/j.issn:1002-185X.2001.01.012
40
SHANGGUAN D , AHUJAS , STEFANESCU D M . An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface[J]. Metallurgical Transactions A, 1992, 23, 669- 680.
doi: 10.1007/BF02801184
41
STEFANESCU D M , DHINDAWB K , KACAR S A . Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites[J]. Metallurgical Transactions A, 1988, 19, 2847- 2855.
doi: 10.1007/BF02645819
42
ZHOU Y M , ZHANG T , XU K , et al. Effect of Y2O3 addition on microstructure and mechanical properties of spark plasma sintered AlMgB14 and AlMgB14-TiB2[J]. Ceramics International, 2018, 447, 8591- 8598.
XUE Y Q , HAO Q T , LI X L , et al. Effect of Mg on the microstructure and mechanical properties of in-situ TiB2/Al-4.5Cu composites[J]. Acta Materiae Compositae Sinica, 2021, 38 (5): 1507- 1516.
44
XUE Y Q , SU R , WEI D , et al. Investigation on the elevated-temperature mechanical properties of TiB2/Al-4.5%Cu compo-sites[J]. Journal of Physics Conference Series, 2020, 1699, 012029.
doi: 10.1088/1742-6596/1699/1/012029
45
XUE Y Q , HAO Q T , LI B , et al. Elevated temperature mechanical properties of in-situ synthesized TiB2/Al-4.5Cu matrix composites[J]. Journal of Physics Conference Series, 2021, 1885, 032041.
doi: 10.1088/1742-6596/1885/3/032041
XUE Y Q , HAO Q T , WEI D , et al. Microstructure and mechanical properties of in-situ synthesized TiB2/Al-4.5Cu composites[J]. Journal of Materials Engineering, 2021, 49 (2): 97- 104.
47
XUE Y Q , HAO Q T , LI B , et al. Improving the strength-ductility trade-off of TiB2/Al-4.5%Cu composites via Mg-Ag micro-alloying and multi-step heat treatment[J]. Materials Research Express, 2021, 8 (5): 056519.
doi: 10.1088/2053-1591/ac0264
48
ZHANG X , SUN J , WANG M , et al. Improvement of yttrium on the hot tearing susceptibility of 6TiB2/Al-5Cu composite[J]. Journal of Rare Earths, 2015, 3312, 1335- 1340.
49
MA Y , ADDAD A , JI G , et al. Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite[J]. Acta Materialia, 2020, 185, 287- 299.
doi: 10.1016/j.actamat.2019.11.068
50
DENG C , XU B , WU P , et al. Stability of the Al/TiB2 interface and doping effects of Mg/Si[J]. Applied Surface Science, 2017, 425, 639- 645.
doi: 10.1016/j.apsusc.2017.06.227
51
LIU Z , DONG Z , CHENG X , et al. On the supplementation of magnesium and usage of ultrasound stirring for fabricating in situ TiB2/A356 composites with improved mechanical properties[J]. Metallurgical and Materials Transactions A, 2018, 4911, 5585- 5598.
52
SAJJADIS A , EZATPOURH R , TORABI P M . Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes[J]. Materials and Design, 2012, 34, 106- 111.
doi: 10.1016/j.matdes.2011.07.037
53
SUN Y , CHOI H , KONISHI H , et al. Effect of core-shelled na-noparticles of carbon-coated nickel on magnesium[J]. Materials Science and Engineering: A, 2012, 546, 284- 290.
doi: 10.1016/j.msea.2012.03.070
54
LI H , WANG X , CHAI L , et al. Microstructure and mechanical properties of an in-situ TiB2/Al-Zn-Mg-Cu-Zr composite fabricated by melt-SHS process[J]. Materials Science and Engineering: A, 2018, 720, 60- 68.
doi: 10.1016/j.msea.2018.02.025
55
WANG M , WANG Y , LIU J , et al. Effects of Zn content on microstructures and mechanical properties of in-situ TiB2/Al-Zn-Mg-Cu composites subjected to hot extrusion[J]. Materials Science and Engineering: A, 2019, 742, 364- 372.
doi: 10.1016/j.msea.2018.11.030
56
ZHANG Y , JI S , FAN Z . Improvement of mechanical properties of Al-Si alloy with effective grain refinement by in-situ integrated Al2.2Ti1B-Mg refiner[J]. Journal of Alloys and Compounds, 2017, 710, 166- 171.
doi: 10.1016/j.jallcom.2017.03.244
57
LI Y , LIAN G , GENG J , et al. Effects of ultrasonic rolling on the surface integrity of in-situ TiB2/2024Al composite[J]. Journal of Materials Processing Technology, 2021, 293, 117068.
doi: 10.1016/j.jmatprotec.2021.117068
58
HUANG L , AN Q , GENG L , et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites[J]. Advanced Materials, 2021, 33 (6): 2000688.
doi: 10.1002/adma.202000688