Applications of two dimensional material MXene in water treatment
Wen-juan ZHANG1,*(), Miao KOU2
1 State Key Laboratory for Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
MXene, very recently emerging family of two-dimensional (2D) transition metal carbides and/or nitrides, have attracted a wide range of attention due to unique layered structure, hydrophilicity, high conductivity and catalytic activity.First, synthesis and various applications of MXene in adsorption, photocatalysis and membrane separation were summarized in this review.Then, the effects of structure control, surface modification and composite of MXene on the adsorption performance of MXene and the formation of effective heterojunction, the exposure of active crystal face and the deposition of precious metals on the catalytic performance of MXene based photocatalysts were discussed.The approaches of constructing MXene based separation membrane for separating pollutants and desalinating seawater were described in detail.Finally, the existing problems in the applications of MXene in the field of water treatment were summarized and analyzed, and the prospects of designing MXene based water treatment materials with excellent performance were put forward.
张文娟, 寇苗. 二维材料MXene在水处理领域的应用[J]. 材料工程, 2021, 49(9): 14-26.
Wen-juan ZHANG, Miao KOU. Applications of two dimensional material MXene in water treatment. Journal of Materials Engineering, 2021, 49(9): 14-26.
SANTHOSH C , VELMURUGAN V , JACOB G , et al. Role of nanomaterials in water treatment applications: a review[J]. Chemical Engineering Journal, 2016, 306, 1116- 1137.
doi: 10.1016/j.cej.2016.08.053
2
RASOOL K , PANDEY R P , RASHEED P A , et al. Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes)[J]. Materials Today, 2019, 30, 80- 102.
doi: 10.1016/j.mattod.2019.05.017
3
ZHANG X , ZHAO X D , WU D H , et al. High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons[J]. Nanoscale, 2015, 7 (38): 16020- 16025.
doi: 10.1039/C5NR04717J
4
YING Y L , LIU Y , WANG X Y , et al. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(Ⅵ) from water[J]. ACS Applied Materials & Interfaces, 2015, 7 (3): 1795- 1803.
5
陈平平. 高通量二维层状膜通道的可控构建[D]. 郑州: 郑州大学, 2018.
5
CHEN P P. The controllable construction of nanochannel in two-dimensional lamellar membrane for high permeance[D]. Zhengzhou: Zhengzhou University, 2018.
6
GUO X , ZHANG X T , ZHAO S J , et al. High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation[J]. Physical Chemistry Chemical Physics, 2016, 18 (1): 228- 233.
doi: 10.1039/C5CP06078H
7
WU L X , LU X B , DHANJAI , et al. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol[J]. Biosensors and Bioelectronics, 2018, 107, 69- 75.
doi: 10.1016/j.bios.2018.02.021
8
KARAHAN H E , GOH K , ZHANG C F , et al. MXene materials for designing advanced separation membranes[J]. Advanced Materials, 2020, 32 (29): 1906697.
doi: 10.1002/adma.201906697
ZHENG W , YANG L , CHEN J , et al. Energy storage and application for 2D nano-material MXenes[J]. Materials Review, 2018, 32 (8): 2513- 2537.
10
ANASORI B , LUHATSKAYA M R , GOGOTSI Y , et al. 2D metal carbides and nitrides(MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2, 16098.
doi: 10.1038/natrevmats.2016.98
11
ALHABEB M , MALESKI K , ANASORI B , et al. Guidelines for synthesis and processing of two-dimensional titanium carbide(Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017, 29 (18): 7633- 7644.
doi: 10.1021/acs.chemmater.7b02847
12
LI M , LU J , LUO K , et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141, 4730- 4737.
doi: 10.1021/jacs.9b00574
13
KAMYSBAYEV V , FILATOV A S , HU H C , et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes[J]. Science, 2020, 369 (6506): 979- 983.
doi: 10.1126/science.aba8311
14
SI C , ZHOU J , SUN Z M . Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals[J]. ACS Applied Materials & Interfaces, 2015, 7, 17510- 17515.
PENG C. Synthesis, performance and mechanism of 2-Dimensional transition metal carbide(MXene) drived photocatalysts[D]. Guangzhou: South China University of Technology, 2017.
16
LI X G , MA X L , SUN J , et al. Powerful reactive sorption of silver(Ⅰ) and mercury(Ⅱ) onto poly(o-phenylenediamine) microparticles[J]. Langmuir, 2009, 25 (3): 1675- 1684.
doi: 10.1021/la802410p
17
SHAHZAD A , RASOOL K , MIRAN W , et al. Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water[J]. ACS Sustainable Chemistry & Engineering, 2017, 5 (12): 11481- 11488.
18
GUO J X , PENG Q M , FU H , et al. Heavy-metal adsorption behavior of two-dimensional alkalization intercalated MXene by first-principles calculations[J]. The Journal of Physical Chemistry C, 2015, 119 (36): 20923- 20930.
doi: 10.1021/acs.jpcc.5b05426
19
PENG Q M , GUO J X , ZHANG Q R , et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide[J]. Journal of the American Chemical Society, 2014, 136 (11): 4113- 4116.
doi: 10.1021/ja500506k
20
ZHENG W , ZHANG P G , TIAN W B , et al. Alkali treated Ti3C2Tx MXenes and their dye adsorption performance[J]. Materials Chemistry and Physics, 2018, 206, 270- 276.
doi: 10.1016/j.matchemphys.2017.12.034
21
NIGHTINGALE E R J . Phenomenological theory of ion solvation.effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1959, 63 (9): 1381- 1387.
doi: 10.1021/j150579a011
22
SHAHZAD A , RASOOL K , MIRAN W , et al. Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite[J]. Journal of Hazardous Materials, 2018, 344, 811- 818.
doi: 10.1016/j.jhazmat.2017.11.026
23
SHAHZADA A , NAWAZ M , MOZTAHIDA M , et al. Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions[J]. Chemical Engineering Journal, 2019, 368, 400- 408.
doi: 10.1016/j.cej.2019.02.160
24
ZOU G D , GUO J X , PENG Q M , et al. Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation[J]. Journal of Materials Chemistry A, 2016, 4 (2): 489.
doi: 10.1039/C5TA07343J
25
PANDEY R P , RASOOL K , RASHEED P A , et al. Reductive sequestration of toxic bromate from drinking water using lamellar 2D Ti3C2Tx(MXene)[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (6): 7910- 7917.
26
ZHANG Q R , TENG J , ZOU G D , et al. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites[J]. Nanoscale, 2016, 8 (13): 7085- 7093.
doi: 10.1039/C5NR09303A
27
LI K K , ZOU G D , JIAO T F , et al. Self-assembled MXene-based nanocomposites via layer-by-layer strategy for elevated adsorption capacities[J]. Colloids and Surfaces A, 2018, 553, 105- 113.
doi: 10.1016/j.colsurfa.2018.05.044
28
WANG L , YUAN L Y , CHEN K , et al. Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene[J]. ACS Applied Materials & Interfaces, 2016, 8 (25): 16396- 16403.
29
CHENG L , LI X , ZHANG H W , et al. Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation[J]. Journal of Physical Chemistry Letters, 2019, 10 (12): 3488- 3494.
doi: 10.1021/acs.jpclett.9b00736
30
GAO Y P , WANG L B , ZHOU A G , et al. Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity[J]. Materials Letters, 2015, 150, 62- 64.
doi: 10.1016/j.matlet.2015.02.135
31
PENG C , YANG X F , LI Y H , et al. Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2016, 8 (9): 6051- 6060.
32
DING L , LI L B , LIU Y C , et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater[J]. Nature Sustainability, 2020, 3 (4): 296- 302.
doi: 10.1038/s41893-020-0474-0
33
REN C E , ALHABEB M , BYLES B W , et al. Voltage gated ions sieving through 2D MXene Ti3C2Tx membranes[J]. ACS Applied Nano Materials, 2018, 1 (7): 3644- 3652.
doi: 10.1021/acsanm.8b00762
34
LI R Y , ZHANG L B , SHI L , et al. MXene Ti3C2: an effective 2D light-to-heat conversion material[J]. ACS Nano, 2017, 11 (4): 3752- 3759.
doi: 10.1021/acsnano.6b08415
35
ZHAO J Q , YANG Y W , YANG C H , et al. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination[J]. Journal of Materials Chemistry A, 2018, 6 (4): 16196- 16204.
36
DING L , WEI Y Y , WANG Y J , et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie, 2017, 56 (7): 1825- 1829.
doi: 10.1002/anie.201609306
37
PANDEY R P , RASOOL K , MADHAVAN V E , et al. Ultrahigh-flux and fouling-resistant membrane based on layered silver/MXene(Ti3C2Tx) nanosheets[J]. Journal of Materials Chemistry A, 2018, 6 (8): 3522- 3533.
doi: 10.1039/C7TA10888E
38
KANG M K , KIM D W , REN C E , et al. Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes[J]. ACS Applied Materials & Interfaces, 2017, 9 (51): 44687- 44694.
LI M , YAO Y J , ZHANG X , et al. Nanomaterials for enhancing thin-film composite: design, fabrication, and application[J]. Chemical Industry and Engineering Progress, 2018, 38 (1): 365- 381.
40
吴艺. MXene膜的制备及其液体分离性能研究[D]. 广州: 华南理工大学, 2019.
40
WU Y. Preparation and application in liquid separation of MXene membrane[D]. Guangzhou: South China University of Technology, 2019.
41
RASOOL K , HELAL M A , ALI A , et al. Antibacterial activity of Ti3C2Tx MXene[J]. ACS Nano, 2016, 10 (3): 3674- 3684.
doi: 10.1021/acsnano.6b00181
ZHOU X , ZHENG Y F , JIA Q L , et al. Advances in antibacterial research based on two-dimensional nano-materials[J]. Journal of Materials Engineering, 2021, 49 (1): 55- 64.
43
RASOOL K , MAHMOUD K A , JOHNSON D J , et al. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx(MXene) nanosheets[J]. Scientific Reports, 2017, 7 (1): 1598.
doi: 10.1038/s41598-017-01714-3
44
RASHEED P A , PANDEY R P , RASOOL K , et al. Ultra-sensitive electrocatalytic detection of bromate in drinking water based on Nafion/Ti3C2Tx(MXene) modified glassy carbon electrode[J]. Sensors and Actuators B, 2018, 265, 652- 659.
doi: 10.1016/j.snb.2018.03.103
45
ZHU X L , LIU B C , HOU H J , et al. Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(Ⅱ), Pb(Ⅱ), Cu(Ⅱ) and Hg(Ⅱ)[J]. Electrochimica Acta, 2017, 248, 46- 57.
doi: 10.1016/j.electacta.2017.07.084
46
LIU H , DUAN C Y , YANG C H , et al. A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2[J]. Sensors and Actuators B, 2015, 218, 60- 66.
doi: 10.1016/j.snb.2015.04.090
47
ZHANG R Y , LIU J , LI Y C . MXene with great adsorption ability toward organic dye: an excellent material for constructing a ratiometric electrochemical sensing platform[J]. ACS Sensors, 2019, 4, 2058- 2064.
doi: 10.1021/acssensors.9b00654
48
OREN Y . Capacitive deionization(CDI) for desalination and water treatment—past, present and future(a review)[J]. Desalination, 2008, 228 (1/3): 10- 29.
49
XIE X Q , ZHAO M Q , ANASORI B , et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy, 2016, 26, 513- 523.
doi: 10.1016/j.nanoen.2016.06.005
50
LEVI M D , LUKATSKAYA M R , SIGALOV S , et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements[J]. Advanced Energy Materials, 2015, 5 (1): 1- 11.
51
SUSS M E , PRESSER V . Water desalination with energy storage electrode materials[J]. Joule, 2018, 2 (1): 10- 15.
doi: 10.1016/j.joule.2017.12.010
52
SRIMUK P , KAASIK F , KRÜNER B , et al. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization[J]. Journal of Materials Chemistry A, 2016, 4 (47): 18265- 18271.
doi: 10.1039/C6TA07833H
53
BAO W Z , TANG X , GUO X , et al. Porous cryo-dried MXene for efficient capacitive deionization[J]. Joule, 2018, 2 (4): 778- 787.
doi: 10.1016/j.joule.2018.02.018
54
SRIMUK P , HALIM J , LEE J , et al. Two-dimensional molybdenum carbide(MXene) with divacancy ordering for brackish and seawater desalination via cation and anion intercalation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (3): 3739- 3747.
55
GUO L , WANG X F , LEONG Z Y , et al. Ar plasma modification of 2D MXene Ti3C2Tx nanosheets for efficient capacitive desalination[J]. FlatChem, 2018, 8, 17- 24.
doi: 10.1016/j.flatc.2018.01.001