Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (1): 101-108    DOI: 10.11868/j.issn.1001-4381.2021.000116
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Co对Ti45Al-8Nb-0.3Y合金组织结构和高温抗氧化性能的影响
谢小青1, 李轩1,*(), 吕威1, 来升1, 刘益2, 李建军2, 谢文玲1
1 四川轻化工大学 机械工程学院, 四川 自贡 643000
2 四川航天烽火伺服控制技术有限公司, 成都 611130
Effect of Co on microstructure and high temperature oxidation resistance of Ti45Al-8Nb-0.3Y alloy
Xiaoqing XIE1, Xuan LI1,*(), Wei LYU1, Sheng LAI1, Yi LIU2, Jianjun LI2, Wenling XIE1
1 School of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, Sichuan, China
2 Sichuan Aerospace Fiberhome Servo Control Technology Co., Ltd., Chengdu 611130, China
全文: PDF(12934 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用真空电弧非自耗熔炼方法制备Ti45Al-8Nb-0.3Y-mCo (m=0, 0.5, 1, 2, 原子分数/%, 下同)合金, 研究合金的组织和高温抗氧化性能。结果表明: Co能够明显细化TiAl-Nb合金组织, 但对合金中α2+γ片层组织的形成具有较强烈的抑制作用, 并且会促进富Co的B2相析出。Ti45Al-8Nb-0.3Y-mCo合金在1000 ℃空气中氧化100 h后形成的氧化膜均主要由较为疏松的TiO2和Al2O3混合组成, 且TiAl-Nb-0.3Y合金的氧化增重随Co含量增加而增大, 但氧化膜的抗剥落能力随Co含量增加而明显提高; 添加Co能够在一定程度上降低氧化膜的内应力, 对提高其抗剥落性能有益, 但引起的粗大B2相析出削弱了合金的高温抗氧化性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢小青
李轩
吕威
来升
刘益
李建军
谢文玲
关键词 TiAl-Nb合金Co合金化合金组织高温氧化    
Abstract

Ti45Al-8Nb-0.3Y-mCo (m=0, 0.5, 1, 2, atom fraction/%) alloys were prepared by vacuum arc non-consumable melting method. The microstructure and high temperature oxidation resistance of the alloys were investigated. The results show that the microstructure of TiAl-Nb alloy can be significantly refined by addition of Co element. However, Co can remarkably inhibit the formation of α2+γ lamellar while promote the formation of Co-rich B2 precipitations in the alloys. The oxide films formed on the Ti45Al-8Nb-0.3Y-mCo alloys mainly consist of relatively loose TiO2 and Al2O3 mixtures, after oxidation at 1000 ℃ for 100 h in air. With the increase of Co content, the mass gains of the TiAl-Nb-0.3Y alloys after oxidation increase obviously, while much better anti-spalling performance of the oxide films can be obtained. Addition of Co can reduce the internal stress of the oxide film to a certain extent, which is beneficial to the anti-spalling performance of the oxide film. However, the coarse B2 precipitation caused by Co weakens high temperature oxidation resistance of the alloy.

Key wordsTiAl-Nb alloy    Co alloying    alloy microstructure    high temperature oxidation
收稿日期: 2021-02-05      出版日期: 2022-01-19
中图分类号:  TG174.4  
基金资助:国家自然科学基金项目(51961003);陕西省重点研发计划(2018GY-112);陕西省重点研发计划(2020GY-324);自贡市科技局项目(2019YGJC07);自贡市科技局项目(2020YGJC17);四川轻化工大学人才引进项目(2020RC19);四川省科技创新苗子工程(2021102)
通讯作者: 李轩     E-mail: biluaner@163.com
作者简介: 李轩(1982—), 男, 副教授, 博士, 从事金属材料制备及表面改性研究, 联系地址: 四川省自贡市汇兴路180号四川轻化工大学机械工程学院(643000), E-mail: biluaner@163.com
引用本文:   
谢小青, 李轩, 吕威, 来升, 刘益, 李建军, 谢文玲. Co对Ti45Al-8Nb-0.3Y合金组织结构和高温抗氧化性能的影响[J]. 材料工程, 2022, 50(1): 101-108.
Xiaoqing XIE, Xuan LI, Wei LYU, Sheng LAI, Yi LIU, Jianjun LI, Wenling XIE. Effect of Co on microstructure and high temperature oxidation resistance of Ti45Al-8Nb-0.3Y alloy. Journal of Materials Engineering, 2022, 50(1): 101-108.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000116      或      http://jme.biam.ac.cn/CN/Y2022/V50/I1/101
Fig.1  Ti45Al-8Nb-0.3Y-mCo合金组织的SEM形貌
(a)m=0;(b)m=0.5;(c)m=1;(d)m=2
Alloy Phase Atom fraction/%
Ti Al Nb Y Co O
Ti45Al-8Nb-0.3Y α2 52.5 41.1 6.4
Y2O3 30.1 1.2 3.2 18.3 47.2
Ti45Al-8Nb-0.3Y-0.5Co α2 51.3 40.7 7.7 0.3
B2 56.7 27.2 11.2 0.8 4.1
Ti45Al-8Nb-0.3Y-1Co α2 50.6 40.8 7.6 1.0
B2 54.7 29.0 11.8 0.2 4.3
Co-rich phase 41.7 33.4 6.6 2.0 16.3
Ti45Al-8Nb-0.3Y-2Co α2 49.9 42.0 7.3 0.8
B2 54.4 30.4 10.8 0.1 4.3
Co-rich phase 42.3 32.5 5.4 2.6 17.2
Table 1  图 1中典型组织的EDS成分分析结果
Fig.2  Ti45Al-8Nb-0.3Y-mCo合金组织的XRD图谱
Fig.3  Ti45Al-8Nb-0.3Y-mCo合金的典型片层组织
(a)m=0;(b)m=0.5;(c)m=1;(d)m=2
Fig.4  Ti45Al-8Nb-0.3Y-mCo合金在1000 ℃时的恒温氧化增重和氧化试样的宏观形貌
(a)氧化增重随时间的变化曲线;(b)氧化100 h后的增重及试样宏观形貌
Fig.5  Ti45Al-8Nb-0.3Y-mCo合金在1000 ℃氧化100 h后所形成的氧化膜表面(1)、截面SEM形貌及截面的EDS面成分分布(2)
(a)m=0;(b)m=0.5;(c)m=1;(d)m=2
Fig.6  Ti45Al-8Nb-0.3Y-mCo合金在1000 ℃时氧化100 h后表面氧化膜的XRD图谱
Phase Atom fraction/%
Ti Al Nb Y O
TiO2 31.3 0.8 1.4 0.1 66.4
Al2O3 4.7 27.3 5.7 0.1 62.2
Nb2O5 11.2 7.9 15.5 0.3 65.1
TiO2+Al2O3 18.9 9.7 3.6 0.2 67.6
Table 2  图 5中典型组织的EDS成分分析结果
Fig.7  不同温度下Ti, Al, Nb, Co和Y元素分别与1 mol O2反应形成TiO2, TiO, Al2O3, Nb2O5, CoO和Y2O3的吉布斯自由能
1 林均品, 张来启, 宋西平, 等. 轻质γ-TiAl金属间化合物的研究进展[J]. 中国材料进展, 2010, 29 (2): 1- 8.
1 LIN J P , ZHANG L Q , SONG X P , et al. Status of research and development of light-weight γ-TiAl intermetallic based compounds[J]. Materials China, 2010, 29 (2): 1- 8.
2 KIM S W , HONG J K , NA Y S , et al. Development of TiAl alloys with excellent mechanical properties and oxidation resistance[J]. Materials & Design, 2014, 54, 814- 819.
3 戴景杰, 张丰云, 王阿敏, 等. Nb掺杂对Ti-Al合金化层抗高温氧化性能的影响[J]. 材料工程, 2017, 45 (2): 24- 31.
3 DAI J J , ZHANG F Y , WANG A M , et al. Effect of Nb doping on high temperature oxidation resistance of Ti-Al alloyed coatings[J]. Journal of Materials Engineering, 2017, 45 (2): 24- 31.
4 赵丽利, 林均品, 张来启, 等. Al和Nb元素对高Nb-TiAl合金高温氧化行为的影响[J]. 材料工程, 2009, (增刊1): 126- 130.
4 ZHAO L L , LIN J P , ZHANG L Q , et al. Influence of Al, Nb on the high temperature oxidation resistance of high Nb containing TiAl alloys[J]. Journal of Materials Engineering, 2009, (Suppl 1): 126- 130.
5 LIN J P , ZHAO L L , LI G Y , et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys[J]. Intermetallics, 2011, 19 (2): 131- 136.
doi: 10.1016/j.intermet.2010.08.029
6 刘杰, 薛祥义, 杨劼人. 全片层组织TiAl-Nb合金的高温氧化行为及氧化层结构表征[J]. 稀有金属材料与工程, 2015, 44 (7): 1942- 1947.
6 LIU J , XUE X Y , YANG J R . Oxidation behavior and oxide scale characteristics of TiAl-Nb alloy with full lamellar microstructure at high temperature[J]. Rare Metal Materials and Engineering, 2015, 44 (7): 1942- 1947.
7 张铁邦, 丁浩, 邓志海, 等. Nb-Mo对TiAl基合金高温氧化行为的协同效应研究[J]. 稀有金属材料与工程, 2012, 41 (1): 33- 37.
7 ZHANG T B , DING H , DENG Z H , et al. Synergistic effect of Nb and Mo on oxidation behavior of TiAl-based alloys[J]. Rare Metal Materials and Engineering, 2012, 41 (1): 33- 37.
8 张宁, 林均品, 王艳丽, 等. W, B, Y合金元素对高铌TiAl基合金高温长期抗氧化性能的影响[J]. 稀有金属材料与工程, 2007, 36 (5): 884- 887.
8 ZHANG N , LIN J P , WANG Y L , et al. Influence of W, B, and Y elements on antioxidation of high temperature and long term for TiAl based alloys with high Nb content[J]. Rare Metal Materials and Engineering, 2007, 36 (5): 884- 887.
9 宋庆功, 王丽杰, 朱燕霞, 等. 硅和钇双掺杂对γ-TiAl基合金稳定性和抗氧化性的影响[J]. 物理学报, 2019, 68 (19): 190- 220.
9 SONG Q G , WANG L J , ZHU Y X , et al. Effects of Si and Y co-doping on stability and oxidation resistance of γ-TiAl based alloys[J]. Acta Physica Sinica, 2019, 68 (19): 190- 220.
10 丁晓非, 沈勇, 王秀敏, 等. W, Cr对高铌γ-TiAl基合金高温抗氧化性能的影响[J]. 稀有金属材料与工程, 2004, 33 (5): 543- 547.
10 DING X F , SHEN Y , WANG X M , et al. Influence of W, Cr on the high-temperature oxidation resistance of four γ-TiAl based alloys with high Nb content[J]. Rare Metal Materials and Engineering, 2004, 33 (5): 543- 547.
11 胡烨. 钌、锰、铼掺杂对双相γ-TiAl/α2-Ti3Al合金界面结构和性质的影响[D]. 天津: 中国民航大学, 2020.
11 HU Y. Effects of Ru, Mn or Re substitution dopant on structures and properties of γ-TiAl/α2-Ti3Al phase interfaces[D]. Tianjin: Civil Aviation University of China, 2020.
12 田进, 张聪惠, 田伟, 等. Co对铸态TiAl-Nb合金组织和高温抗氧化性能的影响[J]. 稀有金属材料与工程, 2020, 49 (10): 3597- 3603.
12 TIAN J , ZHANG C H , TIAN W , et al. Effects of Co on microstructure and high temperature oxidation resistance of as-cast TiAl-Nb alloy[J]. Rare Metal Materials and Engineering, 2020, 49 (10): 3597- 3603.
13 赵晓叶. Zr和Co对TiAl基合金组织和性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2016.
13 ZHAO X Y. The effect of Zr and Co on the microstructure and mechanical properties of TiAl based alloys[D]. Harbin: Harbin Institute of Technology, 2016.
14 郝志江. 稀土Y对TiAl基合金高温抗氧化性能的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.
14 HAO Z J. Research on the effects of rare-earths on the high temperature oxidation resistance of TiA1 based alloys[D]. Harbin: Harbin Institute of Technology, 2006.
15 秦永和, 乔英杰. Ce浓度对TiAl金属间化合物结构和性能的影响[J]. 功能材料, 2015, 46 (22): 22058- 22061.
15 QIN Y H , QIAO Y J . The influence of the doping concentration of rare earth Ce on the structure and performance of TiAl intermetallic compound[J]. Journal of Functional Materials, 2015, 46 (22): 22058- 22061.
16 王艳晶, 柳乐, 宋玫锦, 等. Y微合金化高铌TiAl基合金微观组织研究[J]. 材料工程, 2015, 43 (1): 66- 71.
16 WANG Y J , LIU L , SONG M J , et al. Microstructure of Y micro-alloying TiAl based alloy with high Nb content[J]. Journal of Materials Engineering, 2015, 43 (1): 66- 71.
17 李光燕, 赵丽利, 张来启, 等. Y含量对高Nb-TiAl合金循环氧化行为的影响[J]. 稀有金属材料与工程, 2011, 40 (6): 1000- 1004.
17 LI G Y , ZHAO L L , ZHANG L Q , et al. Influence of Y addition on the cyclic oxidation behavior of high-Nb TiAl alloys[J]. Rare Metal Materials and Engineering, 2011, 40 (6): 1000- 1004.
18 黄波, 李轩, 谢小青, 等. Y对Ti-45Al-6Nb合金组织结构和高温氧化性能的影响[J]. 特种铸造及有色合金, 2020, 40 (8): 925- 928.
18 HUANG B , LI X , XIE X Q , et al. Effects of yttrium on the microstructure and high temperature oxidation behavior of Ti-45Al-6Nb alloys[J]. Special Casting & Nonferrous Alloys, 2020, 40 (8): 925- 928.
19 XIANG L L , ZHAO L L , WANG Y L , et al. Synergistic effect of Y and Nb on the high temperature oxidation resistance of high Nb containing TiAl alloys[J]. Intermetallics, 2012, 27, 6- 13.
doi: 10.1016/j.intermet.2012.01.015
20 CHEN G L , WANG X T , NI K Q , et al. Investigation on the 1000, 1150 and 1400 ℃ isothermal section of the Ti-Al-Nb system[J]. Intermetallics, 1996, 4 (1): 13- 22.
doi: 10.1016/0966-9795(95)00012-N
21 CHEN G L, ZHANG W J, LIU Z C, et al. Microstructure and properties of high-Nb containing TiAl-base alloys[C]//Symposium on Gamma Titanium Aluminides 1999 and 1999 TMS Annual Meeting. San Diego, CA: Academic Press, 1999: 371-380.
22 王兴军, 常海威, 雷明凯. Nb合金化对γ-TiAl的氧化热力学理论分析[J]. 金属学报, 2010, 37 (8): 810- 814.
22 WANG X J , CHANG H W , LEI M K . Thermodynamic aspects of oxidation for Nb alloying γ-TiAl intermetallic compounds[J]. Acta Metallurgica Sinica, 2010, 37 (8): 810- 814.
23 SHIDA Y , ANADA H . The effect of various ternary additives on the oxidation behavior of TiAl in high-temperature air[J]. Oxidation of Metals, 1996, 45 (1): 197- 219.
24 GIL A , HOVEN H , WALLURA E , et al. The effect of microstructure on the oxidation behaviour of TiAl-based intermetallics[J]. Corrosion Science, 1993, 34 (4): 615- 630.
doi: 10.1016/0010-938X(93)90276-M
25 丁晓非, 沈勇, 谭毅, 等. Ti-42.85Al-12.3Nb-2Cr合金相组成对高温抗氧化性能的影响[J]. 中国有色金属学报, 2004, 14 (2): 216- 222.
25 DING X F , SHEN Y , TAN Y , et al. Effect of phase composition on oxidation resistance of Ti-42.85Al-12.3Nb-2Cr alloy[J]. The Chinese Journal of Nonferrous Metals, 2004, 14 (2): 216- 222.
[1] 孟倩, 李东阳, 杨江仁, 刘天增. 310S耐热钢的高温氧化行为[J]. 材料工程, 2022, 50(9): 137-149.
[2] 张明达, 刘英飒, 郑真, 曹京霞, 黄旭. 合金元素复合化对Ti2AlNb合金高温抗氧化性能影响[J]. 材料工程, 2022, 50(1): 93-100.
[3] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[4] 王鑫, 万义兴, 张平, 单彩霞, 谢莹莹, 梁秀兵. 难熔高熵合金NbMoTaWTi/Zr的高温氧化行为[J]. 材料工程, 2021, 49(12): 100-106.
[5] 毛杰, 马景涛, 邓畅光, 邓春明, 宋进兵, 刘敏, 宋鹏. 表面粗糙度对PS-PVD YSZ陶瓷层性能的影响[J]. 材料工程, 2020, 48(5): 144-150.
[6] 黄祖江, 蒋智秋, 董婉冰, 童庆, 李伟洲. 微弧氧化及包埋渗铝法制备的复合涂层高温抗蚀性能[J]. 材料工程, 2018, 46(1): 44-52.
[7] 杨珍, 鲁金涛, 张夏妮, 赵新宝, 袁勇, 党莹樱, 尹宏飞, 谷月峰. 水蒸气温度对700℃先进超超临界锅炉候选合金GH2984氧化行为的影响[J]. 材料工程, 2018, 46(1): 74-82.
[8] 戴景杰, 张丰云, 王阿敏, 陈传忠, 翁飞. Nb掺杂对Ti-Al合金化层抗高温氧化性能的影响[J]. 材料工程, 2017, 45(2): 24-31.
[9] 张林伟, 王鲁, 王全胜, 陆磊, 宁先进. 冷喷涂CoNiCrAlY涂层在Na2SO4熔盐中的热腐蚀行为[J]. 材料工程, 2016, 44(11): 45-50.
[10] 贺世美, 熊翔, 何利民. 新型Yb2SiO5环境障涂层1400℃高温氧化行为[J]. 材料工程, 2015, 43(4): 37-41.
[11] 齐红宇, 马立强, 李少林, 杨晓光, 王亚梅, 魏洪亮. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 0(7): 67-72.
[12] 任保轶, 王思林, 刘子儒, 张学军. 表面制备SiO2涂层的Ti2AlNb基合金高温氧化激活能研究[J]. 材料工程, 2013, 0(7): 6-10.
[13] 张鹏飞, 李建平, 蔡妍, 陆峰. 电弧离子镀AlYSi涂层抗高温氧化性能研究[J]. 材料工程, 2011, 0(1): 76-80.
[14] 贺定勇, 王晓芳, 崔丽, 蒋建敏, 李晓延. 铬含量对铁基涂层抗高温氧化性能的影响[J]. 材料工程, 2009, 0(8): 24-27.
[15] 王东生, 田宗军, 陈志勇, 沈理达, 刘志东, 黄因慧. TiAl合金表面激光重熔等离子喷涂MCrAlY涂层研究[J]. 材料工程, 2009, 0(7): 72-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn