Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (2): 127-134    DOI: 10.11868/j.issn.1001-4381.2021.000123
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氮化铝/氮化硼/碳纳米管/硅橡胶复合材料的力致填料取向对导热性能的影响
刘旺冠1, 蒋兴华2,3, 郭建华1,2,*()
1 华南理工大学 材料科学与工程学院, 广州 510640
2 中山市华南理工大学现代产业技术研究院, 广东 中山 528400
3 华南理工大学 机械与汽车工程学院, 广州 510640
Effect of filler orientation induced by force on thermal conductivity of AlN/BN/CNTs/SR composites
Wangguan LIU1, Xinghua JIANG2,3, Jianhua GUO1,2,*()
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2 Institute of Modern Industrial Technology of SCUT in Zhongshan, Zhongshan 528400, Guangdong, China
3 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
全文: PDF(8985 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

随着科学技术的发展,电子元器件发热量大幅度增加,因此开发兼具高导热和高绝缘性能材料日益迫切。以甲基乙烯基硅橡胶(SR)为基体,碳纳米管(CNTs)、六方氮化硼(BN)以及氮化铝(AlN)为导热填料,通过机械共混法制备导热复合材料。研究3种导热填料复配对复合材料的导热性能、绝缘性能和力学性能的影响,研究填料取向对复合材料导热性能的影响,研究材料表面温升与加热时间的关系。采用Agari模型预测复合材料的理论热导率。通过热红成像、扫描电子显微镜、X射线衍射分析、热重分析等对复合材料进行表征。结果表明:随着复配导热填料中AlN用量的减少,BN和CNTS用量的增加,复合材料的热导率逐渐升高;当AlN为80 phr,BN为68 phr,CNTs为2 phr时,复合材料的垂直热导率为1.857 W·m-1·K-1,平行热导率为2.853 W·m-1·K-1,体积电阻率为2.18×1012 Ω·cm,拉伸强度达4.3 MPa,复合材料的综合性能较好。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘旺冠
蒋兴华
郭建华
关键词 硅橡胶氮化硼氮化铝碳纳米管导热取向    
Abstract

With the development of technology, the amount of heat generated by electronic components has increased significantly. Therefore, it is increasingly urgent to develop materials with high thermal conductivity and high insulation properties. Thermally conductive composites were prepared by mechanical blending using methyl vinyl silicone rubber (SR) as the matrix, and some particles including carbon nanotubes (CNTs), hexagonal boron nitride (BN) and aluminum nitride (AlN) as thermally conductive fillers. The effect of hybridization of three kinds of fillers on the thermal conductivity, electrical insulation and mechanical properties of the composites was studied. The influence of the filler orientation on the thermal conductivity of the composites was investigated. The effect of the heating time on the surface temperature of the composites was also investigated and the theoretical thermal conductivity of the composites was fitted according to Agari model. The composites were characterized by an infrared thermal image, scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results show that with the decreased addition of AlN and the increased loadings of BN and CNTs, the thermal conductivity of the composites is gradually increased. When the content of AlN, BN and CNTs is 80, 68 phr and 2 phr respectively, the composites show better overall performance, where the out-plane and in-plane thermal conductivity of the composites is 1.857 W·m-1·K-1 and 2.853 W·m-1·K-1, and the volume resistivity and the tensile strength is 2.18×1012 Ω·cm and 4.3 MPa, respectively.

Key wordssilicone rubber    boron nitride    aluminum nitride    carbon nanotube    thermal conduction    orientation
收稿日期: 2021-02-06      出版日期: 2022-02-23
中图分类号:  TQ330.38  
基金资助:广东省自然科学基金(2018A0303130023);广州市科技计划项目(201902010059);中山科技计划项目(2019AG022);中山科技计划项目(2020AG022)
通讯作者: 郭建华     E-mail: psjhguo@scut.edu.cn
作者简介: 郭建华(1977-), 男, 副教授, 工学博士, 主要研究方向为橡胶成型加工与改性, 联系地址: 广东省广州市天河区五山街道381号华南理工大学(五山校区)25号楼135房(510640), E-mail: psjhguo@scut.edu.cn
引用本文:   
刘旺冠, 蒋兴华, 郭建华. 氮化铝/氮化硼/碳纳米管/硅橡胶复合材料的力致填料取向对导热性能的影响[J]. 材料工程, 2022, 50(2): 127-134.
Wangguan LIU, Xinghua JIANG, Jianhua GUO. Effect of filler orientation induced by force on thermal conductivity of AlN/BN/CNTs/SR composites. Journal of Materials Engineering, 2022, 50(2): 127-134.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000123      或      http://jme.biam.ac.cn/CN/Y2022/V50/I2/127
Material SR blend/phr AlN/phr BN/phr CNTs/phr DBPMH/phr
A100B49.5C0.5 120 100 49.5 0.5 2.5
A90B59C1 120 90 59 1 2.5
A80B68C2 120 80 68 2 2.5
A70B77C3 120 70 77 3 2.5
A60B86C4 120 60 86 4 2.5
A50B95C5 120 50 95 5 2.5
Table 1  AlN/BN/CNTs/SR复合材料配方
Fig.1  AlN/BN/CNTs/SR复合材料制备过程
Fig.2  不同填料含量下硅橡胶复合材料断面形貌图
(a)A100B49.5C0.5;(b)A80B68C2;(c)A70B77C3;(d)A50B95C5
Fig.3  硅橡胶复合材料的XRD图谱(a)ABC(⊥);(b)ABC(//)
Fig.4  AlN,BN,CNTs不同配比对应的SR复合材料的热导率以及基于Agari模型的相应理论预测曲线
Fig.5  A50B95C5(//),A50B95C5(⊥),A100B49.5C0.5(⊥)复合材料的红外热成像图(a)和表面温度随着加热时间升高的变化图(b)
Fig.6  AlN/BN/CNTs/SR复合材料的导热机理图(a)A100B49.5C0.5;(b)A50B95C5
Fig.7  不同配比AlN/BN/CNTs的SR复合材料的体积电阻率和拉伸强度
Fig.8  AlN/BN/CNTs/SR复合材料的TGA曲线
1 DAI W , MA T , YAN Q , et al. Metal-level thermally conductive yet soft graphene thermal interface materials[J]. ACS Nano, 2019, 13 (10): 11561- 11571.
doi: 10.1021/acsnano.9b05163
2 刘园, 崔岩, 郭开金, 等. 高导热金刚石/铝复合材料的研究进展[J]. 材料工程, 2020, 48 (12): 48- 56.
2 LIU Y , CUI Y , GUO K J , et al. Research progress in high thermal conductivity diamond/aluminum composites[J]. Journal of Materials Engineering, 2020, 48 (12): 48- 56.
3 宋娜, 崔思奇, 焦德金, 等. 不同填料复配对尼龙6/石墨烯复合材料导热性能的影响[J]. 材料工程, 2018, 46 (3): 28- 33.
3 SONG N , CUI S Q , JIAO D J , et al. Influence of hybrid fillers on thermal conductivity of nylon-6/graphene composite[J]. Journal of Materials Engineering, 2018, 46 (3): 28- 33.
4 YANG X , LIANG C , MA T , et al. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods[J]. Advanced Composites and Hybrid Materials, 2018, 1 (2): 207- 230.
doi: 10.1007/s42114-018-0031-8
5 LI J , LI F , ZHAO X , et al. Jelly-inspired construction of the three-dimensional interconnected BN network for lightweight, thermally conductive, and electrically insulating rubber composites[J]. ACS Applied Electronic Materials, 2020, 2 (6): 1661- 1669.
doi: 10.1021/acsaelm.0c00227
6 GUO B , TANG Z , ZHANG L . Transport performance in novel elastomer nanocomposites: mechanism, design and control[J]. Progress in Polymer Science, 2016, 61, 29- 66.
doi: 10.1016/j.progpolymsci.2016.06.001
7 CHEN C , XUE Y , LI X , et al. High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging[J]. Composites: Part A, 2019, 118, 67- 74.
doi: 10.1016/j.compositesa.2018.12.019
8 HU J , HUANG Y , ZENG X , et al. Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN[J]. Composites Science and Technology, 2018, 160, 127- 137.
doi: 10.1016/j.compscitech.2018.01.045
9 LI C , LIU B , GAO Z , et al. Electrically insulating ZnOs/ZnOw/silicone rubber nanocomposites with enhanced thermal conductivity and mechanical properties[J]. Journal of Applied Polymer Science, 2018, 135 (27): 46454.
doi: 10.1002/app.46454
10 XUE Y , LI X , WANG H , et al. Thermal conductivity improvement in electrically insulating silicone rubber composites by the construction of hybrid three-dimensional filler networks with boron nitride and carbon nanotubes[J]. Journal of Applied Polymer Science, 2019, 136 (2): 46929.
doi: 10.1002/app.46929
11 TANG X , GUO Y , LIAO Z , et al. Synergistic enhancement of thermal conductivity between SiCw and h-BN in MVQ-based composite[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2019, 27 (5): 434- 439.
doi: 10.1080/1536383X.2019.1580696
12 KUO C F J , CHEN J B , CHEN P Y , et al. Preparation of boron nitride nanosheets using a chemical exfoliation method as a thermal conductive filler for the development of silicone thermal composites part Ⅰ: effect of single- and hybrid-filler additions on the silicone composite performance[J]. Textile Research Journal, 2019, 90 (5/6): 666- 684.
13 SUN N , SUN J , ZENG X , et al. Hot-pressing induced orientation of boron nitride in polycarbonate composites with enhanced thermal conductivity[J]. Composites: Part A, 2018, 110, 45- 52.
doi: 10.1016/j.compositesa.2018.04.010
14 YUAN C , DUAN B , LI L , et al. Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets[J]. ACS Appl Mater Interfaces, 2015, 7 (23): 13000- 13006.
doi: 10.1021/acsami.5b03007
15 SHEN H , CAI C , GUO J , et al. Fabrication of oriented hBN scaffolds for thermal interface materials[J]. RSC Advances, 2016, 6 (20): 16489- 16494.
doi: 10.1039/C6RA00980H
16 AGARI Y , UEDA A , NEGAI S . Thermal conductivity of a polymer composite[J]. Journal of Applied Polymer Science, 1993, 49 (9): 1625- 1634.
doi: 10.1002/app.1993.070490914
17 CHEN H , GINZBURG V V , YANG J , et al. Thermal conductivity of polymer-based composites: fundamentals and applications[J]. Progress in Polymer Science, 2016, 59, 41- 85.
18 LI J , ZHAO X , ZHANG Z , et al. Construction of interconnected Al2O3 doped rGO network in natural rubber nanocomposites to achieve significant thermal conductivity and mechanical strength enhancement[J]. Composites Science and Technology, 2020, 186, 107930.
doi: 10.1016/j.compscitech.2019.107930
19 KUO C F J , DEWANGGA G R S , CHEN J B . Fabrication of a thermally conductive silicone composite by incorporating surface-modified boron nitride[J]. Textile Research Journal, 2018, 89 (13): 2637- 2647.
20 WANG Y , QIU X , ZHENG J . Study the mechanism that carbon nanotubes improve thermal stability of polymer composites: an ingenious design idea with coating silica on CNTs and valuable in engineering applications[J]. Composites Science and Technology, 2018, 167, 529- 538.
[1] 张婷, 李生娟, 吉莹, 于沺沺, 李田成, 薛裕华. 氮掺杂石墨烯原位生长碳纳米管复合过渡金属催化剂的制备及电催化性能[J]. 材料工程, 2022, 50(4): 123-131.
[2] 乔俊宇, 李秀涛. 基于MOFs的碳纳米管复合材料的制备和应用进展[J]. 材料工程, 2021, 49(9): 27-40.
[3] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[4] 王丽娜, 李志超, 武晓龙, 马丹丹, 杨平. 高锰钢高速压缩时γ→ε-M和ε-M→α'-M的相变特征[J]. 材料工程, 2021, 49(9): 101-108.
[5] 阮家苗, 李红, 姚彧敏, 杨敏, 任慕苏, 孙晋良. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021, 49(9): 128-134.
[6] 刘鹏, 顾晓滨, 赵媛媛, 饶俊, 边亮. 粉煤灰-硅藻土复合相变储能材料制备及导热强化[J]. 材料工程, 2021, 49(3): 141-150.
[7] 虞兮凡, 赵伶玲. 热电材料β-Cu2-xSe热传导性能模拟研究[J]. 材料工程, 2021, 49(2): 121-126.
[8] 戴远哲, 唐波, 张振宇, 任首龙. 碳纳米管/石蜡相变复合材料研究进展[J]. 材料工程, 2021, 49(12): 91-99.
[9] 米志安, 李学宽, 肇研. 多尺度改性航空硅橡胶宽温域阻尼材料[J]. 材料工程, 2021, 49(12): 123-129.
[10] 相宁, 张晓雯, 葛勇, 丁尧, 郑梦瑶, 颜悦. 注射成型热塑性聚氨酯制件的取向形态演变和力学性能[J]. 材料工程, 2021, 49(12): 156-163.
[11] 万耀明, 李静, 梁璐, 熊瑜, 王彦. 聚硅氮烷/BN耐热复合涂层的制备及性能[J]. 材料工程, 2021, 49(10): 116-122.
[12] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[13] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[14] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[15] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn