Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (11): 136-146    DOI: 10.11868/j.issn.1001-4381.2021.000136
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
挤压态AZ40镁合金热变形行为及热加工图分析
支盛兴1,2,3, 李兴刚1,2,3,*(), 袁家伟1,2,3, 李永军1,2,3, 马鸣龙1,2,3, 石国梁1,2,3, 张奎1,2,3
1 有研科技集团有限公司 有色金属材料制备加工国家重点实验室, 北京 100088
2 有研工程技术研究院有限公司, 北京 101407
3 北京有色金属研究总院, 北京 100088
Analysis of hot deformation behavior and processing map of extruded AZ40 alloy
Sheng-xing ZHI1,2,3, Xing-gang LI1,2,3,*(), Jia-wei YUAN1,2,3, Yong-jun LI1,2,3, Ming-long MA1,2,3, Guo-liang SHI1,2,3, Kui ZHANG1,2,3
1 State Key Laboratory of Nonferrous Metals and Process, GRINM Group Corporation Limited(GRINM), Beijing 100088, China
2 GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
3 General Research Institute for Nonferrous Metals, Beijing 100088, China
全文: PDF(18760 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用Gleeble-3500热模拟试验机对挤压态AZ40合金进行热压缩实验,分析压缩后不同温度真应力-应变曲线的变化趋势,得到流变应力受变形温度和应变速率等因素的影响规律;在双曲正弦关系的基础上构造挤压态AZ40合金的本构方程,在动态材料模型(DMM)基础上建立挤压态AZ40合金的热加工图,从而确定挤压态AZ40镁合金的热变形加工范围。结果表明:明显的动态再结晶是挤压态AZ40镁合金流变曲线的特点,在压缩过程中,随变形温度的升高,挤压态AZ40镁合金的峰值应力减小;随应变速率升高,挤压态AZ40镁合金的峰值应力增大。当变形温度相同时,动态再结晶晶粒比例随着应变速率的升高而降低;当应变速率相同时,动态再结晶晶粒大小随着变形温度的升高而增大。粗大的未再结晶晶粒有明显的〈10${\rm{\bar 1}}$0〉‖ND和〈2${\rm{\bar 1}}$${\rm{\bar 1}}$0〉‖ND两种取向,而再结晶晶粒取向随机;通过热加工图及组织分析,确定了最佳的加工工艺为T=573 K,$\dot \varepsilon $=0.1 s-1

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
支盛兴
李兴刚
袁家伟
李永军
马鸣龙
石国梁
张奎
关键词 AZ40合金热变形本构方程热加工图织构    
Abstract

The Gleeble-3500 thermal simulation tester was used to perform hot deformation behavior on the extruded AZ40 Mg alloy to analyze the trend of the true stress-strain curve after compression and to obtain the influence of the flow stress on the deformation temperature and strain rate. Subsequently, the constitutive equation was constructed for extruded AZ40 alloy based on the hyperbolic-sine relationship, and the thermal processing map of extruded AZ40 alloy was established based on the dynamic material model (DMM), thereby estimating the processing range of extruded AZ40 alloy. The results show that the rheological curve of extruded AZ40 alloy is characterized by obvious dynamic recrystallization. Furthermore, during the compression process, the peak stress of extruded AZ40 alloy decreases with the increase of deformation temperature, while increases with the increase of strain rate. Moreover, the proportion of dynamic recrystallized grains (DRGs) decreases with the increase of the strain rate under the same deformation temperature condition; while the DRGs size increases with the increase of the deformation temperature under the same strain rate condition. The coarse uncrystallized grains show obvious crystallographic orientations of 〈10${\rm{\bar 1}}$0〉‖ND and 〈2${\rm{\bar 1}}$${\rm{\bar 1}}$0〉‖ND, while crystallographic orientation of DRGs is random distributed. Finally, through thermal processing map and tissue analysis, the optimal processing window was identified as T=573 K, $\dot \varepsilon $=0.1 s-1.

Key wordsAZ40 alloy    hot deformation    constitutive equation    processing map    texture
收稿日期: 2021-02-09      出版日期: 2021-11-12
中图分类号:  TG146.2  
通讯作者: 李兴刚     E-mail: lxg1218@grinm.com
作者简介: 李兴刚(1970-), 高工, 博士, 主要研究方向为先进镁合金材料制备加工技术开发, 联系地址: 北京市海淀区北三环中路43号院北京有色金属研究总院(100089), E-mail: lxg1218@grinm.com
引用本文:   
支盛兴, 李兴刚, 袁家伟, 李永军, 马鸣龙, 石国梁, 张奎. 挤压态AZ40镁合金热变形行为及热加工图分析[J]. 材料工程, 2021, 49(11): 136-146.
Sheng-xing ZHI, Xing-gang LI, Jia-wei YUAN, Yong-jun LI, Ming-long MA, Guo-liang SHI, Kui ZHANG. Analysis of hot deformation behavior and processing map of extruded AZ40 alloy. Journal of Materials Engineering, 2021, 49(11): 136-146.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000136      或      http://jme.biam.ac.cn/CN/Y2021/V49/I11/136
Al Zn Mn Mg
4 0.75 0.5 Bal
Table 1  AZ40合金中各元素含量 (质量分数/%)
Fig.1  热压缩实验示意图
Fig.2  挤压态AZ40合金ED方向金相组织
(a)低倍;(b)高倍
Fig.3  挤压态AZ40合金极图
Fig.4  AZ40镁合金不同温度下真应力-真应变曲线
(a)543 K; (b)573 K; (c)603 K; (d)633 K
Fig.5  峰值应力与应变速率的关系
(a)σ-;(b)lnσ-
Fig.6  ln[sinh(ασ)]与应变速率及温度的关系
(a)ln[sinh(ασ)]-;(b)ln[sinh(ασ)]-1/T
Fig.7  lnZ-ln[sinh(ασ)]关系曲线图
Fig.8  材料常数与应变关系
(a)α;(b)n;(c)Q;(d)lnA
Constant B0 B1 B2 B3 B4 B5
α 0.0243 -0.1808 0.7853 -1.3426 1.0088 -0.2829
n 10.466 -77.314 357.69 -750.27 749.32 -289.02
Q 192.62 -788.36 3320.1 -6822.2 6907.7 -2732.6
lnA 34.977 -194.17 1051.4 -2710.5 3267.5 -1466.5
Table 2  式(11)中多项式系数
Fig.9  不同温度和应变速率下流动应力预测值与实验结果的对比
(a)543 K; (b)573 K; (c)603 K; (d)633 K
Fig.10  AZ40合金不同变形条件下的EBSD组织观察
(a)T=543 K,=0.1 s-1;(b)T=573 K,=0.1 s-1;(c)T=603 K,=0.1 s-1;(d)T=573 K,=1.0 s-1
Fig.11  AZ40合金不同变形条件下的平均晶粒尺寸
(a)T=543 K,=0.1 s-1;(b)T=573 K,=0.1 s-1;(c)T=603 K,=0.1 s-1;(d)T=573 K,=1.0 s-1
Fig.12  挤压态AZ40合金应变速率敏感指数m
Fig.13  挤压态AZ40合金热加工图
1 DAI X J , YANG X , JING L , et al. Research progress in ultrafine grain magnesium alloy by equal channel angular pressing[J]. Chinese Journal of Rare Metals, 2020, 44 (12): 96- 103.
2 LI X X , LIU Z , WANG Y , et al. Hot tearing defects of as-cast Mg-xZn-0.5Y-0.5Zr alloys[J]. Chinese Journal of Rare Metals, 2020, 44 (7): 697- 705.
3 王林, 张世林, 平恩顺, 等. 可降解桥塞研制及其性能评价[J]. 科学技术与工程, 2017, 17 (24): 228- 232.
doi: 10.3969/j.issn.1671-1815.2017.24.039
3 WANG L , ZHANG S L , PING E S , et al. Development and performance evaluation of the degradable bridge plug[J]. Science Technology and Engineering, 2017, 17 (24): 228- 232.
doi: 10.3969/j.issn.1671-1815.2017.24.039
4 刘辉, 喻冰, 杨海, 等. 可溶桥塞镶齿卡瓦研制及实验评价[J]. 钻采工程, 2018, 41 (6): 76- 78.
4 LIU H , YU B , YANG H , et al. Development and experimental evaluation of insert slip for dissolvable bridge plug[J]. Drilling & Production Technology, 2018, 41 (6): 76- 78.
5 刘统亮, 施建国, 冯定, 等. 水平井可溶桥塞分段压裂技术与发展趋势[J]. 石油机械, 2020, 48 (10): 103- 110.
5 LIU T L , SHI J G , FENG D , et al. Technical status and development trend of staged fracturing with dissoluble bridge plug in horizontal well[J]. China Petroleum Machinery, 2020, 48 (10): 103- 110.
6 陈振华. 镁合金[M]. 北京: 化学工业出版社, 2004.
6 CHEN Z H . Magnesium alloy[M]. Beijing: Chemical Industry Press, 2004.
7 YAMASHITA A , HORITA Z , LANGDON T G , et al. Improving the mechanical properties of magnesium alloy through severe plastic deformation[J]. Materials Science and Engineering: A, 2001, 300 (1/2): 142- 147.
8 XU C , FURUKAWA M , HORITA Z . The evolution of homogeneity and grain refinement during equal-channel angular pressing: a model for grain refinement in ECAP[J]. Materials Science and Engineering: A, 2005, 398 (1/2): 66- 76.
9 SEGAL V M , REZNIKOVVI , DROTYSHEVKIJAE A , et al. Plastic working of metals by simple shear[J]. Russian Metallugy, 1981, 1, 99- 105.
10 JAMALI A , MAHMUDI R . Evolution of microstructure, texture, and mechanical properties in a multi-directionally forged zk60 mg alloy[J]. Materials Science and Engineering: A, 2019, 752, 55- 62.
doi: 10.1016/j.msea.2019.02.095
11 XIA X S , CHEN Q , ZHAO Z D , et al. Microstructure, texture and mechanical properties of coarse-grained Mg-Gd-Y-Nd-Zr alloy processed by multidirectional forging[J]. Journal of Alloys and Compounds, 2015, 623, 62- 68.
doi: 10.1016/j.jallcom.2014.10.084
12 CHEN C , SONG L H , DU X H , et al. Enhanced mechanical property of AZ31B magnesium alloy processed by multi-directional forging method[J]. Materials Characterization, 2017, 131, 72- 77.
doi: 10.1016/j.matchar.2017.05.010
13 刘克威, 谭安平. AZ40M镁合金的Fields-Backofen模型及加工图[J]. 特种铸造及有色合金, 2020, 40 (2): 143- 147.
13 LIU K W , TAN A P . Fields-Backofen model and processing map of AZ40M alloy[J]. Special Casting & Nonferrous Alloy, 2020, 40 (2): 143- 147.
14 蔡志伟, 陈拂晓, 郭俊卿. AZ41M镁合金热变形行为及本构方程[J]. 材料热处理学报, 2015, 36 (11): 65- 71.
14 CAI Z W , CHEN F X , GUO J Q . Hot deformation behavior and constitutive equation of AZ41M magnesium alloy[J]. Transactions of Materials and Heat Treatment, 2015, 36 (11): 65- 71.
15 翟显伟, 秦聪祥. AZ41镁合金热变形动力学及其应变硬化行为的研究[J]. 热加工工艺, 2013, 42 (10): 103- 105.
15 ZHAI X W , QIN C X . Study on hot deformation kinetics and strain hardening[J]. Hot Working Technology, 2015, 36 (11): 65- 71.
16 SELLARS C M , MCTEGAR W J . On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14 (9): 1136- 1138.
doi: 10.1016/0001-6160(66)90207-0
17 ZENER M , HOLLOMON J . Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15, 22- 23.
doi: 10.1063/1.1707363
18 王家毅, 米振莉, 李辉, 等. 基于热加工图6082铝合金锻造工艺优化及强化机制研究[J]. 稀有金属, 2019, 43 (2): 113- 121.
18 WANG J Y , MI Z L , LI H , et al. Isothermal forging process and strengthening mechanism of 6082 aluminum alloy through processing map[J]. Chinese Journal of Rare Metals, 2019, 43 (2): 113- 121.
19 夏麒帆, 梁益龙, 杨春林, 等. TC4钛合金拉伸变形行为的研究[J]. 稀有金属, 2019, 43 (7): 765- 773.
19 XIA Q F , LIANG Y L , YANG C L , et al. Tensile deformation behavior of TC4 titanium alloy[J]. Chinese Journal of Rare Metals, 2019, 43 (7): 765- 773.
20 MA Q , LI B , WHITTINGTON W R , et al. Texture evolution during dynamic recrystallization in a magnesium alloy at 450℃[J]. Acta Materialia, 2014, 67, 102- 115.
21 PRASAD Y V R K , GEGEL H L , DORAIVELU S M , et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242[J]. Metall Trans A, 1984, 15 (10): 1883- 1892.
[1] 汪雅婷, 黎俊良, 袁楷峰, 陈广义. 基于GA改进BP神经网络预测热变形流变应力模型的建立[J]. 材料工程, 2022, 50(6): 170-177.
[2] 胡广, 赵英杰, 马胜国, 张团卫, 赵聃, 王志华. 考虑位错密度和损伤的NiCoCrFe高熵合金晶体塑性有限元分析[J]. 材料工程, 2022, 50(3): 60-68.
[3] 汤中英, 邢清源, 杨守杰, 丁宁. 新型Al-Zn-Mg-Sc-Er-Zr合金的热变形行为[J]. 材料工程, 2022, 50(3): 131-137.
[4] 宋广胜, 牛嘉维, 宋鸿武, 张士宏, 邓思瀛. Zirlo锆合金高温变形行为及本构关系[J]. 材料工程, 2022, 50(3): 138-147.
[5] 王格格, 李晓燕, 郭非, 张紫璇, 陈翠玉, 朱召渲, 胡怡. 高温多向异步轧制对LZ91镁锂合金组织和力学性能的影响[J]. 材料工程, 2022, 50(11): 92-100.
[6] 乔士宾, 何西扣, 刘敬杰, 赵德利, 刘正东. SA508Gr.4N钢热变形过程微观组织演变及流变应力模型[J]. 材料工程, 2021, 49(3): 67-77.
[7] 杨璐, 曹敏, 曹玲飞, 廖斌, 王正安. 7B04包铝复合板热变形行为及其对组织演变的影响[J]. 材料工程, 2021, 49(3): 78-86.
[8] 张连腾, 陈乐平, 徐勇, 袁源平. Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J]. 材料工程, 2021, 49(2): 88-96.
[9] 周亚利, 杨秋月, 张文玮, 刘田文, 何威, 吴珍, 伍铭, 谭元标. 具有层片状α相组织的TB8钛合金热变形行为及本构方程[J]. 材料工程, 2021, 49(1): 75-81.
[10] 李慧中, 杨雷, 王岩, 谭钢, 黄钲钦, 刘敏学. 热挤压态Ni-Co-Cr基粉末高温合金热加工行为[J]. 材料工程, 2020, 48(9): 115-123.
[11] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[12] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[13] 甘洪岩, 程明, 宋鸿武, 陈岩, 张士宏, VladimirPetrenko. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122.
[14] 徐昀华, 张春华, 张松, 乔瑞庆, 张静波. 激光增材制造24CrNiMo合金钢显微组织特征[J]. 材料工程, 2020, 48(11): 147-154.
[15] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn