Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (3): 157-165    DOI: 10.11868/j.issn.1001-4381.2021.000140
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究
余晖1,2,*(), 任军超1,2, 杨鑫1,2, 郭舒龙1,2, 余炜3, 冯建航1,2, 殷福星1,2, 辛光善4
1 河北工业大学 材料科学与工程学院,天津 300401
2 天津市材料层状复合与界面控制技术重点实验室,天津 300132
3 合肥工业大学 材料科学与工程学院,合肥 200039
4 国立首尔大学 材料科学与工程学院,韩国 首尔 08826
Fabrication, microstructure and property of AZ31/7075 composites with Zn intermediate layer
Hui YU1,2,*(), Junchao REN1,2, Xin YANG1,2, Shulong GUO1,2, Wei YU3, Jianhang FENG1,2, Fuxing YIN1,2, Kwangseon SHIN4
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
2 TianJin Key Laboratory of Materials Laminating Fabrication and Interfacial Controlling Technology, Tianjin 300132, China
3 School of Materials Science and Engineering, Hefei University of Technology, Hefei 200039, China
4 School of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
全文: PDF(23461 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过在异种材料界面添加厚度为100 μm的Zn箔,采用预挤压与孔型轧制复合工艺成功制备出AZ31/7075复合材料,并利用光学显微镜(OM)、扫描电子显微镜(SEM)、能谱分析(EDS)对复合界面进行表征及显微硬度测试,探究Zn过渡层在挤压复合孔型轧制过程中对产品的影响。结果表明:7075硬质铝合金芯部可细化AZ31镁合金,引入Zn过渡层可减少或者避免镁铝系金属间化合物生成;挤压及变形温升使Mg-Zn互扩散形成的低熔点共晶相熔化,同时加速元素自固相向液相扩散;然而降温冷却使Mg-Zn扩散层易出现不连续裂缝,但后续孔型轧制可显著改善;Mg-Zn扩散层经变形生成的MgZn2金属间化合物具备较高的显微硬度(161HV),但Mg-Zn扩散层变形后厚度则较薄,结合层整体硬度变化不明显。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余晖
任军超
杨鑫
郭舒龙
余炜
冯建航
殷福星
辛光善
关键词 镁铝合金Zn中间层复合成形微观组织显微硬度    
Abstract

AZ31/7075 composite with the addition of Zn foil (about 100 μm in thickness) in the dissimilar material interface was successfully fabricated by pre-extrusion+caliber rolling composite process. The microstructure evolution especially for the composite interface was characterized by optical microscopy (OM), scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS) and the microhardness test was also performed. The effect of the Zn intermediate layer on the product during the extrusion and caliber rolling was explored. The results show the hard 7075 Al alloy as the core can refine the grain size of AZ31 alloy. In addition, introducing Zn intermediate layer can reduce or completely avoid the formation of Mg-Al intermetallic compounds. The temperature increased by extrusion and deformation results in the remelting of eutectic Mg-Zn phase, and the diffusion of both elements from the solid to the liquid phase are accelerated. However, discontinuous cracks can be observed in the Mg-Zn diffusion layer but will be healed after caliber rolling. The MgZn2 intermetallic compound generated at Mg-Zn diffusion layer has high hardness (161HV), but the overall hardness of bonding layer is not changed a lot due to thinner thickness of the Mg-Zn diffusion layer after deformation.

Key wordsMg/Al alloy    Zn intermediate layer    compound forming    microstructure    microhardness
收稿日期: 2021-02-13      出版日期: 2022-03-19
中图分类号:  TG379  
基金资助:国家自然科学基金项目(51701060);天津市自然科学基金项目(18JCQNJC03900);河北省留学回国人员择优资助项目(C20190505);河北省高层次人才项目(141100);中央军委科技委基础加强项目(JCJQ-2019-142-00)
通讯作者: 余晖     E-mail: huiyu@vip.126.com
作者简介: 余晖(1984—),男,教授,工学博士,研究方向为先进轻合金设计及其特种成型,联系地址:天津市北辰区西平道5430号河北工业大学机材楼330室(300401),E-mail: huiyu@vip.126.com
引用本文:   
余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
Hui YU, Junchao REN, Xin YANG, Shulong GUO, Wei YU, Jianhang FENG, Fuxing YIN, Kwangseon SHIN. Fabrication, microstructure and property of AZ31/7075 composites with Zn intermediate layer. Journal of Materials Engineering, 2022, 50(3): 157-165.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000140      或      http://jme.biam.ac.cn/CN/Y2022/V50/I3/157
Alloy Mg Al Zn Cu Mn Si Fe Ni Ti
AZ31 Bal 2.96 0.68 0.01 0.31 0.08 0.02 ≤0.01 -
7075 2.42 Bal 5.50 1.97 0.30 0.40 0.48 0.13
Pure Zn ≥99.90
Table 1  AZ31镁合金、7075铝合金和Zn箔化学成分(质量分数/%)
Fig.1  本实验采用铝合金和镁合金坯料
(a)尺寸图;(b)实物图
Fig.2  本实验用正挤压
(a)和孔型轧辊(b)示意图
Material Density/(kg·m-3) Thermal conductivity/(W·m-2·K-1) Elastic modulus/ MPa Poisson’s ratio Specific heat capacity/(J·kg-1·K-1)
AZ31 1770 102 44800 0.35 101
7075 2810 180 68900 0.30 960
H13 7780 24.3 21000 0.30 460
Table 2  数值模拟涉及的坯料与模具热物性能
Fig.3  挤压过程及DeformTM模拟结果
(a)复合挤压示意图;(b)金属流动网格图;(c)等效应力-应变云图;(d)速度-温度分布图
Fig.4  AZ31镁合金(a)及7075铝合金(b)光学显微组织
Fig.5  AZ31/7075预挤压与预挤压轧制复合材宏观组织
Fig.6  AZ31/7075复合材料界面光学显微组织
(a)预挤压材;(b)预挤压轧制复合材
Fig.7  AZ31/7075复合材料界面扫描电镜显微组织及能谱分析
(a)预挤压材;(b)预挤压轧制复合材
Fig.8  挤压与孔型轧制AZ31/Zn/7075复合材的光学显微组织
(a)预挤压材;(b)预挤压轧制复合材
Fig.9  AZ31/Zn/7075复合材料界面的扫描电镜显微组织(1)及对应能谱点面扫描分析(2)(a)预挤压材;(b)预挤压轧制复合材
Point Atom fraction/% Phase
Mg Al Mn Cu Zn
1 91.44 1.18 0.17 - 7.21 Mg matrix
2 47.12 3.02 - - 49.86 MgZn
3 32.16 1.08 - - 66.76 MgZn2
4 4.15 52.72 - 0.32 42.81 Al-Zn solid solution
5 3.07 79.60 0.27 0.43 16.63 Al-Zn solid solution
6 92.03 2.20 0.01 - 5.76 Mg matrix
7 30.29 2.64 - - 67.07 MgZn2 compound
8 2.33 52.99 0.06 0.15 44.47 Al-Zn solid solution
9 1.85 87.42 0.21 0.74 9.78 Al-Zn solid solution
Table 3  图 9(a-1)和(b-1)中1~9点的EDS元素分析及过渡相
Fig.10  Zn添加前后对AZ31/7075复合材料界面显微硬度对比图
(a)整体;(b)局部
1 叶斌, 何柏林. 高强镁合金及其制备工艺的研究进展[J]. 热加工工艺, 2019, 48 (24): 5- 10.
1 YE B , HE B L . Research progress of high strength magnesium alloy and its preparation process[J]. Hot Working Technology, 2019, 48 (24): 5- 10.
2 XU T C , YANG Y , PENG X D , et al. Overview of advancement and development trend on magnesium alloy[J]. Journal of Magnesium and Alloys, 2019, 7 (3): 536- 544.
doi: 10.1016/j.jma.2019.08.001
3 KUMAR D , PHANDEN R K , THAKUR L . A review on environment friendly and lightweight magnesium-based metal matrix composites and alloys[J]. Materials Today: Proceedings, 2020, 38 (1): 359- 364.
4 MACWAN A , JIANG X Q , LI C , et al. Effect of annealing on interface microstructures and tensile properties of rolled Al/Mg/Al tri-layer clad sheets[J]. Materials Science and Engineering: A, 2013, 587 (9): 344- 351.
5 FENG B , XIN Y C , YU H H , et al. Mechanical behavior of a Mg/Al composite rod containing a soft Mg sleeve and an ultra-hard Al core[J]. Materials Science and Engineering: A, 2016, 675 (8): 204- 211.
6 万天, 宋述鹏, 王今朝, 等. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48 (1): 19- 26.
doi: 10.11868/j.issn.1001-4381.2017.000301
6 WAN T , SONG S P , WANG J Z , et al. Research progress in corrosion behavior of biomedical magnesium alloys[J]. Journal of Materials Engineering, 2020, 48 (1): 19- 26.
doi: 10.11868/j.issn.1001-4381.2017.000301
7 HIRSCH J , Al-SAMMAN T . Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications[J]. Acta Materialia, 2013, 61 (3): 818- 843.
doi: 10.1016/j.actamat.2012.10.044
8 WU Y , FENG B , XIN Y C , et al. Microstructure and mechanical behavior of a Mg AZ31/Al 7050 laminate composite fabricated by extrusion[J]. Materials Science and Engineering: A, 2015, 640 (5): 454- 459.
9 AONUMA M , NAKAKATA K . Effect of alloying elements on interface microstructure of Mg-Al-Zn magnesium alloys and titanium joint by friction stir welding[J]. Materials Science and Engineering: B, 2009, 161 (1): 46- 49.
10 郭雨菲, 王宾宾, 郭阳阳, 等. Zn作中间层的ZK60/5083二次真空扩散焊接头显微组织与力学性能[J]. 热加工工艺, 2018, 47 (17): 55- 58.
10 GUO Y F , WANG B B , GUO Y Y , et al. Microstructure and mechanical property of two-step vacuum diffusion welded joint of ZK60/5083 using zinc as interlayer[J]. Hot Working Technology, 2018, 47 (17): 55- 58.
11 CHEN L , TANG J , ZHAO G Q , et al. Fabrication of Al/Mg/Al laminate by a porthole die co-extrusion process[J]. Journal of Materials Processing Technology, 2018, 258 (3): 165- 173.
12 许凤光, 刘垚, 马文江, 等. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48 (8): 142- 148.
12 XU F G , LIU Y , MA W J , et al. Effect of annealing process on interfacial microstructure and mechanical properties of Zn/AZ31/Zn clad sheets[J]. Journal of Materials Engineering, 2020, 48 (8): 142- 148.
13 张桂源, 李于朋, 宫文彪, 等. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48 (8): 149- 156.
13 ZHANG G Y , LI Y P , GONG W B , et al. Effect of Zn on interfacial microstructure and properties of steel/aluminum dissimilar metal friction stir welded joints[J]. Journal of Materials Engineering, 2020, 48 (8): 149- 156.
14 TANG J W , CHEN L , ZHAO G Q , et al. Achieving three-layered Al/Mg/Al sheet via combining porthole die co-extrusion and hot forging[J]. Journal of Magnesium and Alloys, 2020, 8 (3): 654- 666.
doi: 10.1016/j.jma.2020.02.016
15 XIN Y C , HONG R , FENG B , et al. Fabrication of Mg/Al multilayer plates using an accumulative extrusion bonding process[J]. Materials Science and Engineering: A, 2015, 640 (6): 210- 216.
16 吴洋. 利用挤压制备镁/铝合金复合板材的组织与性能研究[D]. 重庆: 重庆大学, 2016.
16 WU Y. Microstructure and mechanical properties of Mg/Al composite laminates fabricated by extrusion[D]. Chongqing: Chongqing University, 2016.
17 FENG B , XIN Y C , GUO F L , et al. Compressive mechanical behavior of Al/Mg composite rods with different types of Al sleeve[J]. Acta Materialia, 2016, 120 (8): 379- 390.
18 LIU L M , ZHAO L M , XU R Z . Effect of interlayer composition on the microstructure and strength of diffusion bonded Mg/Al joint[J]. Materials & Design, 2009, 30 (10): 4548- 4551.
19 ZHAO L M , ZHANG Z D . Effect of Zn alloy interlayer on interface microstructure and strength of diffusion-bonded Mg-Al joints[J]. Scripta Materialia, 2007, 58 (4): 283- 286.
20 NEGENDANK M , MUELLER S , REIMERS W . Coextrusion of Mg-Al macro composites[J]. Journal of Materials Processing Technology, 2012, 212 (9): 1954- 1962.
doi: 10.1016/j.jmatprotec.2012.04.023
21 薛江平. 7050铝合金挤压过程组织演变分析[D]. 呼和浩特: 内蒙古工业大学, 2018.
21 XUE J P. Microstructure evolution of 7050 aluminum alloy during extrusion process[D]. Hohhot: Inner Mongolia University of Technology, 2018.
22 梁书锦, 王欣, 刘祖岩, 等. AZ31镁合金不同温度挤压后组织性能研究[J]. 稀有金属材料与工程, 2009, 38 (7): 1276- 1279.
doi: 10.3321/j.issn:1002-185X.2009.07.034
22 LIANG S J , WANG X , LIU Z Y , et al. Microstructure properties of AZ31 Mg alloy extruded at different die temperatures[J]. Rare Metal Materials and Engineering, 2009, 38 (7): 1276- 1279.
doi: 10.3321/j.issn:1002-185X.2009.07.034
23 李线绒, 梁伟, 赵兴国, 等. 共晶合金中间层连接镁/铝异种金属的界面组织及结合强度研究[J]. 稀有金属材料与工程, 2008, 37 (11): 2016- 2019.
doi: 10.3321/j.issn:1002-185X.2008.11.030
23 LI X R , LIANG W , ZHAO X G , et al. Study on the microstructures and bond strength of Mg/Al heterogenous metal bonded with eutectic alloy interlayer[J]. Rare Metal Materials and Engineering, 2008, 37 (11): 2016- 2019.
doi: 10.3321/j.issn:1002-185X.2008.11.030
24 YU H , PARK S H , YOU B S . Die angle dependency of microstructural inhomogeneity in an indirect-extruded AZ31 magnesium alloy[J]. Journal of Materials Processing Technology, 2015, 224 (5): 181- 188.
25 乔及森, 向阳芷, 聂书才, 等. 铝镁异种金属复合挤压成形及界面微观组织[J]. 材料工程, 2017, 45 (11): 78- 83.
doi: 10.11868/j.issn.1001-4381.2015.001407
25 QIAO J S , XIANG Y Z , NIE S C , et al. Compound extrusion forming and interface microstructure of Al/Mg dissimilar metal[J]. Journal of Materials Engineering, 2017, 45 (11): 78- 83.
doi: 10.11868/j.issn.1001-4381.2015.001407
26 FENG B , XIN Y C , HONG R , et al. The effect of architecture on the mechanical properties of Mg-3Al-1Zn rods containing hard Al alloy cores[J]. Scripta Materialia, 2015, 98 (11): 56- 59.
27 MENG S J , YU H , FAN S D , et al. Recent progress and development in extrusion of rare earth free Mg alloys: a review[J]. Acta Metallurgica Sinica(English Letters), 2019, 32 (2): 145- 168.
doi: 10.1007/s40195-018-00871-2
28 WATANABE H , MUKAI T , ISHIKAWA K . Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy[J]. Journal of Materials Processing Technology, 2006, 182 (1): 644- 647.
[1] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[2] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[3] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[4] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[5] 吕彦龙, 贺建超, 侯金保, 张博贤. 热处理对TiAl/Ti2AlNb放电等离子扩散焊接头微观组织与力学性能的影响[J]. 材料工程, 2021, 49(9): 87-93.
[6] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[7] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[8] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[9] 武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
[10] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
[11] 宁睿, 高智勇, 王海振, 蔡伟. TiNi基形状记忆合金的辐照效应[J]. 材料工程, 2021, 49(3): 14-19.
[12] 衣晓洋, 孟祥龙, 蔡伟, 王海振. Ti-Ni-Hf高温形状记忆合金的研究进展[J]. 材料工程, 2021, 49(3): 31-40.
[13] 杨璐, 曹敏, 曹玲飞, 廖斌, 王正安. 7B04包铝复合板热变形行为及其对组织演变的影响[J]. 材料工程, 2021, 49(3): 78-86.
[14] 薛彦庆, 郝启堂, 魏典, 李博. 原位自生TiB2/Al-4.5Cu复合材料微观组织和力学性能[J]. 材料工程, 2021, 49(2): 97-104.
[15] 薛彦庆, 李博, 王新亮, 张晗, 郝启堂. 微合金化对TiB2颗粒增强铝基复合材料微观组织和力学性能影响的研究进展[J]. 材料工程, 2021, 49(11): 51-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn