Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (9): 78-88    DOI: 10.11868/j.issn.1001-4381.2021.000148
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
有机磷阻燃剂插层钙基蒙脱土纳米复合物的制备和表征
秦建雨1,2, 赵翰鹏3, 姚金雨4, 张文超1, 杨荣杰1,*()
1 北京理工大学 材料学院 国家阻燃材料工程技术研究中心,北京 100081
2 北京机电工程总体设计部,北京 100854
3 中国铁道科学研究院集团有限公司 标准计量研究所,北京 100081
4 中国科学院过程工程研究所,北京 100190
Preparation and characterization of intercalated calcium-based montmorillonite nanocompounds with organophosphorus flame retardants
Jianyu QIN1,2, Hanpeng ZHAO3, Jinyu YAO4, Wenchao ZHANG1, Rongjie YANG1,*()
1 National Engineering Technology Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
2 Beijing System Design Institute of Electro-mechanic Engineering, Beijing 100854, China
3 Standards & Metrology Research Institute, China Academy of Railway Sciences Co., Ltd., Beijing 100081, China
4 Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
全文: PDF(1178 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用一种简单直接、绿色无溶剂的制备方法,将三种有机磷小分子阻燃剂(9,10-二氢-9-氧杂-10-膦菲-10-氧杂(DOPO)、磷酸三苯酯(TPP)、季戊四醇磷酸酯(PEPA))分别插层进入到钙基蒙脱土(CaMMT)的片层中,制备了三种有机磷阻燃剂的蒙脱土纳米复合物(DOPO-CaMMT,TPP-CaMMT和PEPA-CaMMT)。X射线衍射(XRD)表明三种含磷小分子成功插层进入了蒙脱土的片层中,透射电子显微镜(TEM)验证了三种蒙脱土纳米复合物中蒙脱土的层间距表现出不同程度的增加,热重分析(TGA)表征了纳米复合物热稳定性的变化。对三种纳米复合物的形成机理进行研究。结果表明,TPP和PEPA均以一步插入到蒙脱土片层中;DOPO按照两步插层蒙脱土,且层间距更大。三种有机磷阻燃剂在插层进入蒙脱土层间形成的纳米复合物,实现了蒙脱土在聚合物中更好的分散性及磷硅协同的阻燃效应。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦建雨
赵翰鹏
姚金雨
张文超
杨荣杰
关键词 钙基蒙脱土9,10-二氢-9-氧杂-10-膦菲-10-氧杂磷酸三苯酯季戊四醇磷酸酯纳米复合物插层    
Abstract

Three organophosphorus flame retardants (9, 10-dihydro-9-oxa-10-phosphophenanthrene-10-oxa (DOPO), triphenyl phosphate (TPP) and pentaerythritol phosphate (PEPA)) were intercalated into the layer of calcium-based montmorillonite (CaMMT) by a simple, direct and solvent-free method, and three organophosphorus flame retardant montmorillonite nanocompounds (DOPO-CaMMT, TPP-CaMMT and PEPA-CaMMT) were prepared. X-ray diffraction (XRD) shows that the three phosphorus-containing small molecules are successfully intercalated into the layer of CaMMT. It was verified by transmission electron microscope (TEM) that the interlayer spacing of CaMMT in the three nanocompounds shows different degrees of increase. The change of thermal stability of the nanocompounds was characterized by thermogravimetric analysis (TGA). The formation mechanism of the three nanocompounds was studied. The results show that TPP and PEPA are intercalated into CaMMT in one step, while DOPO is intercalated into CaMMT in two steps with a larger interlayer spacing. The nanocompounds formed by the intercalation of three organophosphorus flame retardants into CaMMT layer are expected to achieve better dispersion of CaMMT in polymer and synergistic flame retardant effect of phosphorus and silicon.

Key wordscalcium-based montmorillonite    9, 10-dihydro-9-oxa-10-phosphophenanthrene-10-oxa    triph-enyl phosphate    pentaerythritol phosphate    nanocompound    intercalation
收稿日期: 2021-02-22      出版日期: 2022-09-20
中图分类号:  TB332  
基金资助:国家重点研究发展规划项目(2016YFB0302101)
通讯作者: 杨荣杰     E-mail: yrj@bit.edu.cn
作者简介: 杨荣杰(1962—),男,教授,研究方向为阻燃高分子材料以及含能材料,联系地址:北京市海淀区中关村南大街五号北京理工大学材料学院(100081),E-mail: yrj@bit.edu.cn
引用本文:   
秦建雨, 赵翰鹏, 姚金雨, 张文超, 杨荣杰. 有机磷阻燃剂插层钙基蒙脱土纳米复合物的制备和表征[J]. 材料工程, 2022, 50(9): 78-88.
Jianyu QIN, Hanpeng ZHAO, Jinyu YAO, Wenchao ZHANG, Rongjie YANG. Preparation and characterization of intercalated calcium-based montmorillonite nanocompounds with organophosphorus flame retardants. Journal of Materials Engineering, 2022, 50(9): 78-88.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000148      或      http://jme.biam.ac.cn/CN/Y2022/V50/I9/78
Fig.1  DOPO-CaMMT (a)和TPP-CaMMT (b) 纳米复合物和混合物的XRD对比图
Fig.2  PEPA-CaMMT纳米复合物和混合物的XRD对比图
Fig.3  CaMMT(a),DOPO3-CaMMT1-8 h(b),TPP5-CaMMT1-8 h(c)和PEPA10-CaMMT1-1 h(d)纳米复合物的TEM照片
Fig.4  DOPO5-CaMMT1(a)和TPP5-CaMMT1(b)纳米复合物形成过程的XRD图谱
Fig.5  PEPA10-CaMMT1纳米复合物形成过程的XRD图谱
Fig.6  DOPO-CaMMT纳米复合物和混合物的TG(a)和DTG(b)曲线
Sample T5%/℃ T10%/℃ Tmax/℃ (dm/dt)min/(%·min-1) Mass residue ratio/%
DOPO 208.0 218.4 270 -20.8
CaMMT 559.1 91.5
DOPO3+CaMMT1 203.8 219.9 257.4 -14.9 25.6
DOPO3-CaMMT1-8 h 214.2 228.1 264.3 -15.1 27.3
Table 1  DOPO-CaMMT纳米复合物和混合物的热失重参数
Fig.7  TPP-CaMMT纳米复合物和混合物的TG(a)和DTG(b)曲线
Sample T5%/℃ T10%/℃ Tmax/℃ (dm/dt)min/(%·min-1) Mass residue ratio/%
TPP 211.0 224.4 275.9 -28.01 0.13
CaMMT 559.1 91.5
TPP5+CaMMT1 213.2 227.2 259.0 -23.3 14.4
TPP5-CaMMT1-8 h 211.9 227.8 276.1 -23.92 14.7
Table 2  TPP-CaMMT纳米复合物和混合物的热失重参数
Fig.8  PEPA-CaMMT纳米复合物和混合物的TG(a)和DTG(b)曲线
Sample T5%/℃ T10%/℃ Tmax1/℃ Tmax2/℃ (dm/dt)min/(%·min-1) Mass residue ratio/%
PEPA 264.4 285.0 305.3 340.8 -8.8 40.5
CaMMT 559.1 91.5
PEPA4+CaMMT1 255.9 280.1 304.4 342.3 -5.9 52.9
PEPA4-CaMMT1-1 h 273.7 291.6 297.7 340.6 -4.9 58.3
Table 3  PEPA-CaMMT纳米复合物和混合物的热失重参数
Fig.9  DOPO5-CaMMT1(a)和TPP5-CaMMT1(b)纳米复合物随时间变化的红外曲线
Fig.10  PEPA10-CaMMT1纳米复合物随时间变化的照片
Fig.11  PEPA10-CaMMT1纳米复合物随时间变化的红外曲线
1 MOLINARI F N , BARRAGÁN E , BILBAO E , et al. An electrospun polymer composite with fullerene-multiwalled carbon nanotube exohedral complexes can act as memory device[J]. Polymer, 2020, 194, 122380.
doi: 10.1016/j.polymer.2020.122380
2 PRASITNOK K , IN-NOI O . Functionalized graphenes as nanofillers for polylactide: molecular dynamics simulation study[J]. Polymer Composites, 2019, 41 (1): 294- 305.
3 CHATTERJEE T , NASKAR K . Thermo-sensitive shape memory polymer nanocomposite based on polyhedral oligomeric silsesquioxane (POSS) filled polyolefins[J]. Polymer-Plastics Technology and Materials, 2019, 58 (6): 630- 640.
doi: 10.1080/03602559.2018.1493127
4 FARAHANCHI A , MALLOY R A , SOBKOWICZ M J . Extreme shear processing for exfoliating organoclay in nanocomposites with incompatible polymers[J]. Polymer, 2018, 145, 117- 126.
doi: 10.1016/j.polymer.2018.04.056
5 ZHANG J , KONG Q , YANG L , et al. Few layered Co(OH)2 ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling[J]. Green Chemistry, 2016, 18 (10): 3066- 3074.
doi: 10.1039/C5GC03048J
6 VATTATHURVALAPPIL S H , KUNDURTHI S , DRZAL L T , et al. Thermo-mechanical degradation in ABS-Fe3O4 polymer nanocomposite due to repeated electromagnetic heating[J]. Composites Part B, 2020, 201, 108374.
doi: 10.1016/j.compositesb.2020.108374
7 QIN J , ZHANG W , YANG R . Synthesis of novel phosphoniumbromide-montmorillonitenanocompound and its performance in flame retardancy and dielectric properties of epoxy resins[J]. Polymer Composites, 2020, 42 (1): 362- 374.
8 LAN B , LI P , LUO X , et al. Hydrogen bonding and topological network effects on optimizing thermoplastic polyurethane/organic montmorillonite nanocomposite foam[J]. Polymer, 2021, 212, 123159.
doi: 10.1016/j.polymer.2020.123159
9 KILIARIS P , PAPASPYRIDES C D . Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy[J]. Progress in Polymer Science, 2010, 35 (7): 902- 958.
doi: 10.1016/j.progpolymsci.2010.03.001
10 KOKLUKAYA O , CAROSIO F , DURAN V L , et al. Layer-by-layer modified low density cellulose fiber networks: a sustainable and fireproof alternative to petroleum based foams[J]. Carbohydrate Polymers, 2020, 230, 115616.
doi: 10.1016/j.carbpol.2019.115616
11 HU X , LI M , YANG J , et al. In situ fabrication of melamine hydroxy ethylidene diphosphonate wrapped montmorillonite for reducing the fire hazards of epoxy resin[J]. Applied Clay Science, 2021, 201, 105934.
doi: 10.1016/j.clay.2020.105934
12 MALIK N , KUMAR P , GHOSH S B , et al. Organically modified nanoclay and aluminum hydroxide incorporated bionanocomposites towards enhancement of physico-mechanical and thermal properties of lignocellulosic structural reinforcement[J]. Journal of Polymers and the Environment, 2018, 26 (8): 3243- 3249.
doi: 10.1007/s10924-018-1184-9
13 ZHANG G , WANG J . Preparation of novel flame-retardant organoclay and its application to natural rubber composites[J]. Journal of Physics and Chemistry of Solids, 2018, 115, 137- 147.
doi: 10.1016/j.jpcs.2017.12.007
14 GUO Y X , LIU J H , GATES W P , et al. Organo-modification of montmorillonite[J]. Clays and Clay Minerals, 2021, 68 (6): 601- 622.
15 OIWA M , YAMAGUCHI K , SHIBAYAMA T , et al. Sorption of antibiotics, pharmaceuticals, and personal care products in water on didodecyldimethylammonium bromide-montmorillonite organoclay[J]. Journal of Chemical Engineering of Japan, 2020, 53 (10): 608- 615.
doi: 10.1252/jcej.19we239
16 YU L , LIU Y , FENG P , et al. Organically modified montmorillonite improves interfacial compatibility between PLLA and PGA in bone scaffold[J]. Polymer Degradation and Stability, 2020, 182, 109394.
doi: 10.1016/j.polymdegradstab.2020.109394
17 YAN H , CHEN X , BAO C , et al. Synthesis and assessment of CTAB and NPE modified organo-montmorillonite for the fabrication of organo-montmorillonite/alginate based hydrophobic pharmaceutical controlled-release formulation[J]. Colloids and Surfaces B, 2020, 191, 110983.
doi: 10.1016/j.colsurfb.2020.110983
18 WEHBI M , MEHDI A , NEGRELL C , et al. Phosphorus-containing fluoropolymers: state of the art and applications[J]. ACS Applied Materials & Interfaces, 2020, 12 (1): 38- 59.
19 HUO S , YANG S , WANG J , et al. A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances[J]. Journal of Hazardous Materials, 2020, 386, 121984.
doi: 10.1016/j.jhazmat.2019.121984
20 XU Y J , SHI X H , LU J H , et al. Novel phosphorus-containing imidazolium as hardener for epoxy resin aiming at controllable latent curing behavior and flame retardancy[J]. Composites Part B, 2020, 184, 107673.
doi: 10.1016/j.compositesb.2019.107673
21 SUN Y , WANG Y , LIU L , et al. The preparation, thermal properties, and fire property of a phosphorus-containing flame-retardant styrene copolymer[J]. Materials, 2019, 13 (1): 127.
doi: 10.3390/ma13010127
22 CHEN T , HONG J , PENG C , et al. Superhydrophobic and flame retardant cotton modified with DOPO and fluorine-silicon-containing crosslinked polymer[J]. Carbohydrate Polymers, 2019, 208, 14- 21.
doi: 10.1016/j.carbpol.2018.12.023
23 CHEN R , HU K , TANG H , et al. A novel flame retardant derived from DOPO and piperazine and its application in epoxy resin: flame retardance, thermal stability and pyrolysis behavior[J]. Polymer Degradation and Stability, 2019, 166, 334- 343.
doi: 10.1016/j.polymdegradstab.2019.06.011
24 SHI Y Q , FU T , XU Y J , et al. Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance[J]. Chemical Engineering Journal, 2018, 354, 208- 219.
doi: 10.1016/j.cej.2018.08.023
25 YAN W , WANG K , HUANG W , et al. Synergistic effects of phenethyl-bridged DOPO derivative with Al(OH)3 on flame retardancy for epoxy resins[J]. Polymer-Plastics Technology and Materials, 2019, 59 (8): 797- 808.
26 PAN Y , LI D , YANG R . Effect of charring agents on solvent-free fireproof coatings[J]. Polymers for Advanced Technologies, 2020, 31 (9): 2038- 2050.
doi: 10.1002/pat.4927
27 CHEN R , HUANG X , ZHENG R , et al. Flame-retardancy and thermal properties of a novel phosphorus-modified PCM for thermal energy storage[J]. Chemical Engineering Journal, 2020, 380, 122500.
doi: 10.1016/j.cej.2019.122500
28 WANG S , QIAN L , XIN F . The synergistic flame-retardant behaviors of pentaerythritol phosphate and expandable graphite in rigid polyurethane foams[J]. Polymer Composites, 2018, 39 (2): 329- 336.
doi: 10.1002/pc.23939
29 姜定. 防水型木材阻燃涂料的制备及其机理研究[D]. 贵阳: 贵州大学, 2017.
29 JIANG D. Preparation and mechanism of waterproof wood flame retardant coatings[D]. Guiyang: Guizhou University, 2017.
30 唐霜. 新型笼状P-N大分子膨胀型阻燃剂的制备及其阻燃聚丙烯的性能及机理研究[D]. 广州: 华南理工大学, 2013.
30 TANG S. Preparation of a new cage-like P-N macromolecular intumescent flame retardant and its flame-retardant polypropylene properties and mechanism[D]. Guangzhou: South China University of Technology, 2013.
31 HUANG S , XU J , DENG H , et al. Comparison of pentaerythrotol and its derivatives as intumescent flame retardants for polypropylene[J]. Advances in Materials Science and Engineering, 2018, 2018, 1- 12.
32 HUO S , WANG J , YANG S , et al. Synergistic effect between a novel triazine-based flame retardant and DOPO/HPCP on epoxy resin[J]. Polymers for Advanced Technologies, 2018, 29 (11): 2774- 2783.
doi: 10.1002/pat.4400
33 JIANG S , ZHU Y , HU Y , et al. In situ synthesis of a novel transparent poly (methyl methacrylate) resin with markedly enhanced flame retardancy[J]. Polymers for Advanced Technologies, 2016, 27 (2): 266- 272.
doi: 10.1002/pat.3631
34 ZHANG Q , YANG S , WANG J , et al. A DOPO based reactive flame retardant constructed by multiple heteroaromatic groups and its application on epoxy resin: curing behavior, thermal degradation and flame retardancy[J]. Polymer Degradation and Stability, 2019, 167, 10- 20.
doi: 10.1016/j.polymdegradstab.2019.06.020
35 ZHANG C C , ZHANG F S . Recovery of triphenyl phosphate from waste printed circuit boards by solvothermal process[J]. Chemical Engineering Journal, 2014, 240, 10- 15.
doi: 10.1016/j.cej.2013.11.048
36 TKAC P, PAULENOVA A, GABLE K P J A S. Spectroscopic study of the uranyl-acetohydroxamate adduct with tributyl phosphate[J]. 2007, 61(7): 772.
37 黄涛, 何敏, 刘渝, 等. 膨胀型阻燃剂PEPA/MPP阻燃LGFPP性能研究[J]. 工程塑料应用, 2015, (3): 35- 39.
37 HUANG T , HE M , LIU Y , et al. Study on properties of intumescent flame retardant PEPA/MPP and flame retardant LGFPP[J]. Engineering Plastics Application, 2015, (3): 35- 39.
38 SHI Y , WANG G . The novel epoxy/PEPA phosphate flame retardants: synthesis, characterization and application in transparent intumescent fire resistant coatings[J]. Progress in Organic Coatings, 2016, 97, 1- 9.
doi: 10.1016/j.porgcoat.2016.02.023
39 XU J Y , LIU J , LI K D , et al. Novel PEPA-functionalized graphene oxide for fire safety enhancement of polypropylene[J]. Science and Technology of Advanced Materials, 2015, 16 (2): 25006.
doi: 10.1088/1468-6996/16/2/025006
[1] 吴乾鑫, 刘磊, 孙晋蒙, 李一帆, 刘宇航, 杜洪方, 艾伟, 杜祝祝, 王科. 磺酸基修饰石墨烯复合材料的储钠性能研究[J]. 材料工程, 2022, 50(4): 36-43.
[2] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[3] 王楠, 齐新, 彭思侃, 陈翔, 王晨, 戴圣龙, 燕绍九. Mn2O3/Fe2O3/少层石墨烯/硫锂硫电池正极材料的制备及其电化学性能[J]. 材料工程, 2020, 48(8): 110-118.
[4] 钟祥华, 刘羽, 刘文元, 许涛. 地开石-醋酸铯插层复合物的制备及机理[J]. 材料工程, 2018, 46(7): 76-82.
[5] 倪楠楠, 温月芳, 贺德龙, 益小苏, 郭妙才, 许亚洪. 结构-阻尼复合材料研究进展[J]. 材料工程, 2015, 43(6): 90-101.
[6] 侯桂香, 谢建强, 姚少巍, 张翠云. PAN/插层高岭石复合材料制备及静电纺丝性能[J]. 材料工程, 2015, 43(10): 49-54.
[7] 戈明亮, 贾德民. X射线衍射法研究天然橡胶/黏土纳米复合材料的插层过程[J]. 材料工程, 2012, 0(3): 43-46.
[8] 哈恩华, 黄大庆, 哈恩平, 王智勇, 丁鹤雁. 碳纳米管/导电聚合物纳米复合物的合成与表征[J]. 材料工程, 2008, 0(10): 122-125.
[9] 方少明, 林治峰, 周立明, 高丽君. 胺类固化剂-插层剂体系对粘土在环氧树脂中剥离的影响[J]. 材料工程, 2005, 0(3): 30-32,36.
[10] 唐海军, 梁国正, 马晓燕, 张宝艳, 陈祥宝. 环氧/粘土纳米复合材料插层/解离行为的研究进展[J]. 材料工程, 2004, 0(9): 14-18.
[11] 余剑英, 魏连启, 曹献坤, 陈文怡. 有机蛭石/酚醛树脂熔融插层纳米复合材料的研究[J]. 材料工程, 2004, 0(4): 20-23.
[12] 张生辉, 夏华, 杨薇, 赵顺平, 韩利雄. 高岭石/对硝基苯胺插层复合物的制备与表征[J]. 材料工程, 2004, 0(3): 24-27.
[13] 张广成, 何庆龙, 刘铁民, 项士新. 硅烷交联聚乙烯/纳米蒙脱土复合材料的研究[J]. 材料工程, 2003, 0(11): 3-6.
[14] 杨学稳, 田中华, 郑俊萍, 吴东义, 刘建国, 王薇. 环氧树脂/蒙脱土纳米复合改性的研究[J]. 材料工程, 2002, 0(4): 3-5.
[15] 瞿雄伟, 罗艳红, 丁会利, 李秀错, 张留成. 聚氯乙烯/粘土熔融插层复合的研究[J]. 材料工程, 2002, 0(4): 9-11,23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn