1 National Engineering Technology Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China 2 Beijing System Design Institute of Electro-mechanic Engineering, Beijing 100854, China 3 Standards & Metrology Research Institute, China Academy of Railway Sciences Co., Ltd., Beijing 100081, China 4 Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Three organophosphorus flame retardants (9, 10-dihydro-9-oxa-10-phosphophenanthrene-10-oxa (DOPO), triphenyl phosphate (TPP) and pentaerythritol phosphate (PEPA)) were intercalated into the layer of calcium-based montmorillonite (CaMMT) by a simple, direct and solvent-free method, and three organophosphorus flame retardant montmorillonite nanocompounds (DOPO-CaMMT, TPP-CaMMT and PEPA-CaMMT) were prepared. X-ray diffraction (XRD) shows that the three phosphorus-containing small molecules are successfully intercalated into the layer of CaMMT. It was verified by transmission electron microscope (TEM) that the interlayer spacing of CaMMT in the three nanocompounds shows different degrees of increase. The change of thermal stability of the nanocompounds was characterized by thermogravimetric analysis (TGA). The formation mechanism of the three nanocompounds was studied. The results show that TPP and PEPA are intercalated into CaMMT in one step, while DOPO is intercalated into CaMMT in two steps with a larger interlayer spacing. The nanocompounds formed by the intercalation of three organophosphorus flame retardants into CaMMT layer are expected to achieve better dispersion of CaMMT in polymer and synergistic flame retardant effect of phosphorus and silicon.
MOLINARI F N , BARRAGÁN E , BILBAO E , et al. An electrospun polymer composite with fullerene-multiwalled carbon nanotube exohedral complexes can act as memory device[J]. Polymer, 2020, 194, 122380.
doi: 10.1016/j.polymer.2020.122380
2
PRASITNOK K , IN-NOI O . Functionalized graphenes as nanofillers for polylactide: molecular dynamics simulation study[J]. Polymer Composites, 2019, 41 (1): 294- 305.
3
CHATTERJEE T , NASKAR K . Thermo-sensitive shape memory polymer nanocomposite based on polyhedral oligomeric silsesquioxane (POSS) filled polyolefins[J]. Polymer-Plastics Technology and Materials, 2019, 58 (6): 630- 640.
doi: 10.1080/03602559.2018.1493127
4
FARAHANCHI A , MALLOY R A , SOBKOWICZ M J . Extreme shear processing for exfoliating organoclay in nanocomposites with incompatible polymers[J]. Polymer, 2018, 145, 117- 126.
doi: 10.1016/j.polymer.2018.04.056
5
ZHANG J , KONG Q , YANG L , et al. Few layered Co(OH)2 ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling[J]. Green Chemistry, 2016, 18 (10): 3066- 3074.
doi: 10.1039/C5GC03048J
6
VATTATHURVALAPPIL S H , KUNDURTHI S , DRZAL L T , et al. Thermo-mechanical degradation in ABS-Fe3O4 polymer nanocomposite due to repeated electromagnetic heating[J]. Composites Part B, 2020, 201, 108374.
doi: 10.1016/j.compositesb.2020.108374
7
QIN J , ZHANG W , YANG R . Synthesis of novel phosphoniumbromide-montmorillonitenanocompound and its performance in flame retardancy and dielectric properties of epoxy resins[J]. Polymer Composites, 2020, 42 (1): 362- 374.
8
LAN B , LI P , LUO X , et al. Hydrogen bonding and topological network effects on optimizing thermoplastic polyurethane/organic montmorillonite nanocomposite foam[J]. Polymer, 2021, 212, 123159.
doi: 10.1016/j.polymer.2020.123159
9
KILIARIS P , PAPASPYRIDES C D . Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy[J]. Progress in Polymer Science, 2010, 35 (7): 902- 958.
doi: 10.1016/j.progpolymsci.2010.03.001
10
KOKLUKAYA O , CAROSIO F , DURAN V L , et al. Layer-by-layer modified low density cellulose fiber networks: a sustainable and fireproof alternative to petroleum based foams[J]. Carbohydrate Polymers, 2020, 230, 115616.
doi: 10.1016/j.carbpol.2019.115616
11
HU X , LI M , YANG J , et al. In situ fabrication of melamine hydroxy ethylidene diphosphonate wrapped montmorillonite for reducing the fire hazards of epoxy resin[J]. Applied Clay Science, 2021, 201, 105934.
doi: 10.1016/j.clay.2020.105934
12
MALIK N , KUMAR P , GHOSH S B , et al. Organically modified nanoclay and aluminum hydroxide incorporated bionanocomposites towards enhancement of physico-mechanical and thermal properties of lignocellulosic structural reinforcement[J]. Journal of Polymers and the Environment, 2018, 26 (8): 3243- 3249.
doi: 10.1007/s10924-018-1184-9
13
ZHANG G , WANG J . Preparation of novel flame-retardant organoclay and its application to natural rubber composites[J]. Journal of Physics and Chemistry of Solids, 2018, 115, 137- 147.
doi: 10.1016/j.jpcs.2017.12.007
14
GUO Y X , LIU J H , GATES W P , et al. Organo-modification of montmorillonite[J]. Clays and Clay Minerals, 2021, 68 (6): 601- 622.
15
OIWA M , YAMAGUCHI K , SHIBAYAMA T , et al. Sorption of antibiotics, pharmaceuticals, and personal care products in water on didodecyldimethylammonium bromide-montmorillonite organoclay[J]. Journal of Chemical Engineering of Japan, 2020, 53 (10): 608- 615.
doi: 10.1252/jcej.19we239
16
YU L , LIU Y , FENG P , et al. Organically modified montmorillonite improves interfacial compatibility between PLLA and PGA in bone scaffold[J]. Polymer Degradation and Stability, 2020, 182, 109394.
doi: 10.1016/j.polymdegradstab.2020.109394
17
YAN H , CHEN X , BAO C , et al. Synthesis and assessment of CTAB and NPE modified organo-montmorillonite for the fabrication of organo-montmorillonite/alginate based hydrophobic pharmaceutical controlled-release formulation[J]. Colloids and Surfaces B, 2020, 191, 110983.
doi: 10.1016/j.colsurfb.2020.110983
18
WEHBI M , MEHDI A , NEGRELL C , et al. Phosphorus-containing fluoropolymers: state of the art and applications[J]. ACS Applied Materials & Interfaces, 2020, 12 (1): 38- 59.
19
HUO S , YANG S , WANG J , et al. A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances[J]. Journal of Hazardous Materials, 2020, 386, 121984.
doi: 10.1016/j.jhazmat.2019.121984
20
XU Y J , SHI X H , LU J H , et al. Novel phosphorus-containing imidazolium as hardener for epoxy resin aiming at controllable latent curing behavior and flame retardancy[J]. Composites Part B, 2020, 184, 107673.
doi: 10.1016/j.compositesb.2019.107673
21
SUN Y , WANG Y , LIU L , et al. The preparation, thermal properties, and fire property of a phosphorus-containing flame-retardant styrene copolymer[J]. Materials, 2019, 13 (1): 127.
doi: 10.3390/ma13010127
22
CHEN T , HONG J , PENG C , et al. Superhydrophobic and flame retardant cotton modified with DOPO and fluorine-silicon-containing crosslinked polymer[J]. Carbohydrate Polymers, 2019, 208, 14- 21.
doi: 10.1016/j.carbpol.2018.12.023
23
CHEN R , HU K , TANG H , et al. A novel flame retardant derived from DOPO and piperazine and its application in epoxy resin: flame retardance, thermal stability and pyrolysis behavior[J]. Polymer Degradation and Stability, 2019, 166, 334- 343.
doi: 10.1016/j.polymdegradstab.2019.06.011
24
SHI Y Q , FU T , XU Y J , et al. Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance[J]. Chemical Engineering Journal, 2018, 354, 208- 219.
doi: 10.1016/j.cej.2018.08.023
25
YAN W , WANG K , HUANG W , et al. Synergistic effects of phenethyl-bridged DOPO derivative with Al(OH)3 on flame retardancy for epoxy resins[J]. Polymer-Plastics Technology and Materials, 2019, 59 (8): 797- 808.
26
PAN Y , LI D , YANG R . Effect of charring agents on solvent-free fireproof coatings[J]. Polymers for Advanced Technologies, 2020, 31 (9): 2038- 2050.
doi: 10.1002/pat.4927
27
CHEN R , HUANG X , ZHENG R , et al. Flame-retardancy and thermal properties of a novel phosphorus-modified PCM for thermal energy storage[J]. Chemical Engineering Journal, 2020, 380, 122500.
doi: 10.1016/j.cej.2019.122500
28
WANG S , QIAN L , XIN F . The synergistic flame-retardant behaviors of pentaerythritol phosphate and expandable graphite in rigid polyurethane foams[J]. Polymer Composites, 2018, 39 (2): 329- 336.
doi: 10.1002/pc.23939
29
姜定. 防水型木材阻燃涂料的制备及其机理研究[D]. 贵阳: 贵州大学, 2017.
29
JIANG D. Preparation and mechanism of waterproof wood flame retardant coatings[D]. Guiyang: Guizhou University, 2017.
TANG S. Preparation of a new cage-like P-N macromolecular intumescent flame retardant and its flame-retardant polypropylene properties and mechanism[D]. Guangzhou: South China University of Technology, 2013.
31
HUANG S , XU J , DENG H , et al. Comparison of pentaerythrotol and its derivatives as intumescent flame retardants for polypropylene[J]. Advances in Materials Science and Engineering, 2018, 2018, 1- 12.
32
HUO S , WANG J , YANG S , et al. Synergistic effect between a novel triazine-based flame retardant and DOPO/HPCP on epoxy resin[J]. Polymers for Advanced Technologies, 2018, 29 (11): 2774- 2783.
doi: 10.1002/pat.4400
33
JIANG S , ZHU Y , HU Y , et al. In situ synthesis of a novel transparent poly (methyl methacrylate) resin with markedly enhanced flame retardancy[J]. Polymers for Advanced Technologies, 2016, 27 (2): 266- 272.
doi: 10.1002/pat.3631
34
ZHANG Q , YANG S , WANG J , et al. A DOPO based reactive flame retardant constructed by multiple heteroaromatic groups and its application on epoxy resin: curing behavior, thermal degradation and flame retardancy[J]. Polymer Degradation and Stability, 2019, 167, 10- 20.
doi: 10.1016/j.polymdegradstab.2019.06.020
35
ZHANG C C , ZHANG F S . Recovery of triphenyl phosphate from waste printed circuit boards by solvothermal process[J]. Chemical Engineering Journal, 2014, 240, 10- 15.
doi: 10.1016/j.cej.2013.11.048
36
TKAC P, PAULENOVA A, GABLE K P J A S. Spectroscopic study of the uranyl-acetohydroxamate adduct with tributyl phosphate[J]. 2007, 61(7): 772.
HUANG T , HE M , LIU Y , et al. Study on properties of intumescent flame retardant PEPA/MPP and flame retardant LGFPP[J]. Engineering Plastics Application, 2015, (3): 35- 39.
38
SHI Y , WANG G . The novel epoxy/PEPA phosphate flame retardants: synthesis, characterization and application in transparent intumescent fire resistant coatings[J]. Progress in Organic Coatings, 2016, 97, 1- 9.
doi: 10.1016/j.porgcoat.2016.02.023
39
XU J Y , LIU J , LI K D , et al. Novel PEPA-functionalized graphene oxide for fire safety enhancement of polypropylene[J]. Science and Technology of Advanced Materials, 2015, 16 (2): 25006.
doi: 10.1088/1468-6996/16/2/025006