Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (10): 1-14    DOI: 10.11868/j.issn.1001-4381.2021.000171
  陶瓷基复合材料专栏 本期目录 | 过刊浏览 | 高级检索 |
生物态碳-陶瓷基复合材料制备方法的研究现状
李国青, 杨丽霞, 余敏()
南京航空航天大学 材料科学与技术学院, 南京 211106
Research status in processing biomorphic carbon-ceramic matrix composites
Guoqing LI, Lixia YANG, Min YU()
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
全文: PDF(19025 KB)   HTML ( 35 )  
输出: BibTeX | EndNote (RIS)      
摘要 

近年来,碳-陶瓷基复合材料因其耐高温、低密度、抗腐蚀性能好、热膨胀系数低、性能可设计性强等特点成为研究热点之一,将生物态材料的多孔结构引入陶瓷基体中制备具有生物形态的碳-陶瓷复合材料的研究已引起关注。本文综述了生物态碳-陶瓷基复合材料的多孔结构、制备工艺、性能以及应用前景。强调设计材料微观结构的重要性,并详细介绍了碳-陶瓷基复合材料制备过程中的关键技术——渗透技术,包括:化学气相渗透、熔融渗透、溶胶凝胶渗透、料浆渗透、聚合物前驱体渗透、熔盐渗透六种渗透技术,并对其存在的问题提出解决方案。综述了生物态碳-陶瓷基复合材料压缩强度和断裂强度等性能,对未来的性能研究方向提出建议,指出应测试高温、强酸强碱、冷热交替环境下材料的力学性能。探讨生物态碳-陶瓷基复合材料在航空发动机叶片、汽车尾气净化器、催化剂载体三个方面的潜在应用,概述在复杂成型、较强的力学性能和热稳定性等方面的挑战和实际局限性。最后,对生物形态的碳-陶瓷基复合材料制备工艺的改进、力学性能的研究进行展望,为生物态碳-陶瓷基复合材料的研制和应用提供理论依据和参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李国青
杨丽霞
余敏
关键词 碳-陶瓷基复合材料渗透技术生物态材料力学性能航空发动机尾气净化器    
Abstract

In recent years, carbon-ceramic matrix composite materials have become a hot topic due to their high temperature resistance, low density, good corrosion resistance, low thermal expansion coefficient, and strong performance design. Biomorphic carbon-ceramic composites have been prepared by introducing the wood-derived pore structure into ceramic matrix.The pore structure, preparation process, properties and application prospects of biomorphic carbon-ceramic matrix composites were reviewed. The importance of designing the microstructure of materials was emphasized, and the key technology in the preparation process of carbon-ceramic matrix composites-infiltration technology were specified, including: chemical vapor infiltration, melt infiltration, sol-gel infiltration, slurry infiltration, polymer precursor infiltration, and molten salt infiltration. The solutions to the existing problems of each technology were proposed. Composite strength and fracture strength of biomass carbon-ceramic matrix composites were reviewed. Suggestions for future research directions on the performance were put forward. It was pointed out that the mechanical properties of materials should be tested under high temperature, strong acid and strong alkali, and alternating cold and heat environments. The potential applications of biomorphic carbon-ceramic matrix composites were discussed in three aspects, including aero-engine blades, automobile exhaust gas purifiers, and catalyst carriers. Existing challenges and practical limitations such as complex molding, strong mechanical properties and thermal stability were outlined. Finally, the improvement of the preparation process and the study of mechanical properties of biomorphic carbon-ceramic matrix composites were prospected, which provides theoretical basis and guidance for the development and application of biomorphic carbon-ceramic matrix composites.

Key wordscarbon-ceramic matrix composite    infiltration technology    biomorphic material    mechanical property    aero-engine    exhaust gas purifier
收稿日期: 2021-02-26      出版日期: 2022-10-24
中图分类号:  TB332  
基金资助:国家自然科学青年基金项目(52002174);国家自然科学青年基金项目(51905268);江苏省自然科学青年基金(BK20200455)
通讯作者: 余敏     E-mail: min.yu@nuaa.edu.cn
作者简介: 余敏(1989—), 女, 副教授, 博士, 研究方向为陶瓷及陶瓷基复合材料、等离子烧结, 联系地址: 江苏省南京市江宁区航空航天大学将军路校区新材料大楼A509室(211106), E-mail: min.yu@nuaa.edu.cn
引用本文:   
李国青, 杨丽霞, 余敏. 生物态碳-陶瓷基复合材料制备方法的研究现状[J]. 材料工程, 2022, 50(10): 1-14.
Guoqing LI, Lixia YANG, Min YU. Research status in processing biomorphic carbon-ceramic matrix composites. Journal of Materials Engineering, 2022, 50(10): 1-14.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000171      或      http://jme.biam.ac.cn/CN/Y2022/V50/I10/1
Fig.1  松木的碳化流程
(a)松木的孔结构[14];(b)松木管壁的微观结构[14];(c)松木管壁的主要成分[15];(d)碳化后松木的孔结构[16];(e)碳化后松木管壁的微观结构[14];(f)不同木材的孔径分布[17]
Fig.2  天然材料三维联通结构
(a)橡木木芯的胞状三维联通结构;(b)甘蔗的胞状三维联通结构;(c)柚子皮的网状三维联通结构[20]
Fig.3  天然木材的SEM图[17]
(a)白梧桐木;(b)松木;(c)伊罗科木;(d)红橡木
Fig.4  木材在惰性气体下热解后的SEM图片
(a)松木[16];(b)橡木[16];(c)枫木[21];(d)赤杨[21]
Fig.5  生物态碳-陶瓷基复合材料的制备流程
Material Infiltration technology Si source Wood source Carbonization temperature/K Sintering temperature/K Ref
C/SiC SI Si powder Balsa wood 823 973 [27]
C/SiC SI Si powder Pine 823 973 [27]
C/SiC SI Si powder, SiO2 powder Bamboo - 1673 [28]
SiOC-GO PPI PDMS-3-PAPMS PDMS-3-PAPMS, GO 1273 1973 [29]
C/SiC Sol-gel SiO2 sol Pine 773 1973 [30]
C/β-SiC Sol-gel TEOS∶H2O∶HCl Oak 1473 1673-1873 [31]
C/SiC Sol-gel SiO2 sol Beech, pine 1373/1673 1848 [18]
C/BcSiCs Sol-gel SiO2 sol Bamboo 1120 1773-1973 [32]
C/BSiC Sol-gel SiO2 sol Bamboo - 1973 [32]
C/SiC Sol-gel TEOS Pine 1473 1473-1873 [33]
Carbide nanofibers MSI Transition metal Multi-wall carbon nanotubes - 1123 [34]
Table 1  生物态碳-陶瓷基复合材料的制备工艺参数
Method Advantage Shortcoming Characteristic Scope of application Improvement method
CVI Infiltration, homogeneous phase Poor structural integrity, easy to plug pores Infiltrate by raw material vapor, high reaction temperature Composites with complex shapes, infiltration temperature: 1000-1600 ℃ Natural materials with less internal closed pores and high strength of pore wall after carbonization should be used; the carbonization process should be adjusted.
MI Short time, multiple template options Poor structural integrity, low reaction efficiency Infiltrate by capillary force, high reaction temperature Composites with large size and complex shape, infiltration temperature: 1500-1600 ℃ Natural materials with thin hole wall should be used; the sintering process parameters should be adjusted.
Sol-gel High purity, good dispersibility, lowcost Poor infiltration and interface bonding, uncontrollable visco-sity of sol Infiltrate by sol atlow temperature Thin composites with small size and complex structure, infiltration temperature: room temperature The composition and infiltration temperature of SiO2 sol should be adjusted to reduce the curing rate of SiO2; sol electrophoresis can be used to promote infiltration.
SI Short time, low cost Poor particle dispersion, poor infiltration effect Infiltrate by suspension at low temperature Composites with large pore and regular shape, infiltration temperature: room temperature Three-dimensional mesh connected carbon scaffolds should be selected; ultrasonic dispersion or particle surface modification should be used.
PPI Easy control of composition, structuralintegrity, low reac-tion temperature Long infiltration time, high cost, manycracks Infiltrate by polymer precursors, low reaction temperature, low infiltration temperature Composites with large size and complex structure, infiltration temperature: room temperature Vacuum or pressurized infiltration or pressurized during heat treatment can be used.
MSI Low reaction temperature, effectivereaction Poor interface bonding, residual salt Infiltrate by molten salt with a reaction source, high infiltration temperature Composites with large size and complex structure, infiltration temperature: 900-1000 ℃ The wettability between molten salt and carbon scaffold can be improved by chemical modification and pyrolysis modification.
Table 2  渗透技术简介及改进方法
Fig.6  1998~2020年关于制备生物态碳-陶瓷基复合材料的已发表论文统计图
Fig.7  熔融渗透法装置图
Fig.8  热解后的桦木炭(a)和Si/SiC陶瓷(b)的光学显微照片[40]
Fig.9  SiO2/CB复合物的SEM图片[42]
(a)干燥后的SiO2凝胶/木材复合物;(b)500 ℃热解后的CB/SiO2复合物
Fig.10  熔盐渗透法的工艺流程
Salt Melting point/℃
NaCl 801
KCl 790
LiCl 610
CaCl2 772
BaCl2 960
SrCl2 873
Li2CO3 723
Na2CO3 854
Table 3  熔盐渗透法常用盐类及其熔点[34]
Wood source Infiltration technology Density/(g·cm-3) Porosity/% Fracture strength/MPa Elasticity modulus/GPa Ref
Maple MI ≈2.60 3.00 ≈190 275 [50]
Oak MI ≈2.05 8.00 ≈125 165 [50]
Oak MI 2.80 - 333 306 [51]
Birch MI 2.74 0.09 265 - [52]
Teak MI 2.52 0.95 180 216 [53]
Wood flour CVI 2.90 - 227 - [54]
Birch powder MI 3.01 - 388 364 [55]
Paper MI 2.50 - 450 - [56]
Cotton linter MI - - 310 - [57]
Cotton fabric CVI 2.36 12.50 135-169 - [58]
Table 4  生物态C/SiC陶瓷基复合材料的制备工艺与性能
1 刘万辉, 王旭红, 鲍爱莲. 复合材料[M]. 哈尔滨: 哈尔滨工业大学出版社, 2017.
1 LIU W H , WANG X H , BAO A L . Composite material[M]. Harbin: Harbin Institute of Technology Press, 2017.
2 冯小明, 张崇才. 复合材料[M]. 重庆: 重庆大学出版社, 2007.
2 FENG X M , ZHANG C C . Composite material[M]. Chongqing: Chongqing University Press, 2007.
3 蒋永彪. 浅谈陶瓷基复合材料的分类及性能特点[J]. 科技创新与应用, 2017, (18): 130.
3 JIANG Y B . Classification and properties of ceramic matrix composites[J]. Technology Innovation and Application, 2017, (18): 130.
4 YU M , ZHANG G J , SAUNDERS T . Wood-derived ultra-high temperature carbides and their composites: a review[J]. Ceramics International, 2020, 46 (5): 5536- 5547.
doi: 10.1016/j.ceramint.2019.11.104
5 LOPEZ-ROBLEDO M J , GOMEZ-MARTIN A , RAMIREZ-RICO J , et al. Sliding wear resistance of porous biomorphic SiC ceramics[J]. International Journal of Refractory Metals & Hard Materials, 2016, 59, 26- 31.
6 WANG C , SHI D Q , YANG X G . Failure assessment of the first stage high-pressure turbine blades in an aero-engine turbine[J]. Applied Mechanics & Materials, 2017, 853, 498- 502.
7 KHANDAN A , NASSIRESLAMI E , SABER-SAMANDARI S , et al. Fabrication and characterization of porous bioceramic-magnetite biocomposite for maxillofacial fractures application[J]. Dental Hypotheses, 2020, 11 (3): 74- 85.
8 江舟, 倪建洋, 张小锋. 陶瓷基复合材料及其环境障涂层发展现状研究[J]. 航空制造技术, 2020, 63 (14): 48- 64.
doi: 10.16080/j.issn1671-833x.2020.14.048
8 JIANG Z , NI J Y , ZHANG X F . Research progress of ceramic matrix composites and their environmental barrier coatings[J]. Aeronautical Manufacturing Technology, 2020, 63 (14): 48- 64.
doi: 10.16080/j.issn1671-833x.2020.14.048
9 高笑, 郑昕, 刘俊成, 等. 碳/陶复合导电材料的研究进展[J]. 山东陶瓷, 2018, 41 (2): 21- 27.
doi: 10.3969/j.issn.1005-0639.2018.02.004
9 GAO X , ZHENG X , LIU J C , et al. Research progress of carbon/ceramic conductive composites[J]. Shandong Ceramics, 2018, 41 (2): 21- 27.
doi: 10.3969/j.issn.1005-0639.2018.02.004
10 VERA M C , RAMIREZ-RICO J , MARTINEZ-FERNANDEZ J , et al. Sliding wear resistance of biomorphic SiC ceramics[J]. International Journal of Refractory Metals & Hard Materials, 2015, 49, 327- 333.
11 江雨航, 宋瑶婷, 王宝华. 多孔氮化硅陶瓷的研究进展及应用[J]. 江苏陶瓷, 2020, 53 (4): 30- 32.
doi: 10.3969/j.issn.1006-7337.2020.04.010
11 JIANG Y H , SONG Y T , WANG B H . Research progress and application of porous Si3N4 ceramic[J]. Jiangsu Ceramics, 2020, 53 (4): 30- 32.
doi: 10.3969/j.issn.1006-7337.2020.04.010
12 王敏, 李兴德. 陶瓷基复合材料火箭弹天线罩撞击玻璃纤维易碎盖的应力响应研究[J]. 复合材料科学与工程, 2020, (9): 25- 28.
doi: 10.3969/j.issn.1003-0999.2020.09.004
12 WANG M , LI X D . Study on dynamic stress response for ceramic missile radome impact on composite petal-type fragile cover[J]. Composites Science and Engineering, 2020, (9): 25- 28.
doi: 10.3969/j.issn.1003-0999.2020.09.004
13 SONG J , CHEN C , ZHU S , et al. Processing bulk natural wood into a high-performance structural material[J]. Nature, 2018, 554 (7691): 224- 228.
doi: 10.1038/nature25476
14 ANSELL M P . Carbonised and mineralised wood composites[M]. Cambridge: Wood Composites, 2015: 395- 409.
15 BHAT A H , DASAN Y K , KHAN I , et al. Cellulosic biocomposites: potential materials for future[M]. Berlin: Springer International Publishing, 2017.
16 LI J , YU S , GE M , et al. Fabrication and characterization of biomorphic cellular C/SiC-ZrC composite ceramics from wood[J]. Ceramics International, 2015, 41 (6): 7853- 7859.
doi: 10.1016/j.ceramint.2015.02.122
17 GOMEZ-MARTIN A , ORIHUELA M P , BECERRA J A , et al. Permeability and mechanical integrity of porous biomorphic SiC ceramics for application as hot-gas filters[J]. Materials & Design, 2016, 107, 450- 460.
18 VOGT U , HERZOG A , GRAULE T , et al. Wood derived SiC ceramics with oriented porous structures via carbothermal reduction[M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2006.
19 ADAM M , OSCHATZ M , NICKEL W , et al. Preparation of hierarchical porous biomorphic carbide-derived carbon by polycarbosilane impregnation of wood[J]. Microporous & Mesoporous Materials, 2015, 210, 26- 31.
20 ZHANG X , XU G , CHEN Z , et al. Solvothermal preparation and gas sensing properties of hierarchical pore structure SnO2 produced using grapefruit peel as a bio-template[J]. Ceramics International, 2016, 43 (5): 4112- 4118.
21 KONCHITS A A , SHANINA B D , KRASNOVYD S V , et al. Structure and electronic properties of biomorphic carbon matrices and SiC ceramics prepared on their basis[J]. Journal of Applied Physics, 2018, 124 (13): 135703.
doi: 10.1063/1.5042844
22 GRASSO S , KIM E-Y , SAUNDERS T , et al. Ultra-rapid crystal growth of textured SiC using flash spark plasma sintering route[J]. Crystal Growth & Design, 2016, 16 (4): 2317- 2321.
23 杨瑞, 齐哲, 杨金华, 等. 氧化物/氧化物陶瓷基复合材料及其制备工艺研究进展[J]. 材料工程, 2018, 46 (12): 1- 9.
doi: 10.11868/j.issn.1001-4381.2018.000306
23 YANG R , QI Z , YANG J H , et al. Research progress in oxide/oxide ceramic matrix composites and processing technologies[J]. Journal of Materials Engineering, 2018, 46 (12): 1- 9.
doi: 10.11868/j.issn.1001-4381.2018.000306
24 焦永峰, 邬国平, 谢方民, 等. 多孔SiC陶瓷的制备与应用[J]. 江苏陶瓷, 2020, 53 (1): 23- 26.
doi: 10.3969/j.issn.1006-7337.2020.01.011
24 JIAO Y F , WU G P , XIE F M , et al. Preparation and application of porous SiC ceramics[J]. Jiangsu Ceramics, 2020, 53 (1): 23- 26.
doi: 10.3969/j.issn.1006-7337.2020.01.011
25 ZHU H , LUO W , CIESIELSKI P N , et al. Wood-derived materials for green electronics, biological devices, and energy applications[J]. Chemical Reviews, 2016, 116 (16): 9305- 9374.
doi: 10.1021/acs.chemrev.6b00225
26 TENG S , SIEGEL G , PRESTGARD M C , et al. Synthesis and characterization of copper-infiltrated carbonized wood monoliths for supercapacitor electrodes[J]. Electrochimica Acta, 2015, 161, 343- 350.
doi: 10.1016/j.electacta.2015.02.117
27 YAMANE H , KAWAMURA F , YAMADA T . Low-temperature synthesis of biomorphic cellular SiC ceramics from wood by using a Na flux[J]. Journal of the Ceramic Society of Japan, 2008, 116 (1349): 163- 165.
doi: 10.2109/jcersj2.116.163
28 YAO X , ZHANG Z , ZHU H , et al. Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry[J]. Thermochimica Acta, 2009, 493 (1/2): 49- 54.
29 MIN Y , PICOT O T , SAUNDERS T G , et al. Graphene-reinforced silicon oxycarbide composites prepared by phase transfer[J]. Carbon, 2018, 139, 813- 823.
doi: 10.1016/j.carbon.2018.07.042
30 LOCS J , BERZINA-CIMDINA L , ZHURINSH A , et al. Optimized vacuum/pressure sol impregnation processing of wood for the synthesis of porous, biomorphic SiC ceramics[J]. Journal of the European Ceramic Society, 2009, 29 (8): 1513- 1519.
doi: 10.1016/j.jeurceramsoc.2008.09.013
31 QIAN J M , WANG J P , JIN Z H . Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal[J]. Materials Science and Engineering: A, 2004, 371 (1/2): 229- 235.
32 HUNG K C , WU T L , XU J W , et al. Preparation of biomorphic porous SiC ceramics from bamboo by combining sol-gel impregnation and carbothermal reduction[J]. Polymers-Basel, 2019, 11 (9): 1442.
doi: 10.3390/polym11091442
33 QIAN J M , JIN Z H . Preparation and characterization of porous, biomorphic SiC ceramic with hybrid pore structure[J]. Journal of the European Ceramic Society, 2006, 26 (8): 1311- 1316.
doi: 10.1016/j.jeurceramsoc.2005.03.229
34 LI X , WESTWOOD A , BROWN A , et al. A convenient, general synthesis of carbide nanofibres via templated reactions on carbon nanotubes in molten salt media[J]. Carbon, 2009, 47 (1): 201- 208.
doi: 10.1016/j.carbon.2008.09.050
35 POPOVSKA N , STREITWIESER D A , XU C , et al. Paper derived biomorphic porous titanium carbide and titanium oxide ceramics produced by chemical vapor infiltration and reaction (CVI-R)[J]. Journal of the European Ceramic Society, 2005, 25 (6): 829- 836.
doi: 10.1016/j.jeurceramsoc.2004.04.007
36 VOGLI E , SIEBER H , GREIL P . Biomorphic SiC-ceramic prepared by Si-vapor phase infiltration of wood[J]. Journal of the European Ceramic Society, 2002, 22 (14/15): 2663- 2668.
37 PFLITSCH C , CURDTS B , ATAKAN B . Atmospheric pressure chemical vapor infiltration (CVI) for the preparation of biomorphic SiC ceramics derived from paper[J]. Journal of Nanoscience and Nanotechnology, 2011, 11 (9): 8416- 8419.
doi: 10.1166/jnn.2011.5096
38 王永昌. 纤维增强SiC多孔陶瓷基复合材料制备新工艺及其性能研究[D]. 大连: 大连理工大学, 2016.
38 WANG Y C. Study on the new preparation process and properties of fiber reinforced SiC porous ceramic matrix composites[D]. Dalian: Dalian University of Technology, 2016.
39 MAITY A , KALITA D , KAYAL N , et al. Synthesis of biomorphic SiC ceramics from coir fibreboard preform[J]. Ceramics International, 2012, 38 (8): 6873- 6881.
doi: 10.1016/j.ceramint.2012.05.088
40 QIAO G J , JIN Z H , QIAN J M . Biomorphic SiC ceramics prepared by organic template method[J]. Key Engineering Materials, 2006, 317/318, 167- 172.
doi: 10.4028/www.scientific.net/KEM.317-318.167
41 刘虎. 国外航空发动机用SiCf/SiC复合材料的材料级性能测试研究进展[J]. 材料工程, 2018, 46 (11): 1- 12.
doi: 10.11868/j.issn.1001-4381.2018.000503
41 LIU H . Progress in coupon tests of SiCf/SiC ceramic matrix composites used for aero engines[J]. Journal of Materials Engineering, 2018, 46 (11): 1- 12.
doi: 10.11868/j.issn.1001-4381.2018.000503
42 ZHURINSH A , LOCS J , BERZINA-CIMDINA L . Investigation of the feasibility of pyrolytic obtaining of porous biomorphic SiC ceramics[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85 (1/2): 544- 548.
43 RAMBO C R , SIEBER H , GENOVA L A . Synthesis of porous biomorphic alpha/beta-Si3N4 composite from sea sponge[J]. Journal of Porous Materials, 2008, 15 (4): 419- 425.
doi: 10.1007/s10934-007-9101-y
44 DONG Z , ZHANG X , HUANG Q , et al. Synthesis and pyrolysis behavior of a soluble polymer precursor for ultra-fine zirconium carbide powders[J]. Ceramics International, 2015, 41 (6): 7359- 7365.
doi: 10.1016/j.ceramint.2015.02.039
45 贺丽娟. 新型碳化硅陶瓷前驱体的合成及性能研究[D]. 北京: 中国科学院大学, 2015.
45 HE L J. Synthesis and properties of novel silicon carbide ceramic precursors[D]. Beijing: University of Chinese Academy of Sciences, 2015.
46 邓先功, 王军凯, 杜爽, 等. 发泡法、三维打印法、熔盐法制备多孔陶瓷[J]. 材料导报, 2015, 29 (9): 109- 116.
46 DENG X G , WANG J K , DU S , et al. Fabricating porous ceramics through direct foaming, three dimensional printing and molten salt method[J]. Materials Reports, 2015, 29 (9): 109- 116.
47 DING J , DENG C J , YUAN W J , et al. Preparation of porous TiC/C ceramics using wooden template in molten salt media[J]. Advances in Applied Ceramics, 2013, 112 (3): 131- 135.
doi: 10.1179/1743676112Y.0000000052
48 XU Q , LIU X , LUO Q , et al. Bifunctional biomorphic SiC ceramics embedded molten salts for ultrafast thermal and solar energy storage[J]. Materials Today Energy, 2021, 21, 100764.
doi: 10.1016/j.mtener.2021.100764
49 BI Y , WANG H , LIU J , et al. Preparation and oxidation resistance of SiC-coated graphite powders via microwave-assisted molten salt synthesis[J]. Surface and Coatings Technology, 2018, 337, 217- 222.
doi: 10.1016/j.surfcoat.2018.01.017
50 GREIL P , LIFKA T , KAINDL A . Biomorphic cellular silicon carbide ceramics from wood: Ⅱ. mechanical properties[J]. Journal of the European Ceramic Society, 1998, 18 (14): 1975- 1983.
doi: 10.1016/S0955-2219(98)00155-1
51 SHIN D W , PARK S S , CHOA Y H , et al. Silicon/silicon carbide composites fabricated by infiltration of a silicon melt into charcoal[J]. Journal of the American Ceramic Society, 2010, 82 (11): 3251- 3253.
52 QIAO G , MA R , CAI N , et al. Mechanical properties and microstructure of Si/SiC materials derived from native wood[J]. Materials Science and Engineering: A, 2002, 323 (1/2): 301- 305.
53 CHAKRABARTI O P , MAITI H S , MAJUMDAR R . Biomimetic synthesis of cellular SiC based ceramics from plant precursor[J]. Bulletin of Materials Science, 2004, 27 (5): 467- 470.
doi: 10.1007/BF02708565
54 AMIRTHAN G , UDAYAKUMAR A , PRASAD V V B , et al. Solid particle erosion studies on biomorphic Si/SiC ceramic composites[J]. Wear, 2010, 268 (1/2): 145- 152.
55 YAN Z , LIU J , ZHANG J , et al. Biomorphic silicon/silicon carbide ceramics from birch powder[J]. Ceramics International, 2011, 37 (3): 725- 730.
doi: 10.1016/j.ceramint.2010.09.045
56 YANG G , LIU Y , QIAO G , et al. Preparation and R-curve properties of laminated Si/SiC ceramics from paper[J]. Materials Science and Engineering: A, 2008, 492 (1/2): 327- 332.
57 XUE T , WANG Z J W . Preparation of porous SiC ceramics from waste cotton linter by reactive liquid Si infiltration technique[J]. Materials Science and Engineering: A, 2010, 527 (27): 7294- 7298.
58 AMIRTHAN G , UDAYAKUMAR A , PRASAD V V B , et al. Properties of Si/SiC ceramic composite subjected to chemical vapour infiltration[J]. Ceramics International, 2009, 35 (7): 2601- 2607.
doi: 10.1016/j.ceramint.2009.02.022
59 GUO J , BAKER A L , GUO H , et al. Cold sintering process: a new era for ceramic packaging and microwave device development[J]. Journal of the American Ceramic Society, 2017, 100 (2): 669- 677.
doi: 10.1111/jace.14603
60 VARELA-FERIA F M , MARTÍNEZ-FERNÁNDEZA J , ARELLANO-LÓPEZ A , et al. Low density biomorphic silicon carbide: microstructure and mechanical properties[J]. Journal of the European Ceramic Society, 2002, 22 (14/15): 2719- 2725.
61 周爱萍, 魏春成, 李培江, 等. 多孔陶瓷的性能及其应用[J]. 陶瓷, 2020, 3, 9- 13.
61 ZHOU A P , WEI C C , LI P J , et al. Property and application of porous ceramics[J]. Ceramics, 2020, 3, 9- 13.
62 YU M , SAUNDERS T , SU T , et al. Effect of heat treatment on the properties of wood-derived biocarbon structures[J]. Materials, 2018, 11 (9): 1588- 1596.
doi: 10.3390/ma11091588
63 RAMBO C R , ANDRADE T , FEY T , et al. Microcellular Al2O3 ceramics from wood for filter applications[J]. Journal of the American Ceramic Society, 2008, 91 (3): 852- 859.
doi: 10.1111/j.1551-2916.2007.02223.x
64 夏建国, 王少洪, 侯朝霞, 等. 多孔陶瓷在汽车尾气处理中的研究进展[J]. 兵器材料科学与工程, 2012, 35 (4): 93- 97.
doi: 10.3969/j.issn.1004-244X.2012.04.028
64 XIA J G , WANG S H , HOU Z X , et al. Advances in porous ceramics for purifying automobile exhaust gas[J]. Ordnance Material Science and Engineering, 2012, 35 (4): 93- 97.
doi: 10.3969/j.issn.1004-244X.2012.04.028
65 常雯. 三维碳化钛/丝瓜络阳极在微生物燃料电池的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
65 CHANG W. Application of three-dimensional titanium carbide/sponge gourd complex anode in microbial fuel cell[D]. Harbin: Harbin Institute of Technology, 2019.
66 陈智勇, 徐颖强, 李妙玲, 等. 碳化硅木质陶瓷复合装甲结构设计及数值模拟优化[J]. 稀有金属材料与工程, 2021, 50 (4): 1146- 1155.
66 CHEN Z Y , XU Y Q , LI M L , et al. Structural design and numerical simulation optimization of SiC wood ceramic composite armor[J]. Rare Metal Materials and Engineering, 2021, 50 (4): 1146- 1155.
67 侯来广, 曾令可, 王慧, 等. 陶瓷废料制备的吸音材料吸音性能影响因素的分析[J]. 陶瓷学报, 2006, 27 (1): 6- 10.
doi: 10.3969/j.issn.1000-2278.2006.01.002
67 HOU L G , ZENG L K , WANG H , et al. Analysis of influence factor of ceramic wate's sound absorbend material[J]. Journal of Ceramics, 2006, 27 (1): 6- 10.
doi: 10.3969/j.issn.1000-2278.2006.01.002
68 张任平, 颜柳菁. 多孔陶瓷催化剂载体的流动特性[J]. 中国陶瓷工业, 2015, 22 (3): 17- 21.
68 ZHANG R P , YAN L J . Flow characteristics of porous ceramic catalyst carrier[J]. China Ceramic Industry, 2015, 22 (3): 17- 21.
69 郑博瀚, 邓娟利, 李娜, 等. 陶瓷基复合材料焊接技术研究现状[J]. 陶瓷学报, 2017, 38 (6): 799- 805.
69 ZHENG B H , DENG J L , LI N , et al. Research advances of the welding technique for ceramic matrix composites[J]. Journal of Ceramics, 2017, 38 (6): 799- 805.
70 乔海涛, 梁滨, 张军营, 等. 先进复合材料结构胶接体系的研发与应用[J]. 材料工程, 2018, 46 (12): 38- 47.
70 QIAO H T , LIANG B , ZHANG J Y , et al. Development and application of adhesive materials for advanded composite bonding[J]. Journal of Materials Engineering, 2018, 46 (12): 38- 47.
71 WANG G , YANG Y , WANG M , et al. Brazing ZrB2-SiC ceramics to Nb with a novel CoFeNiCrCu high entropy alloy[J]. Journal of the European Ceramic Society, 2021, 41 (1): 54- 61.
72 焦健, 齐哲, 吕晓旭, 等. 航空发动机用陶瓷基复合材料及制造技术[J]. 航空动力, 2019, (5): 17- 21.
72 JIAO J , QI Z , LV X X , et al. The manufacture processing of SiCf/SiC composite materials and products for aero engine[J]. Aerospace Power, 2019, (5): 17- 21.
73 陈博, 朱剑寒, 鲁辉军. 航空发动机涡轮叶片高周疲劳裂纹故障分析与思考[J]. 燃气涡轮试验与研究, 2020, 33 (3): 33- 36.
73 CHEN B , ZHU J H , LU H J . Analysis and consideration for turbine blade high-cycle fatigue crack failure of aero-engine[J]. Gas Turbine Experiment and Research, 2020, 33 (3): 33- 36.
74 赵云松, 张迈, 郭小童, 等. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48 (9): 24- 33.
74 ZHAO Y S , ZHANG M , GUO X T , et al. Recent progress in service induced degradation of turbine blades of aeroengine due to overheating[J]. Journal of Materials Engineering, 2020, 48 (9): 24- 33.
75 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47 (2): 1- 10.
75 LIU Q M , HUANG S Z , HE A J . Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering, 2019, 47 (2): 1- 10.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[11] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[12] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[15] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn