In recent years, carbon-ceramic matrix composite materials have become a hot topic due to their high temperature resistance, low density, good corrosion resistance, low thermal expansion coefficient, and strong performance design. Biomorphic carbon-ceramic composites have been prepared by introducing the wood-derived pore structure into ceramic matrix.The pore structure, preparation process, properties and application prospects of biomorphic carbon-ceramic matrix composites were reviewed. The importance of designing the microstructure of materials was emphasized, and the key technology in the preparation process of carbon-ceramic matrix composites-infiltration technology were specified, including: chemical vapor infiltration, melt infiltration, sol-gel infiltration, slurry infiltration, polymer precursor infiltration, and molten salt infiltration. The solutions to the existing problems of each technology were proposed. Composite strength and fracture strength of biomass carbon-ceramic matrix composites were reviewed. Suggestions for future research directions on the performance were put forward. It was pointed out that the mechanical properties of materials should be tested under high temperature, strong acid and strong alkali, and alternating cold and heat environments. The potential applications of biomorphic carbon-ceramic matrix composites were discussed in three aspects, including aero-engine blades, automobile exhaust gas purifiers, and catalyst carriers. Existing challenges and practical limitations such as complex molding, strong mechanical properties and thermal stability were outlined. Finally, the improvement of the preparation process and the study of mechanical properties of biomorphic carbon-ceramic matrix composites were prospected, which provides theoretical basis and guidance for the development and application of biomorphic carbon-ceramic matrix composites.
Infiltrate by raw material vapor, high reaction temperature
Composites with complex shapes, infiltration temperature: 1000-1600 ℃
Natural materials with less internal closed pores and high strength of pore wall after carbonization should be used; the carbonization process should be adjusted.
Infiltrate by capillary force, high reaction temperature
Composites with large size and complex shape, infiltration temperature: 1500-1600 ℃
Natural materials with thin hole wall should be used; the sintering process parameters should be adjusted.
Sol-gel
High purity, good dispersibility, lowcost
Poor infiltration and interface bonding, uncontrollable visco-sity of sol
Infiltrate by sol atlow temperature
Thin composites with small size and complex structure, infiltration temperature: room temperature
The composition and infiltration temperature of SiO2 sol should be adjusted to reduce the curing rate of SiO2; sol electrophoresis can be used to promote infiltration.
JIANG Y B . Classification and properties of ceramic matrix composites[J]. Technology Innovation and Application, 2017, (18): 130.
4
YU M , ZHANG G J , SAUNDERS T . Wood-derived ultra-high temperature carbides and their composites: a review[J]. Ceramics International, 2020, 46 (5): 5536- 5547.
doi: 10.1016/j.ceramint.2019.11.104
5
LOPEZ-ROBLEDO M J , GOMEZ-MARTIN A , RAMIREZ-RICO J , et al. Sliding wear resistance of porous biomorphic SiC ceramics[J]. International Journal of Refractory Metals & Hard Materials, 2016, 59, 26- 31.
6
WANG C , SHI D Q , YANG X G . Failure assessment of the first stage high-pressure turbine blades in an aero-engine turbine[J]. Applied Mechanics & Materials, 2017, 853, 498- 502.
7
KHANDAN A , NASSIRESLAMI E , SABER-SAMANDARI S , et al. Fabrication and characterization of porous bioceramic-magnetite biocomposite for maxillofacial fractures application[J]. Dental Hypotheses, 2020, 11 (3): 74- 85.
JIANG Z , NI J Y , ZHANG X F . Research progress of ceramic matrix composites and their environmental barrier coatings[J]. Aeronautical Manufacturing Technology, 2020, 63 (14): 48- 64.
doi: 10.16080/j.issn1671-833x.2020.14.048
GAO X , ZHENG X , LIU J C , et al. Research progress of carbon/ceramic conductive composites[J]. Shandong Ceramics, 2018, 41 (2): 21- 27.
doi: 10.3969/j.issn.1005-0639.2018.02.004
10
VERA M C , RAMIREZ-RICO J , MARTINEZ-FERNANDEZ J , et al. Sliding wear resistance of biomorphic SiC ceramics[J]. International Journal of Refractory Metals & Hard Materials, 2015, 49, 327- 333.
JIANG Y H , SONG Y T , WANG B H . Research progress and application of porous Si3N4 ceramic[J]. Jiangsu Ceramics, 2020, 53 (4): 30- 32.
doi: 10.3969/j.issn.1006-7337.2020.04.010
WANG M , LI X D . Study on dynamic stress response for ceramic missile radome impact on composite petal-type fragile cover[J]. Composites Science and Engineering, 2020, (9): 25- 28.
doi: 10.3969/j.issn.1003-0999.2020.09.004
13
SONG J , CHEN C , ZHU S , et al. Processing bulk natural wood into a high-performance structural material[J]. Nature, 2018, 554 (7691): 224- 228.
doi: 10.1038/nature25476
14
ANSELL M P . Carbonised and mineralised wood composites[M]. Cambridge: Wood Composites, 2015: 395- 409.
15
BHAT A H , DASAN Y K , KHAN I , et al. Cellulosic biocomposites: potential materials for future[M]. Berlin: Springer International Publishing, 2017.
16
LI J , YU S , GE M , et al. Fabrication and characterization of biomorphic cellular C/SiC-ZrC composite ceramics from wood[J]. Ceramics International, 2015, 41 (6): 7853- 7859.
doi: 10.1016/j.ceramint.2015.02.122
17
GOMEZ-MARTIN A , ORIHUELA M P , BECERRA J A , et al. Permeability and mechanical integrity of porous biomorphic SiC ceramics for application as hot-gas filters[J]. Materials & Design, 2016, 107, 450- 460.
18
VOGT U , HERZOG A , GRAULE T , et al. Wood derived SiC ceramics with oriented porous structures via carbothermal reduction[M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2006.
19
ADAM M , OSCHATZ M , NICKEL W , et al. Preparation of hierarchical porous biomorphic carbide-derived carbon by polycarbosilane impregnation of wood[J]. Microporous & Mesoporous Materials, 2015, 210, 26- 31.
20
ZHANG X , XU G , CHEN Z , et al. Solvothermal preparation and gas sensing properties of hierarchical pore structure SnO2 produced using grapefruit peel as a bio-template[J]. Ceramics International, 2016, 43 (5): 4112- 4118.
21
KONCHITS A A , SHANINA B D , KRASNOVYD S V , et al. Structure and electronic properties of biomorphic carbon matrices and SiC ceramics prepared on their basis[J]. Journal of Applied Physics, 2018, 124 (13): 135703.
doi: 10.1063/1.5042844
22
GRASSO S , KIM E-Y , SAUNDERS T , et al. Ultra-rapid crystal growth of textured SiC using flash spark plasma sintering route[J]. Crystal Growth & Design, 2016, 16 (4): 2317- 2321.
YANG R , QI Z , YANG J H , et al. Research progress in oxide/oxide ceramic matrix composites and processing technologies[J]. Journal of Materials Engineering, 2018, 46 (12): 1- 9.
doi: 10.11868/j.issn.1001-4381.2018.000306
JIAO Y F , WU G P , XIE F M , et al. Preparation and application of porous SiC ceramics[J]. Jiangsu Ceramics, 2020, 53 (1): 23- 26.
doi: 10.3969/j.issn.1006-7337.2020.01.011
25
ZHU H , LUO W , CIESIELSKI P N , et al. Wood-derived materials for green electronics, biological devices, and energy applications[J]. Chemical Reviews, 2016, 116 (16): 9305- 9374.
doi: 10.1021/acs.chemrev.6b00225
26
TENG S , SIEGEL G , PRESTGARD M C , et al. Synthesis and characterization of copper-infiltrated carbonized wood monoliths for supercapacitor electrodes[J]. Electrochimica Acta, 2015, 161, 343- 350.
doi: 10.1016/j.electacta.2015.02.117
27
YAMANE H , KAWAMURA F , YAMADA T . Low-temperature synthesis of biomorphic cellular SiC ceramics from wood by using a Na flux[J]. Journal of the Ceramic Society of Japan, 2008, 116 (1349): 163- 165.
doi: 10.2109/jcersj2.116.163
28
YAO X , ZHANG Z , ZHU H , et al. Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry[J]. Thermochimica Acta, 2009, 493 (1/2): 49- 54.
29
MIN Y , PICOT O T , SAUNDERS T G , et al. Graphene-reinforced silicon oxycarbide composites prepared by phase transfer[J]. Carbon, 2018, 139, 813- 823.
doi: 10.1016/j.carbon.2018.07.042
30
LOCS J , BERZINA-CIMDINA L , ZHURINSH A , et al. Optimized vacuum/pressure sol impregnation processing of wood for the synthesis of porous, biomorphic SiC ceramics[J]. Journal of the European Ceramic Society, 2009, 29 (8): 1513- 1519.
doi: 10.1016/j.jeurceramsoc.2008.09.013
31
QIAN J M , WANG J P , JIN Z H . Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal[J]. Materials Science and Engineering: A, 2004, 371 (1/2): 229- 235.
32
HUNG K C , WU T L , XU J W , et al. Preparation of biomorphic porous SiC ceramics from bamboo by combining sol-gel impregnation and carbothermal reduction[J]. Polymers-Basel, 2019, 11 (9): 1442.
doi: 10.3390/polym11091442
33
QIAN J M , JIN Z H . Preparation and characterization of porous, biomorphic SiC ceramic with hybrid pore structure[J]. Journal of the European Ceramic Society, 2006, 26 (8): 1311- 1316.
doi: 10.1016/j.jeurceramsoc.2005.03.229
34
LI X , WESTWOOD A , BROWN A , et al. A convenient, general synthesis of carbide nanofibres via templated reactions on carbon nanotubes in molten salt media[J]. Carbon, 2009, 47 (1): 201- 208.
doi: 10.1016/j.carbon.2008.09.050
35
POPOVSKA N , STREITWIESER D A , XU C , et al. Paper derived biomorphic porous titanium carbide and titanium oxide ceramics produced by chemical vapor infiltration and reaction (CVI-R)[J]. Journal of the European Ceramic Society, 2005, 25 (6): 829- 836.
doi: 10.1016/j.jeurceramsoc.2004.04.007
36
VOGLI E , SIEBER H , GREIL P . Biomorphic SiC-ceramic prepared by Si-vapor phase infiltration of wood[J]. Journal of the European Ceramic Society, 2002, 22 (14/15): 2663- 2668.
37
PFLITSCH C , CURDTS B , ATAKAN B . Atmospheric pressure chemical vapor infiltration (CVI) for the preparation of biomorphic SiC ceramics derived from paper[J]. Journal of Nanoscience and Nanotechnology, 2011, 11 (9): 8416- 8419.
doi: 10.1166/jnn.2011.5096
WANG Y C. Study on the new preparation process and properties of fiber reinforced SiC porous ceramic matrix composites[D]. Dalian: Dalian University of Technology, 2016.
39
MAITY A , KALITA D , KAYAL N , et al. Synthesis of biomorphic SiC ceramics from coir fibreboard preform[J]. Ceramics International, 2012, 38 (8): 6873- 6881.
doi: 10.1016/j.ceramint.2012.05.088
40
QIAO G J , JIN Z H , QIAN J M . Biomorphic SiC ceramics prepared by organic template method[J]. Key Engineering Materials, 2006, 317/318, 167- 172.
doi: 10.4028/www.scientific.net/KEM.317-318.167
LIU H . Progress in coupon tests of SiCf/SiC ceramic matrix composites used for aero engines[J]. Journal of Materials Engineering, 2018, 46 (11): 1- 12.
doi: 10.11868/j.issn.1001-4381.2018.000503
42
ZHURINSH A , LOCS J , BERZINA-CIMDINA L . Investigation of the feasibility of pyrolytic obtaining of porous biomorphic SiC ceramics[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85 (1/2): 544- 548.
43
RAMBO C R , SIEBER H , GENOVA L A . Synthesis of porous biomorphic alpha/beta-Si3N4 composite from sea sponge[J]. Journal of Porous Materials, 2008, 15 (4): 419- 425.
doi: 10.1007/s10934-007-9101-y
44
DONG Z , ZHANG X , HUANG Q , et al. Synthesis and pyrolysis behavior of a soluble polymer precursor for ultra-fine zirconium carbide powders[J]. Ceramics International, 2015, 41 (6): 7359- 7365.
doi: 10.1016/j.ceramint.2015.02.039
45
贺丽娟. 新型碳化硅陶瓷前驱体的合成及性能研究[D]. 北京: 中国科学院大学, 2015.
45
HE L J. Synthesis and properties of novel silicon carbide ceramic precursors[D]. Beijing: University of Chinese Academy of Sciences, 2015.
DENG X G , WANG J K , DU S , et al. Fabricating porous ceramics through direct foaming, three dimensional printing and molten salt method[J]. Materials Reports, 2015, 29 (9): 109- 116.
47
DING J , DENG C J , YUAN W J , et al. Preparation of porous TiC/C ceramics using wooden template in molten salt media[J]. Advances in Applied Ceramics, 2013, 112 (3): 131- 135.
doi: 10.1179/1743676112Y.0000000052
48
XU Q , LIU X , LUO Q , et al. Bifunctional biomorphic SiC ceramics embedded molten salts for ultrafast thermal and solar energy storage[J]. Materials Today Energy, 2021, 21, 100764.
doi: 10.1016/j.mtener.2021.100764
49
BI Y , WANG H , LIU J , et al. Preparation and oxidation resistance of SiC-coated graphite powders via microwave-assisted molten salt synthesis[J]. Surface and Coatings Technology, 2018, 337, 217- 222.
doi: 10.1016/j.surfcoat.2018.01.017
50
GREIL P , LIFKA T , KAINDL A . Biomorphic cellular silicon carbide ceramics from wood: Ⅱ. mechanical properties[J]. Journal of the European Ceramic Society, 1998, 18 (14): 1975- 1983.
doi: 10.1016/S0955-2219(98)00155-1
51
SHIN D W , PARK S S , CHOA Y H , et al. Silicon/silicon carbide composites fabricated by infiltration of a silicon melt into charcoal[J]. Journal of the American Ceramic Society, 2010, 82 (11): 3251- 3253.
52
QIAO G , MA R , CAI N , et al. Mechanical properties and microstructure of Si/SiC materials derived from native wood[J]. Materials Science and Engineering: A, 2002, 323 (1/2): 301- 305.
53
CHAKRABARTI O P , MAITI H S , MAJUMDAR R . Biomimetic synthesis of cellular SiC based ceramics from plant precursor[J]. Bulletin of Materials Science, 2004, 27 (5): 467- 470.
doi: 10.1007/BF02708565
54
AMIRTHAN G , UDAYAKUMAR A , PRASAD V V B , et al. Solid particle erosion studies on biomorphic Si/SiC ceramic composites[J]. Wear, 2010, 268 (1/2): 145- 152.
55
YAN Z , LIU J , ZHANG J , et al. Biomorphic silicon/silicon carbide ceramics from birch powder[J]. Ceramics International, 2011, 37 (3): 725- 730.
doi: 10.1016/j.ceramint.2010.09.045
56
YANG G , LIU Y , QIAO G , et al. Preparation and R-curve properties of laminated Si/SiC ceramics from paper[J]. Materials Science and Engineering: A, 2008, 492 (1/2): 327- 332.
57
XUE T , WANG Z J W . Preparation of porous SiC ceramics from waste cotton linter by reactive liquid Si infiltration technique[J]. Materials Science and Engineering: A, 2010, 527 (27): 7294- 7298.
58
AMIRTHAN G , UDAYAKUMAR A , PRASAD V V B , et al. Properties of Si/SiC ceramic composite subjected to chemical vapour infiltration[J]. Ceramics International, 2009, 35 (7): 2601- 2607.
doi: 10.1016/j.ceramint.2009.02.022
59
GUO J , BAKER A L , GUO H , et al. Cold sintering process: a new era for ceramic packaging and microwave device development[J]. Journal of the American Ceramic Society, 2017, 100 (2): 669- 677.
doi: 10.1111/jace.14603
60
VARELA-FERIA F M , MARTÍNEZ-FERNÁNDEZA J , ARELLANO-LÓPEZ A , et al. Low density biomorphic silicon carbide: microstructure and mechanical properties[J]. Journal of the European Ceramic Society, 2002, 22 (14/15): 2719- 2725.
ZHOU A P , WEI C C , LI P J , et al. Property and application of porous ceramics[J]. Ceramics, 2020, 3, 9- 13.
62
YU M , SAUNDERS T , SU T , et al. Effect of heat treatment on the properties of wood-derived biocarbon structures[J]. Materials, 2018, 11 (9): 1588- 1596.
doi: 10.3390/ma11091588
63
RAMBO C R , ANDRADE T , FEY T , et al. Microcellular Al2O3 ceramics from wood for filter applications[J]. Journal of the American Ceramic Society, 2008, 91 (3): 852- 859.
doi: 10.1111/j.1551-2916.2007.02223.x
XIA J G , WANG S H , HOU Z X , et al. Advances in porous ceramics for purifying automobile exhaust gas[J]. Ordnance Material Science and Engineering, 2012, 35 (4): 93- 97.
doi: 10.3969/j.issn.1004-244X.2012.04.028
CHANG W. Application of three-dimensional titanium carbide/sponge gourd complex anode in microbial fuel cell[D]. Harbin: Harbin Institute of Technology, 2019.
CHEN Z Y , XU Y Q , LI M L , et al. Structural design and numerical simulation optimization of SiC wood ceramic composite armor[J]. Rare Metal Materials and Engineering, 2021, 50 (4): 1146- 1155.
HOU L G , ZENG L K , WANG H , et al. Analysis of influence factor of ceramic wate's sound absorbend material[J]. Journal of Ceramics, 2006, 27 (1): 6- 10.
doi: 10.3969/j.issn.1000-2278.2006.01.002
ZHENG B H , DENG J L , LI N , et al. Research advances of the welding technique for ceramic matrix composites[J]. Journal of Ceramics, 2017, 38 (6): 799- 805.
QIAO H T , LIANG B , ZHANG J Y , et al. Development and application of adhesive materials for advanded composite bonding[J]. Journal of Materials Engineering, 2018, 46 (12): 38- 47.
71
WANG G , YANG Y , WANG M , et al. Brazing ZrB2-SiC ceramics to Nb with a novel CoFeNiCrCu high entropy alloy[J]. Journal of the European Ceramic Society, 2021, 41 (1): 54- 61.
JIAO J , QI Z , LV X X , et al. The manufacture processing of SiCf/SiC composite materials and products for aero engine[J]. Aerospace Power, 2019, (5): 17- 21.
CHEN B , ZHU J H , LU H J . Analysis and consideration for turbine blade high-cycle fatigue crack failure of aero-engine[J]. Gas Turbine Experiment and Research, 2020, 33 (3): 33- 36.
ZHAO Y S , ZHANG M , GUO X T , et al. Recent progress in service induced degradation of turbine blades of aeroengine due to overheating[J]. Journal of Materials Engineering, 2020, 48 (9): 24- 33.
LIU Q M , HUANG S Z , HE A J . Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering, 2019, 47 (2): 1- 10.