Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (4): 123-131    DOI: 10.11868/j.issn.1001-4381.2021.000176
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氮掺杂石墨烯原位生长碳纳米管复合过渡金属催化剂的制备及电催化性能
张婷, 李生娟(), 吉莹, 于沺沺, 李田成, 薛裕华
上海理工大学 材料科学与工程学院, 上海 200093
In-situ growth and performance of transition metal doped CNT/N-graphene composites
Ting ZHANG, Shengjuan LI(), Ying JI, Tiantian YU, Tiancheng LI, Yuhua XUE
School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
全文: PDF(21280 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用直接热解法, 以石墨烯为载体, 2-甲基咪唑锌盐MAF-4(ZIF8)为模板, 尿素提供碳和氮源, Fe为过渡金属源, 合成氮掺杂石墨烯(N/GO)和Fe-ZIF8(N-GO@Fe/ZIF8)的复合催化剂, 并组装成锌空气电池。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)及电化学工作站等分析手段对催化剂的形貌、结构及电化学性能进行表征。结果表明: 合成的N-GO@Fe/ZIF8-900催化剂具有优异的氧还原/氧析出(ORR/OER)性能。氧还原半波电位达到0.885 V, 优于Pt/C(0.856 V), 氧析出时, 在10 mA/cm2的电流密度下对应电位为1.811 V, 优于贵金属Pt/C(1.968 V), 与IrO2(1.75 V)性能相当。组装成锌空气电池后, 比能量和功率密度分别达到886.2 mW·h·g-1和73.44 mW/cm2, 高于贵金属Pt/C的比能量(791.04 mW·h·g-1)和功率密度(57.12 mW/cm2)。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张婷
李生娟
吉莹
于沺沺
李田成
薛裕华
关键词 ZIF8碳纳米管原位生长锌空气电池    
Abstract

The direct pyrolysis method was adopted with graphene as the carrier, 2-methylimidazole zinc salt MAF-4(ZIF8) and urea to provide carbon and nitrogen sources, Fe as the transition metal source, to synthesize nitrogen-doped graphene(N/GO) and Fe-ZIF8(N-GO@Fe/ZIF8) composite catalyst, assembled into a zinc-air battery. The physical-chemical properties of the catalyst were characterized by using scanning electron microscope(SEM), transmission electron microscope(TEM) and rotating disk electrode. The results show that the synthesized N-GO@Fe/ZIF8-900 catalyst has excellent oxygen reduction/oxygen evolution (ORR/OER) performance. The half wave potential is 0.885 V, which is better than that of Pt/C (0.856 V). When oxygen is precipitated, the corresponding potential is 1.811 V at a current density of 10 mA/cm2, which is better than that of the noble metal Pt/C (1.968 V) and the same performance as IrO2 (1.75 V).After being assembled into a zinc air battery, the specific energy and power density reach 886.2 mW·h·g-1 and 73.44 mW/cm2 respectively, which are higher than that of Pt/C (791.04 mW·h·g-1, 57.12 mW/cm2) respectively. The catalyst has good application prospect.

Key wordsZIF8    carbon nanotubes    in-situ growth    zinc air battery
收稿日期: 2021-02-27      出版日期: 2022-04-18
中图分类号:  TM911.4  
基金资助:上海市教育委员会科研创新计划(2019-01-07-00-07-E00015);上海市基础研究项目(19JC1410402)
通讯作者: 李生娟     E-mail: usstshenli@usst.edu.cn
作者简介: 李生娟(1975—),女,副教授,博士,研究方向为电催化材料,联系地址:上海市杨浦区军工路516号上海理工大学材料科学与工程学院(200093),E-mail: usstshenli@usst.edu.cn
引用本文:   
张婷, 李生娟, 吉莹, 于沺沺, 李田成, 薛裕华. 氮掺杂石墨烯原位生长碳纳米管复合过渡金属催化剂的制备及电催化性能[J]. 材料工程, 2022, 50(4): 123-131.
Ting ZHANG, Shengjuan LI, Ying JI, Tiantian YU, Tiancheng LI, Yuhua XUE. In-situ growth and performance of transition metal doped CNT/N-graphene composites. Journal of Materials Engineering, 2022, 50(4): 123-131.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000176      或      http://jme.biam.ac.cn/CN/Y2022/V50/I4/123
Fig.1  N-GO@Fe/ZIF8-900合成示意图
Fig.2  N-GO@ZIF8-900(a),N-GO@Fe-900(b)和N-GO@Fe/ZIF8-900(c)的SEM图
Fig.3  N-GO@Fe/ZIF8-900的TEM图
Fig.4  N-GO@Fe-900,N-GO@Fe/ZIF8-900的XRD谱图(a)和Raman光谱图(b),N-GO@Fe/ZIF8-900的N2吸附/脱附等温曲线(c)和孔径分布曲线(d)
Fig.5  N-GO@Fe/ZIF8-900的XPS全谱图(a),C1s(b),N1s(c),Fe2p谱图(d)及不同类型N和Fe原子掺杂条形图(e)
Fig.6  各催化剂在通入饱和O2的0.1 mol KOH溶液下的LSV曲线(转速为1600 r/min,扫描速率为5 mV/s) (a),N-GO@Fe/ZIF8-900催化剂不同转速下的LSV曲线(b),K-L曲线(c),I-T测试曲线(d)
Fig.7  N-GO@Fe/ZIF8-900,Pt/C及IrO2样品的LSV曲线(a)及Tafel曲线(b)
Fig.8  电流密度为5 mA/m2时组装锌空气电池的循环稳定性测试曲线(a),电流密度为10 mA/cm2时的比能量曲线(b),充放电极化曲线(c)及功率密度曲线(d)
1 FU J , CANO Z P , MOON G P , et al. Electrically rechargeable zinc-air batteries:progress, challenges, and perspectives[J]. Advanced Materials, 2017, 29 (7): 1604685.
doi: 10.1002/adma.201604685
2 GENG D S , YANG S , ZHANG Y , et al. Nitrogen doping effects on the structure of grapheme[J]. Applied Surface Science, 2011, 257 (21): 9193- 9198.
doi: 10.1016/j.apsusc.2011.05.131
3 齐新, 陈翔, 李冰天, 等. 新型低温真空法制备高品质石墨烯[J]. 航空材料学报, 2020, 40 (4): 1- 8.
3 QI X , CHEN X , LI B T , et al. Novel strategy for low-temperature vacuum preparation of high-quality graphene[J]. Journal of Aeronautical Materials, 2020, 40 (4): 1- 8.
4 XIA D , TANG F , YAO X , et al. Seeded growth of branched iron-nitrogen-doped carbon nanotubes as a high performance and durable non-precious fuel cell cathode[J]. Carbon, 2020, 162, 300- 307.
doi: 10.1016/j.carbon.2020.02.046
5 LIU Q , PU Z H , PU Z , et al. N-doped carbon nanotubes from functional tubular polypyrrole: a highly efficient electrocatalyst for oxygen reduction reaction[J]. Electrochemistry Communications, 2013, 36 (6): 57- 61.
6 DENG J , DENG D , BAO X H . Robust catalysis on 2D materials encapsulating metals: concept, application, and perspective[J]. Advanced Materials, 2017, 29 (43): 1606967.
doi: 10.1002/adma.201606967
7 DENG D , YU L , CHEN X , et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J]. Angewandte Chemie, 2013, 52 (1): 371- 375.
doi: 10.1002/anie.201204958
8 WU X , MENG G , LIU W , et al. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries[J]. Nano Research, 2017, 11 (1): 163- 173.
9 ZHANG W , LIU X , GAO M , et al. Co-Zn-MOFs derived n-doped carbon nanotubes with crystalline Co nanoparticles embedded as effective oxygen electrocatalysts[J]. Nanomaterials, 2021, 11 (2): 261.
doi: 10.3390/nano11020261
10 YANG L , ZENG X H , WANG W C , et al. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells[J]. Advanced Functional Materials, 2018, 28 (7): 1704537.
doi: 10.1002/adfm.201704537
11 SU P , XIAO H , ZHAO J , et al. Nitrogen-doped carbon nanotubes derived from Zn-Fe-ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species[J]. Chemical Science, 2013, 4 (7): 2941- 2946.
doi: 10.1039/c3sc51052b
12 WANG Z H , TIAN M . Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries[J]. Advanced Functional Materials, 2018, 28 (39): 1802596.
doi: 10.1002/adfm.201802596
13 WANG S , QIN J , MENG T , et al. Metal-organic framework-induced construction of actiniae-like carbon nanotube assembly as advanced multifunctional electrocatalysts for overall water spli-tting and Zn-air batteries[J]. Nano Energy, 2017, 39, 626- 638.
doi: 10.1016/j.nanoen.2017.07.043
14 ZHAO W , LI G , TANG Z . Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts[J]. Nano Today, 2019, 27, 178- 197.
doi: 10.1016/j.nantod.2019.05.007
15 ZHANG D , CHEN W , LI Z , et al. Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction[J]. Chemical Communications, 2018, 54 (34): 4274- 4277.
doi: 10.1039/C8CC00988K
16 任志东, 郝思嘉, 邢悦, 等. 氧化石墨烯改性环氧树脂及其复合材料的性能[J]. 航空材料学报, 2019, 39 (2): 29- 36.
16 REN Z D , HAO S J , XING Y , et al. Properties of graphene oxide modified epoxy resin and its composites[J]. Journal of Aeronautical Materials, 2019, 39 (2): 29- 36.
17 QI H , FENG Y Y , CHI Z Z , et al. In situ encapsulation of Co-based nanoparticles into nitrogen-doped carbon nanotubes-modified reduced graphene oxide as an air cathode for high-perfor-mance Zn-air batteries[J]. Nanoscale, 2019, 11 (45): 21943- 21952.
doi: 10.1039/C9NR07270E
18 GUO C H , LI L , ZHANG T , et al. Space-confined iron nanoparticles in a 3D nitrogen-doped rGO-CNT framework as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries[J]. Microporous and Mesoporous Materials, 2020, 298, 110100.
doi: 10.1016/j.micromeso.2020.110100
19 KUMAR M , ANDO Y . Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production[J]. Chem Inform, 2010, 41 (22): 3739- 3758.
20 GOHIER A , EWELS C P , MINEA T M , et al. Carbon nanotube growth mechanism switches from tip-to base-growth with decreasing catalyst particle size[J]. Carbon, 2008, 46 (10): 1331- 1338.
doi: 10.1016/j.carbon.2008.05.016
21 JIANG W J, LIN G, LI L, et al. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nano-particles boost the activity of Fe-Nx[J]. 2016, 138(10): 3570-3578.
22 MOON I K , LEE J , RUOFF R S , et al. Reduced graphene oxide by chemical graphitization[J]. Nature Communications, 2010, 1 (1): 1- 6.
23 QAZI S , RENNIE A R , COCKCROFT J K , et al. Use of wide-angle X-ray diffraction to measure shape and size of dispersed colloidal particles[J]. Journal of Colloid & Interface Science, 2009, 338 (1): 105- 110.
24 TANG C , WANG B , WANG H F , et al. Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries[J]. Advanced Materials, 2017, 29 (37): 1703185.
doi: 10.1002/adma.201703185
25 SU C Y , CHENG H , LI W , et al. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery[J]. Advanced Energy Materials, 2017, 7 (13): 1602420.
doi: 10.1002/aenm.201602420
26 LI Q , XU P , GAO W , et al. Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries[J]. Advanced Materials, 2014, 26 (9): 1378- 1386.
doi: 10.1002/adma.201304218
[1] 刘旺冠, 蒋兴华, 郭建华. 氮化铝/氮化硼/碳纳米管/硅橡胶复合材料的力致填料取向对导热性能的影响[J]. 材料工程, 2022, 50(2): 127-134.
[2] 乔俊宇, 李秀涛. 基于MOFs的碳纳米管复合材料的制备和应用进展[J]. 材料工程, 2021, 49(9): 27-40.
[3] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[4] 戴远哲, 唐波, 张振宇, 任首龙. 碳纳米管/石蜡相变复合材料研究进展[J]. 材料工程, 2021, 49(12): 91-99.
[5] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[6] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[7] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[8] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[9] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[10] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[11] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[12] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[13] 葛超群, 汪刘应, 刘顾. 碳基/羰基铁复合吸波材料的研究进展[J]. 材料工程, 2019, 47(12): 43-54.
[14] 鲁浩, 李楠, 王海波, 廖帮全, 姜亚明, 荆妙蕾, 徐志伟, 陈莉, 张兴祥. 碳纳米管复合材料的3D打印技术研究进展[J]. 材料工程, 2019, 47(11): 19-31.
[15] 刘扶庆, 刘夏, 杨庆生. 碳纳米管纤维力-电耦合效应的实验研究[J]. 材料工程, 2018, 46(9): 31-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn