Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (1): 56-66    DOI: 10.11868/j.issn.1001-4381.2021.000191
  综述 本期目录 | 过刊浏览 | 高级检索 |
超薄材料电催化CO2还原合成液体燃料
王裕超1,2, 李倩1,2, 曾坚3, 唐帅豪3, 郑焕然2, 许梁3, 陈志彦1,*(), 雷永鹏2,*()
1 中南林业科技大学 材料科学与工程学院, 长沙 410004
2 中南大学 粉末冶金国家重点实验室, 长沙 410083
3 江西理工大学 能源与机械工程学院, 南昌 330013
Ultra-thin materials for electrocatalytic CO2 reduction to prepare liquid fuels
Yuchao WANG1,2, Qian LI1,2, Jian ZENG3, Shuaihao TANG3, Huanran ZHENG2, Liang XU3, Zhiyan CHEN1,*(), Yongpeng LEI2,*()
1 School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
2 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
3 School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
全文: PDF(11838 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

电催化CO2还原反应(CO2RR)不仅可以减轻过量CO2造成的负面影响, 而且生成的含碳燃料有利于缓解能源短缺。但是, CO2RR路径较为复杂, 存在着选择性低、电流密度低和稳定性差等问题, 亟需开发高效廉价的催化剂来推进其发展。超薄材料具有大的比表面积、充分暴露的活性位点、加快的动力学传质和可调的电子结构等优势, 有望突破CO2RR的研究瓶颈, 因此备受关注。本文总结了近4年来不同超薄催化剂的合成及其在电催化CO2还原产液体燃料(甲酸、甲醇、乙酸)中的应用, 探讨了超薄材料相较于块体材料的优势及其对催化活性、选择性以及反应路径的影响, 并针对未来的发展趋势提出一些建议, 包括超薄催化剂的合成方法学、作为载体的潜力、机理分析和机器学习。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王裕超
李倩
曾坚
唐帅豪
郑焕然
许梁
陈志彦
雷永鹏
关键词 超薄材料CO2还原液体燃料电催化    
Abstract

The electrocatalytic CO2 reduction reaction (CO2RR) can not only alleviate the negative effects caused by excessive CO2, but also produce the carbon-containing fuels to alleviate energy shortages. However, the reactive paths of CO2RR are relatively complicated, and the problems such as low selectivity, low current density and poor stability exist. It is urgent to develop efficient and inexpensive catalysts to promote its development. Ultra-thin materials have the advantages of large specific surface area, fully exposed active sites, accelerated kinetic mass transfer, and adjustable electronic structure. They are expected to break the bottleneck of CO2RR, thus receiving widespread attention. Here, the synthesis and application of ultra-thin materials in the past four years in electrocatalytic CO2RR to produce liquid fuels (formic acid, methanol, acetic acid) were briefly summarized. The advantages of ultra-thin materials over bulk materials and their influence on catalytic activity, selectivity and reaction paths were discussed. Also, some suggestions for future development trends, including the synthesis methodology of ultra-thin materials, their potential as supports, mechanism analysis and machine learning were put forward.

Key wordsultra-thin material    CO2 reduction    liquid fuel    electrocatalysis
收稿日期: 2021-03-14      出版日期: 2022-01-19
中图分类号:  TQ426  
基金资助:长沙市科技局计划项目(kq1801079);湖南省二维材料重点实验室开放基金项目(KF20200003)
通讯作者: 陈志彦,雷永鹏     E-mail: spchen@163.com;lypkd@163.com
作者简介: 雷永鹏(1982—),男,教授,博士,主要从事清洁能源催化材料及器件等相关工作,联系地址:湖南省长沙市岳麓区麓山南路932号中南大学粉末冶金国家重点实验室(410083),E-mail: lypkd@163.com
陈志彦(1970—),男,教授,博士,研究方向为功能材料及其催化性能等相关工作,联系地址:湖南省长沙市天心区韶山南路498号中南林业科技大学材料科学与工程学院(410004),E-mail: spchen@163.com
引用本文:   
王裕超, 李倩, 曾坚, 唐帅豪, 郑焕然, 许梁, 陈志彦, 雷永鹏. 超薄材料电催化CO2还原合成液体燃料[J]. 材料工程, 2022, 50(1): 56-66.
Yuchao WANG, Qian LI, Jian ZENG, Shuaihao TANG, Huanran ZHENG, Liang XU, Zhiyan CHEN, Yongpeng LEI. Ultra-thin materials for electrocatalytic CO2 reduction to prepare liquid fuels. Journal of Materials Engineering, 2022, 50(1): 56-66.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000191      或      http://jme.biam.ac.cn/CN/Y2022/V50/I1/56
Fig.1  用于电催化CO2RR超薄催化剂的种类、合成、优势及其液体产物
Catalyst Product Electrolyte FE/% Current density/(mA·cm-2) Stability Reference
N-Sn(S) Formate 0.1 mol·L-1 KHCO3 (flow cell) 93.3(-0.7 V) ≈30(-0.7 V) 20 h [27]
Bi2O3-NGQDs Formate 0.5 mol·L-1 KHCO3 ≈100(-0.9V) ≈16(-0.9V) 15 h [28]
Bi nanosheets Formate 0.1 mol·L-1 KHCO3 86.0(-1.1 V) 14.2(-1.1 V) 10 h [29]
Bi nanoflake Formate 0.1 mol·L-1 KHCO3 ≈100(-0.6 V) ≈20.2(-0.6 V) 10 h [30]
BiNS Formate 0.5 mol·L-1 NaHCO3 ≈100(-1.05 V) ≈22(-1.05 V) 10 h [31]
BiOBr Formate 0.1 mol·L-1 KHCO3 >99(-0.95 V) ≈60(-0.95 V) 65 h [32]
Bismuthene Formate 0.5 mol·L-1KHCO3 99(-0.58 V) ≈15(-0.58 V) 75 h [33]
Bi-ene Formate 0.5 mol·L-1 KHCO3 >97(-1.18 V) 72.04(-1.18 V) 12 h [34]
SnS NSs Formate 0.5 mol·L-1 KHCO3 82.1(-1.1 V) 18.9(-1.1 V) 10 h [35]
SnOx nanoflake Formate 0.5 mol·L-1 KHCO3 90.8(-1.37 V) 40.9(-1.37 V) 10 h [36]
mp-SnO2 Formate 0.5 mol·L-1 NaHCO3 83(-0.9 V) ≈14(-0.9 V) 12 h [37]
5%Ni-SnS2 Formate 0.1 mol·L-1 KHCO3 80(-0.9 V) 15.7(-0.9 V) 8 h [38]
SnS2/rGO Formate 0.5 mol·L-1 NaHCO3 84.5(-0.75 V) 11.7(-0.75 V) 14 h [39]
Sn quantum sheets Formate 0.1 mol·L-1 NaHCO3 89(-1.15 V) 18.8(-1.15 V) 50 h [40]
Single atom Snδ+ Formate 0.25 mol·L-1 KHCO3 74.3(-0.95 V) 8.7(-0.95 V) 200 h [41]
SbNS-G Formate 0.5 mol·L-1 NaHCO3 88.5(-0.96 V) ≈7.5(-0.96V) 12 h [42]
Co3O4 layers Formate 0.1 mol·L-1 KHCO3 64.3(-0.23 V) ≈0.4(-0.23 V) 20 h [43]
Partially oxidized Co Formate 0.1 mol·L-1 Na2SO4 90.1(-0.2 V) 9.5(-0.2 V) 40 h [44]
VO-rich Co3O4 Formate 0.1 mol·L-1 KHCO3 87.6(-0.22 V) 2.4(-0.22 V) 40 h [45]
Pd/SnO2 NSs Methanol 0.1 mol·L-1 NaHCO3 54.8(-0.24 V) ≈0.8(-0.24 V) 24 h [46]
Fe2P2S6 nanosheet Methanol 0.5mol·L-1 KHCO3 65.2(-0.2 V) ≈0.2(-0.2 V) 30 h [47]
Cu nanosheets Acetic acid 2 mol·L-1 KOH (flow cell) 48(-0.74 V) 131(-0.74 V) 3 h [48]
Table 1  超薄材料用于电催化CO2RR产液体燃料的总结
Fig.2  CO2RR产甲酸/甲酸盐可能的反应路径[25]
(a)CO2-自由基中间体路径;(b)单齿或双齿中间体路径;(c)表面键合碳酸根中间体路径
Fig.3  超薄Bi基催化剂用于电催化CO2还原
(a)液相刻蚀制备Bi纳米片[29];(b)BiOI的扫描电镜(SEM)图[31];(c)BiOI的原子力显微镜(AFM)照片[31];(d)不同厚度Bi纳米片的线性扫描伏安曲线[33];(e)不同厚度Bi纳米片的甲酸FE对比[33];(f)铋烯的稳定性曲线[33];(g)原位红外光谱[34]
Fig.4  超薄Sn,Co基催化剂用于电催化CO2还原
(a)介孔SnO2纳米片的制备[37];(b)态密度的比较[38];(c)石墨烯限域Sn量子片的高分辨TEM照片[40];(d)石墨烯限域Sn量子片的AFM照片[40];(e)甲酸生成的塔菲尔点[40];(f)石墨烯负载的Sn单原子[41];(g)傅里叶变换的X射线吸收精细结构能谱[45];(h)产甲酸的FE[45]
Fig.5  CO2RR产甲醇可能的反应路径[53]
Fig.6  超薄材料催化CO2深度还原
(a)Fe2P2S6纳米片不同产物的FE[47];(b)同位素标记实验的核磁结果[47];(c)三角形Cu纳米片的TEM图[48];(d)三角形Cu纳米片的AFM照片[48];(e)各种产物的FE[48];(f)不同碱度电解液中的电流密度差异[48];(g)C2+产物的反应机理[48]
1 WANG Y C , LIU Y , LIU W , et al. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction[J]. Energy & Environmental Science, 2020, 13 (12): 4609- 4624.
2 WANG L M , CHEN W L , ZHANG D D , et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms[J]. Chemical Society Reviews, 2019, 48 (21): 5310- 5349.
doi: 10.1039/C9CS00163H
3 ZHANG S , FAN Q , XIA R , et al. CO2 reduction: from homogeneous to heterogeneous electrocatalysis[J]. Accounts of Chemical Research, 2020, 53 (1): 255- 264.
doi: 10.1021/acs.accounts.9b00496
4 CHANG C J , LIN S C , CHEN H C , et al. Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane[J]. Journal of the American Chemical Society, 2020, 142 (28): 12119- 12132.
doi: 10.1021/jacs.0c01859
5 XIE J F , ZHAO X T , WU M X , et al. Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution[J]. Angewandte Chemie International Edition, 2018, 57 (31): 9640- 9644.
doi: 10.1002/anie.201802055
6 WANG X , WANG Z Y , ARQUER F P G , et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation[J]. Nature Energy, 2020, 5 (6): 478- 486.
doi: 10.1038/s41560-020-0607-8
7 CHOI C , KWON S , CHENG T , et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4[J]. Nature Catalysis, 2020, 3 (10): 804- 812.
doi: 10.1038/s41929-020-00504-x
8 MEI J , LIAO T , KOU L Z , et al. Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries[J]. Advanced Materials, 2017, 29 (48): 1700176.
doi: 10.1002/adma.201700176
9 LIU J L , GUO C X , VASILEFF A , et al. Nanostructured 2D materials: prospective catalysts for electrochemical CO2 reduction[J]. Small Methods, 2017, 1 (2): 1600006.
10 NOVOSELOV K S , GEIM A K , MOROZOV S V , et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696): 666- 669.
doi: 10.1126/science.1102896
11 XIONG P , WU Y Y , LIU Y F , et al. Two-dimensional organic-inorganic superlattice-like heterostructures for energy storage applications[J]. Energy & Environmental Science, 2020, 13 (12): 4834- 4853.
12 DENG P M , NING H L , XIE W G , et al. Research progress in stannous oxide thin film transistors[J]. Journal of Materials Engineering, 2020, 48 (4): 83- 88.
13 ZENGJ , XU L , LUO X , et al. A novel design of SiH/CeO2(111) van der Waals type-Ⅱ heterojunction for water splitting[J]. Physical Chemistry Chemical Physics, 2021, 23 (4): 2812- 2818.
doi: 10.1039/D0CP05238H
14 ZHOU Y S , CHE F L , LIU M , et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons[J]. Nature Chemistry, 2018, 10 (9): 974- 980.
doi: 10.1038/s41557-018-0092-x
15 PANG Y J , LI J , WANG Z Y , et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper[J]. Nature Catalysis, 2019, 2 (3): 251- 258.
doi: 10.1038/s41929-019-0225-7
16 WANG Y C , LIU B , LIU Y , et al. Accelerating charge transfer to enhance H2 evolution of defect-rich CoFe2O4 by constructing a Schottky junction[J]. Chemical Communications, 2020, 56 (90): 14019- 14022.
doi: 10.1039/D0CC05656A
17 YAN J Q , KONG L Q , JI Y J , et al. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation[J]. Nature Communications, 2019, 10, 2149.
doi: 10.1038/s41467-019-09845-z
18 ZHAO Y , TAN X , YANG W F , et al. Surface reconstruction of ultrathin palladium nanosheets during electrocatalytic CO2 reduction[J]. Angewandte Chemie International Edition, 2020, 59 (48): 21493- 21498.
doi: 10.1002/anie.202009616
19 南文争, 燕绍九, 彭思侃, 等. 石墨烯的液相剥离制备及在磷酸铁锂正极中的应用[J]. 材料工程, 2020, 48 (11): 108- 115.
19 NAN W Z , YAN S J , PENG S K , et al. Preparation of graphene based on liquid phase exfoliation and its application on LiFePO4 electrode for lithium ion battery[J]. Journal of Materials Engineering, 2020, 48 (11): 108- 115.
20 JEONG G H , SASIKALA S P , YUN T , et al. Nanoscale assembly of 2D materials for energy and environmental applications[J]. Advanced Materials, 2020, 32 (35): 1907006.
doi: 10.1002/adma.201907006
21 WANG Q C , LEI Y P , WANG Y C , et al. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis[J]. Energy & Environmental Science, 2020, 13 (6): 1593- 1616.
22 WU Q M , DENG D K , HE Y L , et al. Fe/N-doped mesoporous carbons derived from soybeans: a highly efficient and low-cost non-precious metal catalyst for ORR[J]. Journal of Central South University, 2020, 27 (2): 344- 355.
doi: 10.1007/s11771-020-4300-7
23 ZHAO C M , LUO G , LIU X K , et al. In situ topotactic transformation of an interstitial alloy for CO electroreduction[J]. Advanced Materials, 2020, 32 (39): 2002382.
doi: 10.1002/adma.202002382
24 LI X D , WANG S M , LI L , et al. Opportunity of atomically thin two-dimensional catalysts for promoting CO2 electroreduction[J]. Accounts of Chemical Research, 2020, 53 (12): 2964- 2974.
doi: 10.1021/acs.accounts.0c00626
25 SUN Z Y , MA T , TAO H C , et al. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials[J]. Chem, 2017, 3 (4): 560- 587.
doi: 10.1016/j.chempr.2017.09.009
26 SHI R , GUO J H , ZHANG X R , et al. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces[J]. Nature Communications, 2020, 11 (1): 3028.
doi: 10.1038/s41467-020-16847-9
27 CHENG H , LIU S , ZHANG J D , et al. Surface nitrogen-injection engineering for high formation rate of CO2 reduction to formate[J]. Nano Letters, 2020, 20 (8): 6097- 6103.
doi: 10.1021/acs.nanolett.0c02144
28 CHEN Z P , MOU K W , WANG X H , et al. Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region[J]. Angewandte Chemie International Edition, 2018, 57 (39): 12790- 12794.
doi: 10.1002/anie.201807643
29 ZHANG W J , HU Y , MA L B , et al. Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure[J]. Nano Energy, 2018, 53, 808- 816.
doi: 10.1016/j.nanoen.2018.09.053
30 KIM S , DONG W J , GIM S , et al. Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate[J]. Nano Energy, 2017, 39, 44- 52.
doi: 10.1016/j.nanoen.2017.05.065
31 HAN N , WANG Y , YANG H , et al. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate[J]. Nature Communications, 2018, 9, 1320.
doi: 10.1038/s41467-018-03712-z
32 ARQUER F P G , BUSHUYEV O S , LUNA P D , et al. 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction[J]. Advanced Material, 2018, 30 (38): 1802858.
doi: 10.1002/adma.201802858
33 YANG F , ELNABAWY A O , SCHIMMENTI R , et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction[J]. Nature Communications, 2020, 11 (1): 1088.
doi: 10.1038/s41467-020-14914-9
34 CAO C S , MA D D , GU J F , et al. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel[J]. Angewandte Chemie International Edition, 2020, 59 (35): 15014- 15020.
doi: 10.1002/anie.202005577
35 CHEN H L , CHEN J X , SI J C , et al. Ultrathin tin monosulfide nanosheets with exposed (001) plane for efficient electrocatalytic conversion of CO2 into formate[J]. Chemical Science, 2020, 11 (15): 3952- 3958.
doi: 10.1039/C9SC06548B
36 YUAN T B , HU Z , ZHAO Y X , et al. Two-dimensional amorphous SnOx from liquid metal: mass production, phase transfer, and electrocatalytic CO2 reduction toward formic acid[J]. Nano Letters, 2020, 20 (4): 2916- 2922.
doi: 10.1021/acs.nanolett.0c00844
37 HAN N , WANG Y Y , DENG J , et al. Self-templated synthesis of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction[J]. Journal of Materials Chemistry A, 2019, 7 (3): 1267- 1272.
doi: 10.1039/C8TA10959A
38 ZHANG A , HE R , LI H P , et al. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction[J]. Angewandte Chemie International Edition, 2018, 57 (34): 10954- 10958.
doi: 10.1002/anie.201806043
39 LI F W , CHEN L , XUE M Q , et al. Towards a better Sn: efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets[J]. Nano Energy, 2017, 31, 270- 277.
doi: 10.1016/j.nanoen.2016.11.004
40 LEI F C , LIU W , SUN Y F , et al. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction[J]. Nature Communications, 2016, 7, 12697.
doi: 10.1038/ncomms12697
41 ZU X L , LI X D , LIU W , et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites[J]. Advanced Materials, 2019, 31 (15): 1808135.
doi: 10.1002/adma.201808135
42 LI F W , XUE M Q , LI J Z , et al. Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material[J]. Angewandte Chemie International Edition, 2017, 56 (46): 14718- 14722.
doi: 10.1002/anie.201710038
43 GAO S , JIAO X C , SUN Z T , et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate[J]. Angewandte Chemie International Edition, 2016, 55 (2): 698- 702.
doi: 10.1002/anie.201509800
44 GAO S , LIN Y , JIAO X C , et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529 (7584): 68- 71.
doi: 10.1038/nature16455
45 GAO S , SUN Z T , LIU W , et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction[J]. Nature Communications, 2017, 8, 14503.
doi: 10.1038/ncomms14503
46 ZHANG W Y , QIN Q , DAI L , et al. Electrochemical reduction of CO2 to CH3OH on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces[J]. Angewandte Chemie International Edition, 2018, 57 (30): 9475- 9479.
doi: 10.1002/anie.201804142
47 JI L , CHANG L , ZHANG Y , et al. Electrocatalytic CO2 reduction to alcohols with high selectivity over a two-dimensional Fe2P2S6 nanosheet[J]. ACS Catalysis, 2019, 9 (11): 9721- 9725.
doi: 10.1021/acscatal.9b03180
48 LUC W , FU X B , SHI J J , et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate[J]. Nature Catalysis, 2019, 2 (5): 423- 430.
doi: 10.1038/s41929-019-0269-8
49 MA W C , XIE S J , LIU T T , et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper[J]. Nature Catalysis, 2020, 3 (6): 478- 487.
doi: 10.1038/s41929-020-0450-0
50 GONG Q F , DING P , XU M Q , et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nature Communications, 2019, 10, 2807.
doi: 10.1038/s41467-019-10819-4
51 LIU Y , FENG Q G , LIU W , et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification[J]. Nano Energy, 2021, 81, 105641.
doi: 10.1016/j.nanoen.2020.105641
52 REN D , GAO J , PAN L F , et al. Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels[J]. Angewandte Chemie International Edition, 2019, 58 (42): 15036- 15040.
doi: 10.1002/anie.201909610
53 YANG D X , ZHU Q G , CHEN C J , et al. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts[J]. Nature Communications, 2019, 10, 677.
doi: 10.1038/s41467-019-08653-9
54 XIE J F , WANG X Y , LV J Q , et al. Reversible aqueous zinc-CO2 batteries based on CO2-HCOOH interconversion[J]. Angewandte Chemie International Edition, 2018, 57 (52): 16996- 17001.
doi: 10.1002/anie.201811853
55 GENOVESE C , SCHUSTER M E , GIBSON E K , et al. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon[J]. Nature Communications, 2018, 9, 935.
doi: 10.1038/s41467-018-03138-7
56 WANG H X , TZENG Y K , JI Y F , et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface[J]. Nature Nanotechnology, 2020, 15 (2): 131- 137.
doi: 10.1038/s41565-019-0603-y
[1] 马海霞, 王太和, 赵玉洁, 王旭, 李嘉辰. MoS2/Ru异质结构的制备及其电催化析氢反应性能[J]. 材料工程, 2022, 50(4): 44-52.
[2] 王佳佳, 喻兰兰, 胡霞, 刘宝军. 二维纳米材料MXenes及其复合物在电催化领域中的应用研究进展[J]. 材料工程, 2022, 50(1): 43-55.
[3] 唐长斌, 卢宇轩, 王飞, 黄平, 于丽花, 薛娟琴. 用于水体中有机污染物电催化降解的非贵金属氧化物阳极的研究进展[J]. 材料工程, 2020, 48(6): 62-72.
[4] 胡晓峰, 彭清琪, 张文华, 叶文华, 王辉虎. g-C3N4纳米片光电极的制备及其光电催化降解四环素性能[J]. 材料工程, 2020, 48(12): 82-89.
[5] 周琦, 王亚飞, 冯基伟, 李志洋. 脱合金化制备纳米多孔Ni-Fe合金及其电催化性能[J]. 材料工程, 2019, 47(4): 77-83.
[6] 史艳华, 赵杉林, 王玲, 梁平, 关学雷. 稀土Ce掺杂纳米晶Mn-Mo-Ce氧化物阳极及其选择电催化性能[J]. 材料工程, 2017, 45(9): 72-80.
[7] 史艳华, 赵杉林, 梁平, 王玲, 关学雷. pH值对阳极电沉积Mn-Mo氧化物结构与性能的影响[J]. 材料工程, 2016, 44(12): 7-12.
[8] 范莹莹, 陈阵, 李佳莹, 付国兵, 林强. AEO改性二氧化铅电极在降解甲基橙过程中的电化学行为[J]. 材料工程, 2014, 0(7): 10-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn