1 School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China 2 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China 3 School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
The electrocatalytic CO2 reduction reaction (CO2RR) can not only alleviate the negative effects caused by excessive CO2, but also produce the carbon-containing fuels to alleviate energy shortages. However, the reactive paths of CO2RR are relatively complicated, and the problems such as low selectivity, low current density and poor stability exist. It is urgent to develop efficient and inexpensive catalysts to promote its development. Ultra-thin materials have the advantages of large specific surface area, fully exposed active sites, accelerated kinetic mass transfer, and adjustable electronic structure. They are expected to break the bottleneck of CO2RR, thus receiving widespread attention. Here, the synthesis and application of ultra-thin materials in the past four years in electrocatalytic CO2RR to produce liquid fuels (formic acid, methanol, acetic acid) were briefly summarized. The advantages of ultra-thin materials over bulk materials and their influence on catalytic activity, selectivity and reaction paths were discussed. Also, some suggestions for future development trends, including the synthesis methodology of ultra-thin materials, their potential as supports, mechanism analysis and machine learning were put forward.
WANG Y C , LIU Y , LIU W , et al. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction[J]. Energy & Environmental Science, 2020, 13 (12): 4609- 4624.
2
WANG L M , CHEN W L , ZHANG D D , et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms[J]. Chemical Society Reviews, 2019, 48 (21): 5310- 5349.
doi: 10.1039/C9CS00163H
3
ZHANG S , FAN Q , XIA R , et al. CO2 reduction: from homogeneous to heterogeneous electrocatalysis[J]. Accounts of Chemical Research, 2020, 53 (1): 255- 264.
doi: 10.1021/acs.accounts.9b00496
4
CHANG C J , LIN S C , CHEN H C , et al. Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane[J]. Journal of the American Chemical Society, 2020, 142 (28): 12119- 12132.
doi: 10.1021/jacs.0c01859
5
XIE J F , ZHAO X T , WU M X , et al. Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution[J]. Angewandte Chemie International Edition, 2018, 57 (31): 9640- 9644.
doi: 10.1002/anie.201802055
6
WANG X , WANG Z Y , ARQUER F P G , et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation[J]. Nature Energy, 2020, 5 (6): 478- 486.
doi: 10.1038/s41560-020-0607-8
7
CHOI C , KWON S , CHENG T , et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4[J]. Nature Catalysis, 2020, 3 (10): 804- 812.
doi: 10.1038/s41929-020-00504-x
8
MEI J , LIAO T , KOU L Z , et al. Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries[J]. Advanced Materials, 2017, 29 (48): 1700176.
doi: 10.1002/adma.201700176
9
LIU J L , GUO C X , VASILEFF A , et al. Nanostructured 2D materials: prospective catalysts for electrochemical CO2 reduction[J]. Small Methods, 2017, 1 (2): 1600006.
10
NOVOSELOV K S , GEIM A K , MOROZOV S V , et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696): 666- 669.
doi: 10.1126/science.1102896
11
XIONG P , WU Y Y , LIU Y F , et al. Two-dimensional organic-inorganic superlattice-like heterostructures for energy storage applications[J]. Energy & Environmental Science, 2020, 13 (12): 4834- 4853.
12
DENG P M , NING H L , XIE W G , et al. Research progress in stannous oxide thin film transistors[J]. Journal of Materials Engineering, 2020, 48 (4): 83- 88.
13
ZENGJ , XU L , LUO X , et al. A novel design of SiH/CeO2(111) van der Waals type-Ⅱ heterojunction for water splitting[J]. Physical Chemistry Chemical Physics, 2021, 23 (4): 2812- 2818.
doi: 10.1039/D0CP05238H
14
ZHOU Y S , CHE F L , LIU M , et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons[J]. Nature Chemistry, 2018, 10 (9): 974- 980.
doi: 10.1038/s41557-018-0092-x
15
PANG Y J , LI J , WANG Z Y , et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper[J]. Nature Catalysis, 2019, 2 (3): 251- 258.
doi: 10.1038/s41929-019-0225-7
16
WANG Y C , LIU B , LIU Y , et al. Accelerating charge transfer to enhance H2 evolution of defect-rich CoFe2O4 by constructing a Schottky junction[J]. Chemical Communications, 2020, 56 (90): 14019- 14022.
doi: 10.1039/D0CC05656A
17
YAN J Q , KONG L Q , JI Y J , et al. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation[J]. Nature Communications, 2019, 10, 2149.
doi: 10.1038/s41467-019-09845-z
18
ZHAO Y , TAN X , YANG W F , et al. Surface reconstruction of ultrathin palladium nanosheets during electrocatalytic CO2 reduction[J]. Angewandte Chemie International Edition, 2020, 59 (48): 21493- 21498.
doi: 10.1002/anie.202009616
NAN W Z , YAN S J , PENG S K , et al. Preparation of graphene based on liquid phase exfoliation and its application on LiFePO4 electrode for lithium ion battery[J]. Journal of Materials Engineering, 2020, 48 (11): 108- 115.
20
JEONG G H , SASIKALA S P , YUN T , et al. Nanoscale assembly of 2D materials for energy and environmental applications[J]. Advanced Materials, 2020, 32 (35): 1907006.
doi: 10.1002/adma.201907006
21
WANG Q C , LEI Y P , WANG Y C , et al. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis[J]. Energy & Environmental Science, 2020, 13 (6): 1593- 1616.
22
WU Q M , DENG D K , HE Y L , et al. Fe/N-doped mesoporous carbons derived from soybeans: a highly efficient and low-cost non-precious metal catalyst for ORR[J]. Journal of Central South University, 2020, 27 (2): 344- 355.
doi: 10.1007/s11771-020-4300-7
23
ZHAO C M , LUO G , LIU X K , et al. In situ topotactic transformation of an interstitial alloy for CO electroreduction[J]. Advanced Materials, 2020, 32 (39): 2002382.
doi: 10.1002/adma.202002382
24
LI X D , WANG S M , LI L , et al. Opportunity of atomically thin two-dimensional catalysts for promoting CO2 electroreduction[J]. Accounts of Chemical Research, 2020, 53 (12): 2964- 2974.
doi: 10.1021/acs.accounts.0c00626
25
SUN Z Y , MA T , TAO H C , et al. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials[J]. Chem, 2017, 3 (4): 560- 587.
doi: 10.1016/j.chempr.2017.09.009
26
SHI R , GUO J H , ZHANG X R , et al. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces[J]. Nature Communications, 2020, 11 (1): 3028.
doi: 10.1038/s41467-020-16847-9
27
CHENG H , LIU S , ZHANG J D , et al. Surface nitrogen-injection engineering for high formation rate of CO2 reduction to formate[J]. Nano Letters, 2020, 20 (8): 6097- 6103.
doi: 10.1021/acs.nanolett.0c02144
28
CHEN Z P , MOU K W , WANG X H , et al. Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region[J]. Angewandte Chemie International Edition, 2018, 57 (39): 12790- 12794.
doi: 10.1002/anie.201807643
29
ZHANG W J , HU Y , MA L B , et al. Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure[J]. Nano Energy, 2018, 53, 808- 816.
doi: 10.1016/j.nanoen.2018.09.053
30
KIM S , DONG W J , GIM S , et al. Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate[J]. Nano Energy, 2017, 39, 44- 52.
doi: 10.1016/j.nanoen.2017.05.065
31
HAN N , WANG Y , YANG H , et al. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate[J]. Nature Communications, 2018, 9, 1320.
doi: 10.1038/s41467-018-03712-z
32
ARQUER F P G , BUSHUYEV O S , LUNA P D , et al. 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction[J]. Advanced Material, 2018, 30 (38): 1802858.
doi: 10.1002/adma.201802858
33
YANG F , ELNABAWY A O , SCHIMMENTI R , et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction[J]. Nature Communications, 2020, 11 (1): 1088.
doi: 10.1038/s41467-020-14914-9
34
CAO C S , MA D D , GU J F , et al. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel[J]. Angewandte Chemie International Edition, 2020, 59 (35): 15014- 15020.
doi: 10.1002/anie.202005577
35
CHEN H L , CHEN J X , SI J C , et al. Ultrathin tin monosulfide nanosheets with exposed (001) plane for efficient electrocatalytic conversion of CO2 into formate[J]. Chemical Science, 2020, 11 (15): 3952- 3958.
doi: 10.1039/C9SC06548B
36
YUAN T B , HU Z , ZHAO Y X , et al. Two-dimensional amorphous SnOx from liquid metal: mass production, phase transfer, and electrocatalytic CO2 reduction toward formic acid[J]. Nano Letters, 2020, 20 (4): 2916- 2922.
doi: 10.1021/acs.nanolett.0c00844
37
HAN N , WANG Y Y , DENG J , et al. Self-templated synthesis of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction[J]. Journal of Materials Chemistry A, 2019, 7 (3): 1267- 1272.
doi: 10.1039/C8TA10959A
38
ZHANG A , HE R , LI H P , et al. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction[J]. Angewandte Chemie International Edition, 2018, 57 (34): 10954- 10958.
doi: 10.1002/anie.201806043
39
LI F W , CHEN L , XUE M Q , et al. Towards a better Sn: efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets[J]. Nano Energy, 2017, 31, 270- 277.
doi: 10.1016/j.nanoen.2016.11.004
40
LEI F C , LIU W , SUN Y F , et al. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction[J]. Nature Communications, 2016, 7, 12697.
doi: 10.1038/ncomms12697
41
ZU X L , LI X D , LIU W , et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites[J]. Advanced Materials, 2019, 31 (15): 1808135.
doi: 10.1002/adma.201808135
42
LI F W , XUE M Q , LI J Z , et al. Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material[J]. Angewandte Chemie International Edition, 2017, 56 (46): 14718- 14722.
doi: 10.1002/anie.201710038
43
GAO S , JIAO X C , SUN Z T , et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate[J]. Angewandte Chemie International Edition, 2016, 55 (2): 698- 702.
doi: 10.1002/anie.201509800
44
GAO S , LIN Y , JIAO X C , et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529 (7584): 68- 71.
doi: 10.1038/nature16455
45
GAO S , SUN Z T , LIU W , et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction[J]. Nature Communications, 2017, 8, 14503.
doi: 10.1038/ncomms14503
46
ZHANG W Y , QIN Q , DAI L , et al. Electrochemical reduction of CO2 to CH3OH on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces[J]. Angewandte Chemie International Edition, 2018, 57 (30): 9475- 9479.
doi: 10.1002/anie.201804142
47
JI L , CHANG L , ZHANG Y , et al. Electrocatalytic CO2 reduction to alcohols with high selectivity over a two-dimensional Fe2P2S6 nanosheet[J]. ACS Catalysis, 2019, 9 (11): 9721- 9725.
doi: 10.1021/acscatal.9b03180
48
LUC W , FU X B , SHI J J , et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate[J]. Nature Catalysis, 2019, 2 (5): 423- 430.
doi: 10.1038/s41929-019-0269-8
49
MA W C , XIE S J , LIU T T , et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper[J]. Nature Catalysis, 2020, 3 (6): 478- 487.
doi: 10.1038/s41929-020-0450-0
50
GONG Q F , DING P , XU M Q , et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nature Communications, 2019, 10, 2807.
doi: 10.1038/s41467-019-10819-4
51
LIU Y , FENG Q G , LIU W , et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification[J]. Nano Energy, 2021, 81, 105641.
doi: 10.1016/j.nanoen.2020.105641
52
REN D , GAO J , PAN L F , et al. Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels[J]. Angewandte Chemie International Edition, 2019, 58 (42): 15036- 15040.
doi: 10.1002/anie.201909610
53
YANG D X , ZHU Q G , CHEN C J , et al. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts[J]. Nature Communications, 2019, 10, 677.
doi: 10.1038/s41467-019-08653-9
54
XIE J F , WANG X Y , LV J Q , et al. Reversible aqueous zinc-CO2 batteries based on CO2-HCOOH interconversion[J]. Angewandte Chemie International Edition, 2018, 57 (52): 16996- 17001.
doi: 10.1002/anie.201811853
55
GENOVESE C , SCHUSTER M E , GIBSON E K , et al. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon[J]. Nature Communications, 2018, 9, 935.
doi: 10.1038/s41467-018-03138-7
56
WANG H X , TZENG Y K , JI Y F , et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface[J]. Nature Nanotechnology, 2020, 15 (2): 131- 137.
doi: 10.1038/s41565-019-0603-y