Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (3): 107-114    DOI: 10.11868/j.issn.1001-4381.2021.000194
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于工业化碳材料的锂氟化碳电池正极材料制备及性能
侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛()
中国民航大学 民航热灾害防控与应急重点实验室, 天津 300300
Preparation and performance of industrial carbons derived cathodes for lithium/ fluorinated carbon primary batteries
Xiaopeng HOU, Hao ZENG, Shaowen DU, Na LI, Yiwen ZHU, Xiaoke FU, Xiutao LI()
Key Laboratory of Civil Aviation Thermal Hazards Management and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
全文: PDF(13654 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为实现锂氟化碳电池在更多领域的普遍应用, 以工业化碳材料(活性炭、球形石墨、膨胀石墨和工业石墨烯)为碳源, 制备了四种氟化碳正极材料。通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、红外光谱(FTIR)、X射线能谱(XPS)、氮气吸脱附以及电化学测试等表征手段对材料的微观形貌、晶体结构、化学结构和电化学性能进行了系统的研究。研究表明: 氟化工业石墨烯具有完全的单氟化碳结构、高比表面积以及稳定的碳结构, 在20 mA·g-1的放电电流下可以实现高达945.4 mAh·g-1的比容量; 氟化活性炭具有较多的半共价C—F键, 其起始放电电压最高, 但是由于其结构稳定性较差, 电压平台快速下降, 导致整体比容量较低; 氟化膨胀石墨和氟化球形石墨与氟化工业石墨烯结构类似, 但是由于高氟化碳原子(CF2和CF3)的存在, 其放电比容量要低于氟化工业石墨烯。不过在高放电电流密度下, 氟化膨胀石墨、氟化球形石墨和氟化工业石墨烯的能量密度十分接近, 因此, 基于氟化膨胀石墨和氟化球形石墨的成本优势, 氟化膨胀石墨和氟化球形石墨更适合于高功率应用场景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯小鹏
曾浩
杜邵文
李娜
朱怡雯
傅小珂
李秀涛
关键词 锂氟化碳电池石墨烯电化学构效关系正极材料    
Abstract

Four kinds of fluorinated carbon cathodes were fabricated with the industrial carbon materials (activated carbon, spherical graphite, expanded graphite and industrial graphene) to realize the universal applications of lithium/fluorinated carbon primary battery. The morphology, crystalline structure, chemical structure and electrochemical performance were systematically studied by scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Raman spectra (Raman), fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectro scopy(XPS), N2 adsorption-desorption isotherms and electrochemical test, etc. It was found that the fluorinated industrial graphene shows the highest specific capacity (945.4 mAh·g-1) at the discharge current density of 20 mA·g-1, which may benefit from the monofluorocarbon structure, high specific area and stable carbon structure. The fluorinated active carbon has the highest initial discharge voltage due to the abundant semi-covalent C—F bond, but its discharge voltage declines rapidly caused by the unstable structure. Although the fluorinated spherical graphite and fluorinated expanded graphite have the similar structure with the fluorinated industrial graphene, their specific capacities are lower, due to the presence of the highly fluorinated carbon atoms (CF2 and CF3). However, at high discharge current density, the fluorinated spherical graphite and fluorinated expanded graphite possess the similar value with the fluorinated industrial graphene. Considering the cost, they may be more suitable for the high power applications.

Key wordslithium/fluorinated carbon primary battery    graphene    electrochemistry    structure-activity relationship    cathode
收稿日期: 2021-03-05      出版日期: 2022-03-19
中图分类号:  TB34  
基金资助:大学生创新创业训练计划项目(202010059009)
通讯作者: 李秀涛     E-mail: xiutaolee@163.com
作者简介: 李秀涛(1984—),男,讲师,博士,主要从事多功能材料研究,联系地址:天津市东丽区津北公路2898号中国民航大学南院航安楼301(300300),E-mail: xiutaolee@163.com
引用本文:   
侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
Xiaopeng HOU, Hao ZENG, Shaowen DU, Na LI, Yiwen ZHU, Xiaoke FU, Xiutao LI. Preparation and performance of industrial carbons derived cathodes for lithium/ fluorinated carbon primary batteries. Journal of Materials Engineering, 2022, 50(3): 107-114.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000194      或      http://jme.biam.ac.cn/CN/Y2022/V50/I3/107
Fig.1  样品氟化前和氟化后的电镜图  (a)活性炭; (b)工业石墨烯;(c)膨胀石墨;(d)球形石墨;(1)氟化前SEM照片;(2)氟化后SEM照片;(3)氟化后TEM照片;(4)氟化后EDS图谱
Sample BET surface/
(m2·g-1)
Pore volume/
(cm3·g-1)
AC 1961.4 1.06
FAC 393.2 0.28
G 245.6 0.83
FG 259.4 0.39
P 30.7 0.14
FP 99.1 0.12
Q 3.6 0.03
FQ 141.0 0.156
Table 1  样品氟化前后的比表面和孔总体积
Fig.2  样品氟化前后的N2吸脱附等温曲线和孔径分布图
(a)AC,G,P和Q的吸脱附等温曲线;(b)FAC,FG,FP和FQ的吸脱附等温曲线;(c)AC和FAC的孔径分布曲线;(d)G和FG的孔径分布曲线;(e)P和FP的孔径分布曲线;(f)Q和FQ的孔径分布曲线
Fig.3  样品氟化前后的XRD图谱  (a)AC,G,P和Q;(b)FAC,FG,FP和FQ
Fig.4  样品氟化前后的Raman图谱  (a)AC,G,P和Q;(b)FAC,FG,FP和FQ
Fig.5  氟化碳样品的FTIR图谱
Fig.6  氟化碳样品的C1s精细谱图  (a)FAC;(b)FG;(c)FQ;(d)FP
Fig.7  不同电流密度下的恒电流放电曲线  (a)FAC;(b)FG;(c)FP;(d)FQ
Fig.8  FAC,FG,FP和FQ的Ragone曲线
1 LINDEN D , REDDY T B . Handbook of batteries[M]. New York: McGraw-Hill, 2004: 72.
2 JAYASINGHE R , THAPA A K , DHARMASENA R R , et al. Optimization of multi-walled carbon nanotube based CFx electrodes for improved primary and secondary battery performances[J]. J Power Sources, 2014, 253, 404- 411.
doi: 10.1016/j.jpowsour.2013.12.076
3 LI Y , WU X , LIU C , et al. Fluorinated multi-walled carbon nanotubes as cathode materials of lithium and sodium primary batteries: effect of graphitization of carbon nanotubes[J]. Journal of Materials Chemistry A, 2019, 7 (12): 7128- 7137.
doi: 10.1039/C8TA12074A
4 LI Y , FENG Y , FENG W . Deeply fluorinated multi-wall carbon nanotubes for high energy and power densities lithium/carbon fluorides battery[J]. Electrochim Acta, 2013, 107, 343- 349.
doi: 10.1016/j.electacta.2013.06.086
5 YUE H , ZHANG W , LIU H , et al. Synthesis and characterization of fluorinated carbon nanotubes for lithium primary batteries with high power density[J]. Nanotechnology, 2013, 24 (42): 424003.
doi: 10.1088/0957-4484/24/42/424003
6 FENG W , LONG P , FENG Y , et al. Two-dimensional fluorinated graphene: synthesis, structures, properties and applications[J]. Advanced Science, 2016, 3 (7): 1500413.
doi: 10.1002/advs.201500413
7 BI X , LI Y , QIU Z , et al. Fluorinated graphene prepared by direct fluorination of N, O-doped graphene aerogel at different temperatures for lithium primary batteries[J]. Materials, 2018, 11 (7): 1072.
doi: 10.3390/ma11071072
8 DAMIEN D , SUDEEP P M , NARAYANAN T N , et al. Fluorinated graphene based electrodes for high performance primary lithium batteries[J]. RSC Adv, 2013, 3 (48): 25702- 25706.
doi: 10.1039/c3ra45377d
9 YAZAMI R , HAMWI A , GUÉRIN K , et al. Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries[J]. Electrochem Commun, 2007, 9 (7): 1850- 1855.
doi: 10.1016/j.elecom.2007.04.013
10 SHAO Y , YUE H , QIAO R , et al. Synthesis and reaction mechanism of novel fluorinated carbon fiber as a high-voltage cathode material for rechargeable Na batteries[J]. Chem Mater, 2016, 28 (4): 1026- 1033.
doi: 10.1021/acs.chemmater.5b03762
11 DUBOIS M , GUÉRIN K , ZHANG W , et al. Tuning the discharge potential of fluorinated carbon used as electrode in primary lithium battery[J]. Electrochim Acta, 2012, 59, 485- 491.
doi: 10.1016/j.electacta.2011.11.015
12 ZHANG W , DUBOIS M , GUÉRIN K , et al. Effect of curvature on C—F bonding in fluorinated carbons: from fullerene and derivatives to graphite[J]. Phys Chem Chem Phys, 2010, 12 (6): 1388- 1398.
doi: 10.1039/B914853A
13 FULVIO P F , BROWN S S , ADCOCK J , et al. Low-temperature fluorination of soft-templated mesoporous carbons for a high-power lithium/carbon fluoride battery[J]. Chem Mater, 2011, 23 (20): 4420- 4427.
14 FULVIO P F , VEITH G M , ADCOCK J L , et al. Fluorination of "brick and mortar" soft-templated graphitic ordered mesoporous carbons for high power lithium-ion battery[J]. Journal of Materials Chemistry A, 2013, 1 (33): 9414- 9417.
doi: 10.1039/c3ta10710h
15 LI X , ZHANG H , LIU C , et al. A MOF-derived multifunctional nano-porous fluorinated carbon for high performance lithium/fluorinated carbon primary batteries[J]. Microporous Mesoporous Mater, 2021, 310, 110650.
doi: 10.1016/j.micromeso.2020.110650
16 ROOT M J , DUMAS R , YAZAMI R , et al. The effect of carbon starting material on carbon fluoride synthesized at room temperature: characterization and electrochemistry[J]. J Electrochem Soc, 2001, 148 (4): A339- A345.
doi: 10.1149/1.1354612
17 CHAMSSEDINE F , DUBOIS M , GUÉRIN K , et al. Reactivity of carbon nanofibers with fluorine gas[J]. Chem Mater, 2007, 19 (2): 161- 172.
doi: 10.1021/cm061731m
18 WANG L , LI Y , WANG S , et al. Fluorinated nanographite as a cathode material for lithium primary batteries[J]. ChemElectroChem, 2019, 6 (8): 2201- 2207.
doi: 10.1002/celc.201900194
19 PENG C , LI Y , YAO F , et al. Ultrahigh-energy-density fluorinated calcinated macadamia nut shell cathode for lithium/fluorinated carbon batteries[J]. Carbon, 2019, 153, 783- 791.
20 MEDURI P , CHEN H , XIAO J , et al. Tunable electrochemical properties of fluorinated graphene[J]. Journal of Materials Chemistry A, 2013, 1 (27): 7866- 7869.
[1] 吴乾鑫, 刘磊, 孙晋蒙, 李一帆, 刘宇航, 杜洪方, 艾伟, 杜祝祝, 王科. 磺酸基修饰石墨烯复合材料的储钠性能研究[J]. 材料工程, 2022, 50(4): 36-43.
[2] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[3] 陈达, 石宇晴, 张伟, 练美玲. 基于MXene的电化学传感研究进展[J]. 材料工程, 2022, 50(4): 85-95.
[4] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[5] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[6] 吴鹏, 陈诚, 赵雪伶, 林东海. 纳米材料模拟酶应用进展[J]. 材料工程, 2022, 50(2): 62-72.
[7] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[8] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[9] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[10] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[11] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[12] 李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
[13] 李金磊, 邓凌峰, 张淑娴, 谭洁慧, 覃榕荣, 王壮. 化学镀制备纳米银-石墨烯复合材料及其电化学性能[J]. 材料工程, 2021, 49(8): 127-138.
[14] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[15] 李颖, 雷蕊, 徐文凯, 朱小雪, 黄艳凤. 磁性氧化石墨烯基17β-雌二醇分子印迹复合膜的制备与性能[J]. 材料工程, 2021, 49(6): 170-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn