Transport characteristics and electrochemical properties of Y3+ doped Li4Ti5O12 as anode material
Bing WU1, Lei LIU1,*(), Xianzhi WANG2, Xiao XIAO1, Bao YANG1, Jintao ZHAO1, Chengqian GU1, Lei MA1
1 Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electronic Information Engineering, Hebei University, Baoding 071002, Hebei, China 2 Electric Power Research Institute, State Grid Hebei Electric Power Company, Shijiazhuang 050021, China
Li4Ti5-xYxO12 (x=0, 0.05, 0.10, 0.15, 0.20) anode materials were synthesized by ball milling assisted solid-state method used Li2CO3 and anatase TiO2 as raw materials and yttrium nitrate (Y(NO3)3·6H2O) as yttrium source. The phase and morphology of the materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), respectively. The electrochemical performance and transport characteristics of the materials were tested and analyzed by an electrochemical workstation. The results show that there is no effect of Y3+ doping on the spinel structure of LTO material. When x=0.15, the ion and electronic conductivities of the Li4Ti4.85Y0.15O12 sample are 2.68×10-7 S·cm-1 and 1.49×10-9 S·cm-1, respectively, which are an order of magnitude higher than that of the intrinsic LTO, and present good transport characteristics. Electrochemical tests show that a first discharge capacity of Li4Ti4.85Y0.15O12 sample can reach 171 mAh·g-1 at 0.1 C rate. The sample still has a higher specific capacity of 102 mAh·g-1 and 79 mAh·g-1 at a high rate of 10 C and 20 C, respectively.After 200 cycles, the capacity retention rates are 92.6% and 89.1% respectively, showing good magnification characteristics.
Discharge specific capacity at high rate/(mAh·g-1)
Capacity retention rate/%
Reference
LTO/Ge
Hydrothermal
155
10 C,41
98.6 (2 C/200 cycles)
[27]
LTO/Y
Ball milling
173
20 C,93
76.9 (20 C/1000 cycles)
[21]
LTO/Mn
Ball milling
166
10 C,89
-
[28]
LTO/Mg
Hydrothermal
182
20 C,102
-
[29]
LTO/La
Sol-gel
162
10 C,91
85.7(10 C/400 cycles)
[18]
C-LTO
Solid phase
159
20 C,85
83.3(20 C/400 cycles)
[11]
LTO/Ge
Ball milling
165
10 C,59
89.5(2 C/400 cycles)
[30]
C-LTO
Sol-gel
172
5 C,101
94.4(5 C/400 cycles)
[12]
LTO/Y
Ball milling
171
20 C,79
89.1(20 C/200 cycles)
This work
Table 3 LTO负极材料的电化学性能
1
PROSINI P P , MANCINI R , PETRUCCI L , et al. Li4Ti5O12as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications[J]. Solid State Ionics, 2001, 144 (1/2): 185- 192.
2
HU X , LIN Z , YANG K , et al. Influence factors on electrochemical properties of Li4Ti5O12/C anode material pyrolyzed from lithium polyacrylate[J]. Journal of Alloys and Compounds, 2010, 506 (1): 160- 166.
doi: 10.1016/j.jallcom.2010.06.165
3
RONCI F , REALE P , SCROSATI B , et al. High-resolution in-situ structural measurements of the Li4Ti5O12"zero-strain" insertion material[J]. The Journal of Physical Chemistry B, 2002, 106 (12): 3082- 3086.
doi: 10.1021/jp013240p
4
OHZUKU T , UEDA A , YAMAMOTO N , et al. Factor affecting the capacity retention of lithium-ion cells[J]. Journal of Power Sources, 1995, 54 (1): 99- 102.
doi: 10.1016/0378-7753(94)02047-7
5
DONG H Y , HE Y B , LI B H , et al. Controlled preparation and electrochemical performance of a flaky Li4Ti5O12-graphene hybrid with a high crystallinity[J]. New Carbon Materials, 2016, 31 (2): 115- 120.
6
LI J , TANG Z , ZHANG Z , et al. H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability[J]. Electrochemistry Communications, 2005, 7 (1): 62- 67.
doi: 10.1016/j.elecom.2004.11.009
7
JUNG H G , MYUNG S T , CHONG S Y , et al. Microscale spherical carbon-coated Li4Ti5O12as ultra high power anode material for lithium batteries[J]. Energy Environmental Science, 2011, 4 (4): 1345- 1351.
doi: 10.1039/c0ee00620c
8
WANG W , JIANG B , XIONG W , et al. A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries[J]. Electrochimica Acta, 2013, 114, 198- 204.
doi: 10.1016/j.electacta.2013.10.035
9
HAN Y R , DUH J G . Synthesis of entanglement structure in nanosized Li4Ti5O12/multi-walled carbon nanotubes composite anode material for Li-ion batteries by ball-milling-assisted solid-state reaction[J]. Journal of Power Sources, 2012, 198, 294- 297.
doi: 10.1016/j.jpowsour.2011.09.063
10
CHATURVEDI P , KANAGARAJ A B , AL NAHYAN M S , et al. Electrical and electrochemical properties of carbon nanotube-based free standing LTO electrodes for current collector-free Li-ion batteries[J]. Current Applied Physics, 2019, 19 (11): 1150- 1155.
doi: 10.1016/j.cap.2019.07.009
11
KIM G O , HONG J E , RYU K S . Enhancement of high rate performance and diffusion properties for Li4Ti5O12anode materials by carbon additive[J]. Materials Research Innovations, 2014, 19 (4): 244- 250.
LIAN T R , LU Y X , WU B , et al. Preparation and transport properties of nano-Li4Ti5O12 anode materials[J]. Journal of Materials Engineering, 2021, 49 (3): 59- 66.
doi: 10.3969/j.issn.1673-1433.2021.03.017
13
LI Q , BING X , YI T , et al. The Mg/Zr codoping on morphology and electrochemical properties of Li4Ti5O12 anode materials[J]. Chemical Physics Letters, 2018, 711, 15- 22.
doi: 10.1016/j.cplett.2018.09.012
14
QI Y , HUANG Y , JIA D , et al. Preparation and characterization of novel spinel Li4Ti5O12-XBrX anode materials[J]. Electrochimica Acta, 2009, 54 (21): 4772- 4776.
doi: 10.1016/j.electacta.2009.04.010
15
WOLFENSTINE J , LEE U , ALLEN J L . Electrical conductivity and rate-capability of Li4Ti5O12as a function of heat-treatment atmosphere[J]. Journal of Power Sources, 2009, 54 (21): 4772- 4776.
16
YI T F , SHU J , ZHU Y R , et al. High-performance Li4Ti5-xVxO12(0≤x≤0.3) as an anode material for secondary lithium-ion battery[J]. Electrochimica Acta, 2009, 54 (28): 7464- 7470.
doi: 10.1016/j.electacta.2009.07.082
17
SHA H W , YIN W Z , JIAN Z X , et al. Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries[J]. Journal of Power Sources, 2007, 165 (1): 408- 412.
doi: 10.1016/j.jpowsour.2006.12.010
18
BAI Y J , GONG C , QI Y X , et al. Excellent long-term cycling stability of La-doped Li4Ti5O12 anode material at high current rates[J]. Journal of Materials Chemistry, 2012, 22 (36): 19054- 19060.
doi: 10.1039/c2jm34523d
19
ZHANG Q , LI X , MENG Y S , et al. Structural and electrochemical properties of Gd-doped Li4Ti5O12 as anode material with improved rate capability for lithium-ion batteries[J]. Journal of Power Sources, 2015, 280, 355- 362.
doi: 10.1016/j.jpowsour.2015.01.124
20
JI M , XU Y , ZHAO Z , et al. Preparation and electrochemical performance of La3+ and F- co-doped Li4Ti5O12anode material for lithium-ion batteries[J]. Journal of Power Sources, 2014, 263, 296- 303.
doi: 10.1016/j.jpowsour.2014.04.051
21
XU H , WANG S , WILSON H , et al. Y-doped NASICON-type LiZr2(PO4)3solid electrolytes for lithium-metal batteries[J]. ChemMater, 2017, 12 (26): 131- 136.
22
LI F T , WANG Q , RAN J , et al. Ionic liquid self-combustion synthesis of BiOBr/Bi24O31Br10 heterojunctions with exceptional visible-light photocatalytic performances[J]. Nanoscale, 2014, 7 (3): 16- 26.
23
WANG Y Z , YANG H , XUE X X . Synergistic antibacterial activity of TiO2 co-doped with zinc and yttrium[J]. Vacuum, 2014, 107, 28- 32.
doi: 10.1016/j.vacuum.2014.03.026
24
SUN Z , LIU L , LU Y , et al. Preparation and ionic conduction of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte using inorganic germanium as precursor[J]. Journal of the European Ceramic Society, 2019, 39, 402- 408.
doi: 10.1016/j.jeurceramsoc.2018.09.025
25
LIU L , WANG P , LI J , et al. Hydrothermal preparation and intrinsic transport properties of nanoscale Li2FeSiO4[J]. Solid State Ionics, 2018, 320, 353- 359.
doi: 10.1016/j.ssi.2018.03.025
26
VIKRAM B B , VIJAYA B K , TEWODROS A G , et al. Structural and electrical properties of Li4Ti5O12 anode material for lithium-ion batteries[J]. Results in Physics, 2018, 9, 284- 289.
doi: 10.1016/j.rinp.2018.02.050
27
ALI B , MUHAMMAD R , ANANG D A , et al. Ge-doped Li4Ti5GexO12(x=0.05) as a fast-charging, long-life bi-functional anode material for lithium- and sodium-ion batteries[J]. Ceramics International, 2020, 46 (10): 16556- 16563.
doi: 10.1016/j.ceramint.2020.03.223
28
TSAI P C , NASARA R N , SHEN Y C , et al. Ab initio phase stability and electronic conductivity of the doped-Li4Ti5O12 anode for Li-ion batteries[J]. Acta Materialia, 2019, 175, 196- 205.
doi: 10.1016/j.actamat.2019.06.014
29
ZHANG Q , CHEN J . Preparation and performance of hollow spherical Li4Ti5O12doped by Mg2+[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2020, 35 (1): 107- 112.
doi: 10.1007/s11595-020-2233-5
30
CHEN C , LIU X , AI C , et al. Enhanced lithium storage capability of Li4Ti5O12anode material with low content Ce modification[J]. Journal of Alloys and Compounds, 2017, 714, 71- 78.
doi: 10.1016/j.jallcom.2017.04.184