Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (10): 102-110    DOI: 10.11868/j.issn.1001-4381.2021.000209
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Y3+掺杂Li4Ti5O12负极材料的电荷输运特性及电化学性能研究
吴冰1, 刘磊1,*(), 王献志2, 肖潇1, 杨豹1, 赵锦涛1, 古成前1, 马雷1
1 河北大学 电子信息工程学院 河北省类脑神经器件与系统重点实验室, 河北 保定 071002
2 国网河北省电力有限公司 电力科学研究院, 石家庄 050021
Transport characteristics and electrochemical properties of Y3+ doped Li4Ti5O12 as anode material
Bing WU1, Lei LIU1,*(), Xianzhi WANG2, Xiao XIAO1, Bao YANG1, Jintao ZHAO1, Chengqian GU1, Lei MA1
1 Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electronic Information Engineering, Hebei University, Baoding 071002, Hebei, China
2 Electric Power Research Institute, State Grid Hebei Electric Power Company, Shijiazhuang 050021, China
全文: PDF(8200 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以Li2CO3与锐钛矿型TiO2为原料,六水合硝酸钇(Y(NO33·6H2O)为钇源,采用球磨辅助固相法合成了Li4Ti5-xYxO12x=0,0.05,0.10,0.15,0.20)负极材料。通过X射线衍射分析(XRD)、扫描电镜(SEM)、能谱仪(EDS)与X射线光电子能谱(XPS)分别对材料的物相与形貌进行表征分析,并利用电化学工作站对材料的电化学性能与电荷输运特性进行测试。结果表明,Y3+掺杂没有影响尖晶石型Li4Ti5O12(LTO)材料的尖晶石结构,x=0.15时,Li4Ti4.85Y0.15O12样品的离子与电子电导率分别为2.68×10-7 S·cm-1和1.49×10-9 S·cm-1,比本征材料提升了1个数量级,表现出良好的电荷输运特性。电化学测试表明,Li4Ti4.85Y0.15O12样品在0.1 C倍率首次放电比容量可达171 mAh·g-1,且在10 C与20 C高倍率下仍然拥有102 mAh·g-1和79 mAh·g-1的较高比容量,循环200周次后容量保持率分别为92.6%和89.1%,表现出良好的倍率特性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴冰
刘磊
王献志
肖潇
杨豹
赵锦涛
古成前
马雷
关键词 掺杂钛酸锂电导率稀土离子高倍率    
Abstract

Li4Ti5-xYxO12 (x=0, 0.05, 0.10, 0.15, 0.20) anode materials were synthesized by ball milling assisted solid-state method used Li2CO3 and anatase TiO2 as raw materials and yttrium nitrate (Y(NO3)3·6H2O) as yttrium source. The phase and morphology of the materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), respectively. The electrochemical performance and transport characteristics of the materials were tested and analyzed by an electrochemical workstation. The results show that there is no effect of Y3+ doping on the spinel structure of LTO material. When x=0.15, the ion and electronic conductivities of the Li4Ti4.85Y0.15O12 sample are 2.68×10-7 S·cm-1 and 1.49×10-9 S·cm-1, respectively, which are an order of magnitude higher than that of the intrinsic LTO, and present good transport characteristics. Electrochemical tests show that a first discharge capacity of Li4Ti4.85Y0.15O12 sample can reach 171 mAh·g-1 at 0.1 C rate. The sample still has a higher specific capacity of 102 mAh·g-1 and 79 mAh·g-1 at a high rate of 10 C and 20 C, respectively.After 200 cycles, the capacity retention rates are 92.6% and 89.1% respectively, showing good magnification characteristics.

Key wordsdoping    lithium titanate    conductivity    rare earth ion    high rate
收稿日期: 2021-03-10      出版日期: 2022-10-24
中图分类号:  TM912.9  
基金资助:天津市重点研究开发项目(19YFHBQY00030);河北省自然科学基金(F2021201007);河北省自然科学基金(B202101051)
通讯作者: 刘磊     E-mail: beimingzy@126.com
作者简介: 刘磊(1979—), 男, 副教授, 博士, 研究方向为离子电池及其正、负极材料, 联系地址: 河北省保定市七一东路2666号河北大学电信学院(071002), E-mail: beimingzy@126.com
引用本文:   
吴冰, 刘磊, 王献志, 肖潇, 杨豹, 赵锦涛, 古成前, 马雷. Y3+掺杂Li4Ti5O12负极材料的电荷输运特性及电化学性能研究[J]. 材料工程, 2022, 50(10): 102-110.
Bing WU, Lei LIU, Xianzhi WANG, Xiao XIAO, Bao YANG, Jintao ZHAO, Chengqian GU, Lei MA. Transport characteristics and electrochemical properties of Y3+ doped Li4Ti5O12 as anode material. Journal of Materials Engineering, 2022, 50(10): 102-110.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000209      或      http://jme.biam.ac.cn/CN/Y2022/V50/I10/102
Fig.1  Li4Ti5-xYxO12(x=0,0.05,0.10,0.15,0.20)样品的XRD图谱,插图为样品(111)峰局部放大图谱
x Lattice parameter (a=b=c)/nm Lattice volume/nm3 Crystallinity/%
0 0.8356 0.5834 95.8
0.05 0.8356 0.5835 96.1
0.10 0.8357 0.5837 96.3
0.15 0.8358 0.5838 96.2
0.20 0.8359 0.5839 94.7
Table 1  Li4Ti5-xYxO12(x=0,0.05,0.10,0.15,0.20)样品的晶格参数
Fig.2  Li4Ti4.85Y0.15O12样品在不同煅烧温度下的XRD谱图
Fig.3  Li4Ti4.85Y0.15O12样品在不同煅烧温度下的SEM图
Fig.4  Li4Ti5O12与Li4Ti4.85Y0.15O12样品的XPS光谱图
(a)总谱图; (b)Li1s;(c)O1s;(d)Ti2p;(e)Y3d
Fig.5  Li4Ti5-xYxO12(x=0,0.05,0.10,0.15,0.20)样品的电荷输运特性变化
(a)交流阻抗; (b)J-V曲线
x σct/(S·cm-1) σe /(S·cm-1) σi /(S·cm-1)
0 5.17×10-8 2.73×10-10 5.14×10-8
0.05 7.91×10-8 7.34×10-10 7.81×10-8
0.10 1.12×10-7 9.67×10-10 1.01×10-8
0.15 2.73×10-7 1.49×10-9 2.68×10-7
0.20 9.21×10-8 1.25×10-9 9.08×10-8
Table 2  Li4Ti5-xYxO12(x=0,0.05,0.1,0.15,0.2)的电荷输运特性参数
Fig.6  Li4Ti4.85Y0.15O12样品不同温度下电荷输运特性变化
(a)不同温度下的交流阻抗图谱, 插图为Arrhenius图; (b)离子电导率随温度变化的曲线图
Fig.7  Li4Ti5-xYxO12(x=0,0.05,0.10,0.15,0.20)样品的充放电性能
(a)0.1 C下首次充放电曲线;(b)0.1 C下50周次循环性能; (c)倍率性能; (d)Li4Ti5O12与Li4Ti4.85Y0.15O12样品在10,20 C高倍率下的性能比较
Material Preparation method First discharge capacity at 0.1 C/(mAh·g-1) Discharge specific capacity at high rate/(mAh·g-1) Capacity retention rate/% Reference
LTO/Ge Hydrothermal 155 10 C,41 98.6 (2 C/200 cycles) [27]
LTO/Y Ball milling 173 20 C,93 76.9 (20 C/1000 cycles) [21]
LTO/Mn Ball milling 166 10 C,89 - [28]
LTO/Mg Hydrothermal 182 20 C,102 - [29]
LTO/La Sol-gel 162 10 C,91 85.7(10 C/400 cycles) [18]
C-LTO Solid phase 159 20 C,85 83.3(20 C/400 cycles) [11]
LTO/Ge Ball milling 165 10 C,59 89.5(2 C/400 cycles) [30]
C-LTO Sol-gel 172 5 C,101 94.4(5 C/400 cycles) [12]
LTO/Y Ball milling 171 20 C,79 89.1(20 C/200 cycles) This work
Table 3  LTO负极材料的电化学性能
1 PROSINI P P , MANCINI R , PETRUCCI L , et al. Li4Ti5O12as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications[J]. Solid State Ionics, 2001, 144 (1/2): 185- 192.
2 HU X , LIN Z , YANG K , et al. Influence factors on electrochemical properties of Li4Ti5O12/C anode material pyrolyzed from lithium polyacrylate[J]. Journal of Alloys and Compounds, 2010, 506 (1): 160- 166.
doi: 10.1016/j.jallcom.2010.06.165
3 RONCI F , REALE P , SCROSATI B , et al. High-resolution in-situ structural measurements of the Li4Ti5O12"zero-strain" insertion material[J]. The Journal of Physical Chemistry B, 2002, 106 (12): 3082- 3086.
doi: 10.1021/jp013240p
4 OHZUKU T , UEDA A , YAMAMOTO N , et al. Factor affecting the capacity retention of lithium-ion cells[J]. Journal of Power Sources, 1995, 54 (1): 99- 102.
doi: 10.1016/0378-7753(94)02047-7
5 DONG H Y , HE Y B , LI B H , et al. Controlled preparation and electrochemical performance of a flaky Li4Ti5O12-graphene hybrid with a high crystallinity[J]. New Carbon Materials, 2016, 31 (2): 115- 120.
6 LI J , TANG Z , ZHANG Z , et al. H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability[J]. Electrochemistry Communications, 2005, 7 (1): 62- 67.
doi: 10.1016/j.elecom.2004.11.009
7 JUNG H G , MYUNG S T , CHONG S Y , et al. Microscale spherical carbon-coated Li4Ti5O12as ultra high power anode material for lithium batteries[J]. Energy Environmental Science, 2011, 4 (4): 1345- 1351.
doi: 10.1039/c0ee00620c
8 WANG W , JIANG B , XIONG W , et al. A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries[J]. Electrochimica Acta, 2013, 114, 198- 204.
doi: 10.1016/j.electacta.2013.10.035
9 HAN Y R , DUH J G . Synthesis of entanglement structure in nanosized Li4Ti5O12/multi-walled carbon nanotubes composite anode material for Li-ion batteries by ball-milling-assisted solid-state reaction[J]. Journal of Power Sources, 2012, 198, 294- 297.
doi: 10.1016/j.jpowsour.2011.09.063
10 CHATURVEDI P , KANAGARAJ A B , AL NAHYAN M S , et al. Electrical and electrochemical properties of carbon nanotube-based free standing LTO electrodes for current collector-free Li-ion batteries[J]. Current Applied Physics, 2019, 19 (11): 1150- 1155.
doi: 10.1016/j.cap.2019.07.009
11 KIM G O , HONG J E , RYU K S . Enhancement of high rate performance and diffusion properties for Li4Ti5O12anode materials by carbon additive[J]. Materials Research Innovations, 2014, 19 (4): 244- 250.
12 廉恬柔, 卢玉晓, 吴冰, 等. 纳米级Li4Ti5O12负极材料的制备及其输运特性[J]. 材料工程, 2021, 49 (3): 59- 66.
doi: 10.3969/j.issn.1673-1433.2021.03.017
12 LIAN T R , LU Y X , WU B , et al. Preparation and transport properties of nano-Li4Ti5O12 anode materials[J]. Journal of Materials Engineering, 2021, 49 (3): 59- 66.
doi: 10.3969/j.issn.1673-1433.2021.03.017
13 LI Q , BING X , YI T , et al. The Mg/Zr codoping on morphology and electrochemical properties of Li4Ti5O12 anode materials[J]. Chemical Physics Letters, 2018, 711, 15- 22.
doi: 10.1016/j.cplett.2018.09.012
14 QI Y , HUANG Y , JIA D , et al. Preparation and characterization of novel spinel Li4Ti5O12-XBrX anode materials[J]. Electrochimica Acta, 2009, 54 (21): 4772- 4776.
doi: 10.1016/j.electacta.2009.04.010
15 WOLFENSTINE J , LEE U , ALLEN J L . Electrical conductivity and rate-capability of Li4Ti5O12as a function of heat-treatment atmosphere[J]. Journal of Power Sources, 2009, 54 (21): 4772- 4776.
16 YI T F , SHU J , ZHU Y R , et al. High-performance Li4Ti5-xVxO12(0≤x≤0.3) as an anode material for secondary lithium-ion battery[J]. Electrochimica Acta, 2009, 54 (28): 7464- 7470.
doi: 10.1016/j.electacta.2009.07.082
17 SHA H W , YIN W Z , JIAN Z X , et al. Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries[J]. Journal of Power Sources, 2007, 165 (1): 408- 412.
doi: 10.1016/j.jpowsour.2006.12.010
18 BAI Y J , GONG C , QI Y X , et al. Excellent long-term cycling stability of La-doped Li4Ti5O12 anode material at high current rates[J]. Journal of Materials Chemistry, 2012, 22 (36): 19054- 19060.
doi: 10.1039/c2jm34523d
19 ZHANG Q , LI X , MENG Y S , et al. Structural and electrochemical properties of Gd-doped Li4Ti5O12 as anode material with improved rate capability for lithium-ion batteries[J]. Journal of Power Sources, 2015, 280, 355- 362.
doi: 10.1016/j.jpowsour.2015.01.124
20 JI M , XU Y , ZHAO Z , et al. Preparation and electrochemical performance of La3+ and F- co-doped Li4Ti5O12anode material for lithium-ion batteries[J]. Journal of Power Sources, 2014, 263, 296- 303.
doi: 10.1016/j.jpowsour.2014.04.051
21 XU H , WANG S , WILSON H , et al. Y-doped NASICON-type LiZr2(PO4)3solid electrolytes for lithium-metal batteries[J]. ChemMater, 2017, 12 (26): 131- 136.
22 LI F T , WANG Q , RAN J , et al. Ionic liquid self-combustion synthesis of BiOBr/Bi24O31Br10 heterojunctions with exceptional visible-light photocatalytic performances[J]. Nanoscale, 2014, 7 (3): 16- 26.
23 WANG Y Z , YANG H , XUE X X . Synergistic antibacterial activity of TiO2 co-doped with zinc and yttrium[J]. Vacuum, 2014, 107, 28- 32.
doi: 10.1016/j.vacuum.2014.03.026
24 SUN Z , LIU L , LU Y , et al. Preparation and ionic conduction of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte using inorganic germanium as precursor[J]. Journal of the European Ceramic Society, 2019, 39, 402- 408.
doi: 10.1016/j.jeurceramsoc.2018.09.025
25 LIU L , WANG P , LI J , et al. Hydrothermal preparation and intrinsic transport properties of nanoscale Li2FeSiO4[J]. Solid State Ionics, 2018, 320, 353- 359.
doi: 10.1016/j.ssi.2018.03.025
26 VIKRAM B B , VIJAYA B K , TEWODROS A G , et al. Structural and electrical properties of Li4Ti5O12 anode material for lithium-ion batteries[J]. Results in Physics, 2018, 9, 284- 289.
doi: 10.1016/j.rinp.2018.02.050
27 ALI B , MUHAMMAD R , ANANG D A , et al. Ge-doped Li4Ti5GexO12(x=0.05) as a fast-charging, long-life bi-functional anode material for lithium- and sodium-ion batteries[J]. Ceramics International, 2020, 46 (10): 16556- 16563.
doi: 10.1016/j.ceramint.2020.03.223
28 TSAI P C , NASARA R N , SHEN Y C , et al. Ab initio phase stability and electronic conductivity of the doped-Li4Ti5O12 anode for Li-ion batteries[J]. Acta Materialia, 2019, 175, 196- 205.
doi: 10.1016/j.actamat.2019.06.014
29 ZHANG Q , CHEN J . Preparation and performance of hollow spherical Li4Ti5O12doped by Mg2+[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2020, 35 (1): 107- 112.
doi: 10.1007/s11595-020-2233-5
30 CHEN C , LIU X , AI C , et al. Enhanced lithium storage capability of Li4Ti5O12anode material with low content Ce modification[J]. Journal of Alloys and Compounds, 2017, 714, 71- 78.
doi: 10.1016/j.jallcom.2017.04.184
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 刘源, 赵华, 李会鹏, 蔡天凤, 王禹程. 碳氯共掺杂介孔g-C3N4的气泡模板法制备及光催化性能[J]. 材料工程, 2022, 50(9): 70-77.
[3] 程宽, 赵洪峰, 周远翔. 多元施主掺杂对直流ZnO压敏陶瓷结构与电气性能的影响[J]. 材料工程, 2022, 50(8): 153-159.
[4] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[5] 姜莹, 申心畅, 郭丽敏, 毕科, 王晓慧, 李龙土. 陶瓷电介质储能材料研究进展[J]. 材料工程, 2022, 50(4): 96-103.
[6] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[7] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[8] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[9] 吕娜, 孙振, 胡雅琪, 李炳勤, 景圣皓, 张宗良, 蒋良兴, 贾明, 刘芳洋. 硫化物固态电解质Li6PS5Cl的球磨-固相烧结制备与性能[J]. 材料工程, 2022, 50(2): 103-110.
[10] 曹倩, 杨晶晶, 陈卫星, 王趁红, 吴新明, 雷亚萍. PEO基固态聚合物电解质膜的静电纺丝制备及性能[J]. 材料工程, 2022, 50(10): 148-156.
[11] 于长清, 余悠然, 赵英民, 谢宁. 石墨热压还原Cu/Cu2O金属陶瓷电导逾渗行为与微观结构分形表征[J]. 材料工程, 2022, 50(1): 154-160.
[12] 张少威, 蒲秀好, 万艳红, 祝康, 夏长荣. 掺杂对Sr2Fe1.5Mo0.5O6-δ阳极材料电化学性能影响研究进展[J]. 材料工程, 2021, 49(9): 1-13.
[13] 王敬枫, 康辉, 成中军, 谢志民, 王友善, 刘宇艳, 樊志敏. Ti3C2Tx MXene基电磁屏蔽材料的研究进展[J]. 材料工程, 2021, 49(6): 14-25.
[14] 张盼盼, 黄惠, 何亚鹏, 李宵波, 郭忠诚. 锂离子电池富锂锰正极材料的最新进展[J]. 材料工程, 2021, 49(3): 48-58.
[15] 廉恬柔, 卢玉晓, 吴冰, 石光跃, 马蕾, 刘磊, 娄建忠. 纳米级Li4Ti5O12负极材料的制备及其输运特性[J]. 材料工程, 2021, 49(3): 59-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn