Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (10): 80-86    DOI: 10.11868/j.issn.1001-4381.2021.000217
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
固溶冷却速率对全片层亚稳β钛合金α相形貌的影响
信云鹏1, 朱知寿2,*(), 王新南2, 商国强2, 王彦伟1, 李明兵2
1 航空工业陕西宏远航空锻造有限责任公司, 陕西 咸阳 713801
2 中国航发北京航空材料研究院, 北京 100095
Effect of solid solution cooling rate on α phase morphology of full lamellar metastable β titanium alloy
Yunpeng XIN1, Zhishou ZHU2,*(), Xinnan WANG2, Guoqiang SHANG2, Yanwei WANG1, Mingbing LI2
1 AVIC Shaanxi Hongyuan Aviation Forging Company Ltd., Xianyang 713801, Shaanxi, China
2 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(10910 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用Gleeble热模拟压缩试验机、显微硬度计、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等研究固溶冷却速率对TB17钛合金力学性能和条状α形貌的影响。结果表明:具有网篮组织的TB17钛合金经两相区固溶后,当固溶冷却速率为200℃/min时,合金显微硬度为250HV,随着固溶冷却速率的降低,钛合金显微硬度逐渐增加,当固溶冷却速率降低到1℃/min(炉冷)时,显微硬度增加到320HV。在连续冷却过程中会发生β→α相变,在β基体上析出次生α相,同时条状α相会转变为"叉状"结构;随着固溶冷却速率的降低,"叉状"结构逐渐变粗长大,当固溶冷却速率为40℃/min时,"叉状"结构的宽度约为14 nm,当固溶冷却速率为10℃/min时,"叉状"结构的宽度约为100 nm,当固溶冷却速率为1℃/min(炉冷)时,"叉状"结构的宽度约为300 nm;而当固溶冷却速率大于10℃/min时,条状α相侧面和端面包裹着斜方马氏体α″相,马氏体相的存在促进了α相转变和"叉状"结构的形成。当固溶冷却速率逐渐降低至1℃/min左右相当于炉冷速率时,"叉状"结构变粗,条状α相端面和侧面的斜方马氏体相消失,发生α″→α相变。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
信云鹏
朱知寿
王新南
商国强
王彦伟
李明兵
关键词 TB17钛合金"叉状"结构固溶冷却速率马氏体    
Abstract

The effect of solid solution cooling rate on mechanical properties and the morphology of strip α phase of TB17 titanium alloy was studied by Gleeble thermal simulation compression testing machine, microhardness tester, scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that after solid solution of TB17 titanium alloy with basket-weave microstructure in α+β phase region, when the solid solution cooling rate is 200℃/min, the microhardness of the titanium alloy is 250HV. With the decrease of solid solution cooling rate, the microhardness increases gradually. When the solid solution cooling rate is reduced to 1℃/min (furnace cooling), the microhardness increases to 320HV. And TB17 titanium alloy occurs β→α phase transformation during cooling process, and secondary α phase precipitates on β matrix, and the strip-shaped α phase transforms into "fork-like" structure. As the solid solution cooling rate decreases, the "fork-like" structure gradually becomes thicker and larger. When the rate is 40℃/min, the width of the "fork-like" structure is about 14 nm. When the rate is 10℃/min, the width is about 100 nm. When the rate is 1℃/min (furnace cooling), the width is about 300 nm. When the solid solution cooling rate is greater than 10℃/min, the side and end faces of the strip-shaped α phase are wrapped with the rhombohedral martensite α″ phase, and the existence of the martensite phase promotes the transformation of α phase and the formation of the "fork-like" structure. When the solid solution cooling rate is gradually reduced to about 1℃/min which is equivalent to the furnace cooling rate, the "fork-like" structure becomes thicker, the orthorhombic martensite phase on the end and side faces of the strip-shaped α phase disappears, and α″→α phase transformation occurs.

Key wordsTB17 titanium alloy    "fork-like" structure    solid solution cooling rate    martensite
收稿日期: 2021-03-11      出版日期: 2022-10-24
中图分类号:  TG146.2+3  
通讯作者: 朱知寿     E-mail: zhuzzs@126.com
作者简介: 朱知寿(1966—), 男, 研究员, 博士, 主要从事航空钛合金及其应用技术研究, 联系地址: 北京市81信箱15分箱(100095), E-mail: zhuzzs@126.com
引用本文:   
信云鹏, 朱知寿, 王新南, 商国强, 王彦伟, 李明兵. 固溶冷却速率对全片层亚稳β钛合金α相形貌的影响[J]. 材料工程, 2022, 50(10): 80-86.
Yunpeng XIN, Zhishou ZHU, Xinnan WANG, Guoqiang SHANG, Yanwei WANG, Mingbing LI. Effect of solid solution cooling rate on α phase morphology of full lamellar metastable β titanium alloy. Journal of Materials Engineering, 2022, 50(10): 80-86.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000217      或      http://jme.biam.ac.cn/CN/Y2022/V50/I10/80
Al Mo Cr V Nb Zr Sn Ti
4.5 6.5 2.5 2 2.6 2 1 Bal
Table 1  TB17钛合金化学成分(质量分数/%)
Fig.1  准β锻造后TB17钛合金的显微组织
Fig.2  固溶冷却速率对试样力学性能的影响
Fig.3  不同固溶冷却速率下条状α相形貌的SEM照片
(a)200 ℃/min; (b)40 ℃/min; (c)10 ℃/min; (d)1 ℃/min
Fig.4  不同固溶冷却速率下条状α相形貌TEM照片及选区电子衍射
(a)水冷后条状α相形貌;(b)图(a)圆圈位置的选区电子衍射及标定;(c)40 ℃/min冷速下的条状α相形貌;(d)图(c)圆圈位置的高分辨透射电子显微镜照片;(e)图(d)对应的傅里叶变换及标定
Fig.5  不同固溶冷却速率下条状α相形貌TEM图及选区电子衍射
(a)10 ℃/min冷速下的条状α相形貌;(b)图(a)圆圈位置对应的选区电子衍射及标定;(c)炉冷后的条状α相形貌;(d)图(c)圆圈位置对应的选区电子衍射及标定
Fig.6  条状α相端部“叉状”结构演变示意图
1 朱知寿, 商国强, 王新南, 等. 航空用钛合金显微组织控制和力学性能关系[J]. 航空材料学报, 2020, 40 (3): 1- 10.
1 ZHU Z S , SHANG G Q , WANG X N , et al. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications[J]. Journal of Aeronautical Materials, 2020, 40 (3): 1- 10.
2 ZHAO Q Y , SUN Q Y , XIN S W , et al. High-strength titanium alloy for aerospace engineering applications: a review on melting-forging process[J]. Materials Science and Engineering: A, 2022, 845, 143260.
doi: 10.1016/j.msea.2022.143260
3 朱知寿, 王新南, 商国强, 等. 新型高性能钛合金研究与应用[J]. 航空材料学报, 2016, 36 (3): 7- 12.
3 ZHU Z S , WANG X N , SHANG G Q , et al. Research and application of new type of high performance titanium alloy[J]. Journal of Aeronautical Materials, 2016, 36 (3): 7- 12.
4 商国强, 朱知寿, 常辉, 等. 超高强钛合金研究进展[J]. 稀有金属, 2011, 35 (2): 286- 291.
4 SHANG G Q , ZHU Z S , CHANG H , et al. Development of ultra-high strength titanium alloy[J]. Chinese Journal of Rare Metals, 2011, 35 (2): 286- 291.
5 朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014, 34 (4): 44- 50.
5 ZHU Z S . Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeronautical Materials, 2014, 34 (4): 44- 50.
6 ZENG L Y , YANG G J , GE P , et al. Processing map of one kind of metastable β titanium alloy[J]. Rare Metal Materials and Engineering, 2010, 39 (9): 1505- 1508.
doi: 10.1016/S1875-5372(10)60119-1
7 LI C , CHEN J H , WU X , et al. A comparative study of the microstructure and mechanical properties of α+β titanium alloys[J]. Metal Science and Heat Treatment, 2014, 56 (7/8): 373- 380.
8 赵永庆, 葛鹏. 我国自主研发钛合金现状与进展[J]. 航空材料学报, 2014, 34 (4): 51- 61.
8 ZHAO Y Q , GE P . Current situation and development of new titanium alloys invented in China[J]. Journal of Aeronautical Materials, 2014, 34 (4): 51- 61.
9 葛鹏, 赵永庆, 周廉. 一种新型高强度亚稳β钛合金Ti-B20[J]. 稀有金属材料与工程, 2005, 34 (5): 790- 794.
9 GE P , ZHAO Y Q , ZHOU L . A new type metastable β titanium alloy Ti-B20 with high strength[J]. Rare Metal Materials and Engineering, 2005, 34 (5): 790- 794.
10 常辉, 曾卫东, 罗媛媛, 等. 近β型钛合金Ti-B19时效过程中的相变及显微组织[J]. 稀有金属材料与工程, 2006, 35 (10): 1589- 1592.
10 CHANG H , ZENG W D , LUO Y Y , et al. Phase transformation and microstructure evolution in near β Ti-B19 titanium alloy during aging treatment[J]. Rare Metal Materials and Engineering, 2006, 35 (10): 1589- 1592.
11 常辉, 周廉, 张廷杰. 钛合金固态相变的研究进展[J]. 稀有金属材料与工程, 2007, 36 (9): 1505- 1510.
11 CHANG H , ZHOU L , ZHANG T J . Review of solid phase transformation in titanium alloys[J]. Rare Metal Materials and Engineering, 2007, 36 (9): 1505- 1510.
12 HUANG A J , LI G P , HAO Y L , et al. Acicular α2 precipitation induced by capillarity at α/β phase boundaries in Ti-14Al-2Zr-3Sn-3Mo-0.5Si titanium alloy[J]. Acta Materialia, 2003, 51 (16): 4939- 4952.
13 SEMIATIN S L , LEHNER T M , MILLER J D , et al. Alpha/beta heat treatment of a titanium alloy with a nonuniform microstructure[J]. Metallurgical and Materials Transactions A, 2007, 38 (4): 910- 921.
14 常辉, ELISABETHG, 周廉. 一种亚稳β钛合金的相变动力学[J]. 科学通报, 2014, 59 (10): 854- 858.
14 CHANG H , ELISABETH G , ZHOU L . Phase transformation kinetics for a metastable titanium alloys[J]. Chinese Science Bulletin, 2014, 59 (10): 854- 858.
15 常辉. Ti-B19合金的固态相变动力学及其组织演变规律[D]. 西安: 西北工业大学, 2006.
15 CHANG H. Solid phase transformation kinetics and microstructure evolutions of Ti-B19 alloy[D]. Xi'an: Northwestern Polytechnical University, 2006.
16 BRUNESEAUX F , AEBY-GAUTIER E , GEANDIER G , et al. In situ characterizations of phase transformations kinetics in the Ti17 titanium alloy by electrical resistivity and high temperature synchrotron X-ray diffraction[J]. Materials Science and Engineering: A, 2008, 476, 60- 68.
17 杨义, 徐锋, 黄爱军, 等. 全片层BT18Y钛合金在α+β相区固溶时的显微组织演化[J]. 金属学报, 2005, 41 (7): 713- 720.
17 YANG Y , XU F , HUANG A J , et al. Evolution of microstructure of full lamellar titanium alloy BT18Y solutionized at α+β phase field[J]. Acta Metallurgica Sinica, 2005, 41 (7): 713- 720.
18 LU Y , TANG H B , FANG Y L , et al. Microstructure evolution of sub-critical annealed laser deposited Ti-6Al-4V alloy[J]. Materials & Design, 2012, 37, 56- 63.
19 李佳. 激光熔化沉积TA15钛合金热处理显微组织与力学性能[D]. 北京: 北京航空航天大学, 2013.
19 LI J. Heat treatment on microstructure and mechanical properties of laser melting deposition TA15 titanium alloy[D]. Beijing: Beihang University, 2013.
20 ZHANG X D , BONNIWELL P , FRASER H L , et al. Effect of heat treatment and silicon addition on the microstructure development of Ti-6Al-2Cr-2Mo-2Sn-2Zr alloy[J]. Materials Science and Engineering: A, 2003, 343 (1/2): 210- 226.
21 DEHGHAN-MANSHADI A , DIPPENAAR R J . Development of α-phase morphologies during low temperature isothermal heat treatment of a Ti-5Al-5Mo-5V-3Cr alloy[J]. Materials Science and Engineering: A, 2011, 528 (3): 1833- 1839.
22 SEWARD G G E , CELOTTO S , PRIOR D J , et al. In situ SEM-EBSD observations of the hcp to bcc phase transformation in commercially pure titanium[J]. Acta Materialia, 2004, 52 (4): 821- 832.
23 WANG K , LI M Q . Morphology and crystallographic orientation of the secondary α phase in a compressed α/β titanium alloy[J]. Scripta Materialia, 2013, 68 (12): 964- 967.
24 FAN X G , YANG H , GAO P F , et al. Morphology transformation of primary strip α phase in hot working of two-phase tita-nium alloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27 (6): 1294- 1305.
25 SUN Z , GUO S , YANG H . Nucleation and growth mechanism of α-lamellae of Ti alloy TA15 cooling from an α+β phase field[J]. Acta Materialia, 2013, 61 (6): 2057- 2064.
[1] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[2] 王丽娜, 李志超, 武晓龙, 马丹丹, 杨平. 高锰钢高速压缩时γ→ε-M和ε-M→α'-M的相变特征[J]. 材料工程, 2021, 49(9): 101-108.
[3] 王官涛, 周永浪, 赵卓, 王立军, 刘春明. 添加Si对马氏体不锈钢淬火-配分组织和性能的影响[J]. 材料工程, 2021, 49(8): 97-103.
[4] 白银, 刘正东, 包汉生, 何西扣, 陈正宗. 锅炉用马氏体钢蒸汽氧化行为研究进展[J]. 材料工程, 2021, 49(6): 77-84.
[5] 宁睿, 高智勇, 王海振, 蔡伟. TiNi基形状记忆合金的辐照效应[J]. 材料工程, 2021, 49(3): 14-19.
[6] 陈枫, 刘佩文, 许贤福, 田兵, 佟运祥, 李莉. Ni-Mn基磁性形状记忆合金第二相的形成及其对相变和性能的影响[J]. 材料工程, 2021, 49(3): 20-30.
[7] 衣晓洋, 孟祥龙, 蔡伟, 王海振. Ti-Ni-Hf高温形状记忆合金的研究进展[J]. 材料工程, 2021, 49(3): 31-40.
[8] 刘艳芬, 张学习, 沈红先, 孙剑飞, 温亚芹, 王欢, 任晓辉, 阴爽. Ni50.1Mn24.1Ga20.3Fe5.5形状记忆合金多晶纤维的双程形状记忆效应[J]. 材料工程, 2021, 49(3): 41-47.
[9] 刘成, 彭志方, 彭芳芳, 陈方玉, 刘省. P92钢625℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104.
[10] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[11] 信云鹏, 朱知寿, 王新南, 商国强, 祝力伟, 李明兵, 李静, 刘格辰. 应变率对TB17钛合金亚稳β晶粒变形机制的影响[J]. 材料工程, 2020, 48(12): 141-147.
[12] 张佳琪, 王敏杰, 刘建业, 牛留辉, 王金海. 扫描策略对激光选区熔化成型18Ni300马氏体时效钢打印质量和性能的影响[J]. 材料工程, 2020, 48(10): 105-113.
[13] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[14] 袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
[15] 张敏, 刘明志, 张明, 李继红. 奥氏体化合金元素Mn和Ni对FV520B焊缝组织与力学性能的影响[J]. 材料工程, 2016, 44(3): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn