Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (4): 132-138    DOI: 10.11868/j.issn.1001-4381.2021.000232
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性
李茂辉1,2, 杨智1, 潘廷仙1,2, 同鑫1,2, 胡长刚1,2, 田娟1,2,*()
1 贵州师范大学 化学与材料科学学院, 贵阳 550001
2 贵州省功能材料化学重点实验室, 贵阳 550001
Enhanced stability for oxygen reduction reaction of supported platinum-based catalyst with Fe-N doped activated carbon as carbon support
Maohui LI1,2, Zhi YANG1, Tingxian PAN1,2, Xin TONG1,2, Changgang HU1,2, Juan TIAN1,2,*()
1 School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
2 Key Laboratory of Functional Materials and Chemistry of Guizhou Province, Guiyang 550001, China
全文: PDF(7584 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

修饰和改良载体是改善质子交换膜燃料电池阴极铂基催化剂性能的主要途径。以铁氮(FeN)掺杂活性炭(Black Pearl 2000, BP)为载体, 获得负载型铂基催化剂。使用电化学方法对催化剂的氧还原反应活性以及稳定性进行测试, 采用X射线衍射仪、比表面积和孔径分布测试、透射电子显微镜、X射线光电子能谱等分析手段对载体及催化剂结构进行表征。结果表明: Pt/FeN-BP催化剂与商业Pt/C催化剂的起始电位均为0.94 V, 具有相当的氧还原反应初始活性; 老化测试后, Pt/FeN-BP催化剂与商业Pt/C催化剂的起始电位损失分别约为10, 30 mV, 半波电位损失分别约为5, 60 mV, Pt/FeN-BP催化剂的稳定性明显优于商业Pt/C催化剂。这是因为, 铁氮掺杂碳载体具有适中的比表面积和孔径大小, Pt颗粒在载体上以小粒径的状态存在且老化测试后Pt颗粒无团聚现象, 以及载体与Pt颗粒之间可能存在一定的相互作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李茂辉
杨智
潘廷仙
同鑫
胡长刚
田娟
关键词 氧还原反应铂基催化剂铁氮掺杂活性炭活性稳定性电化学    
Abstract

Modification and doping of carbon support are the main ways to improve the performance of the platinum-based catalyst for proton exchange membrane fuel cell. FeN-BP.Iron and nitrogen(FeN) co-doped activated carbon (Black Pearl 2000, BP) as a support, was used as the support of platinum-based catalyst for oxygen reduction reaction (ORR). The activity and stability of the catalysts were tested by electrochemical techniques, and the structure of the catalysts were characterized by X-ray diffraction, specific surface area and pore size distribution test, transmission electron microscopy, X-ray photoelectron spectroscopy. The results show that Pt/FeN-BP and commercial Pt/C catalyst have comparable initial ORR activity with onset potential 0.94 V. After accelerated degradation test, the lost of onset potential for Pt/FeN-BP catalyst and commercial Pt/C catalyst are about 10 mV and 30 mV, as well as the lost of half-wave potential are about 5 mV and 60 mV.Pt/FeN-BP catalyst shows obvious improved stability.The high surface area and the moderate pore size distribution of FeN-BP, the small size and well dispersion of Pt nanoparticles on carbon after accelerated degradation test, as well as the interaction between carbon support and Pt nanoparticles may the key reasons for Pt/FeN-BP with improved stability.

Key wordsoxygen reduction reaction    platinum-based catalyst    FeN co-doped activated carbon    acti-vity    stability    electrochemistry
收稿日期: 2021-03-16      出版日期: 2022-04-18
中图分类号:  O646.541  
基金资助:国家自然科学基金(21965006);国家自然科学基金(21506041);贵州省科学技术基金(黔科合JZ字[2015]2007号);贵州省普通本科高等学校科技拔尖人才支持项目(黔教合KY字[2016]063);中国科学院燃料电池及复合电能源重点实验室开放课题(KLFC201703)
通讯作者: 田娟     E-mail: juan_tian@126.com
作者简介: 田娟(1979—),女,副教授,博士,研究方向为催化材料,联系地址:贵州省贵阳市云岩区宝山北路180号贵州师范大学化学与材料科学学院(550001),E-mail: juan_tian@126.com
引用本文:   
李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
Maohui LI, Zhi YANG, Tingxian PAN, Xin TONG, Changgang HU, Juan TIAN. Enhanced stability for oxygen reduction reaction of supported platinum-based catalyst with Fe-N doped activated carbon as carbon support. Journal of Materials Engineering, 2022, 50(4): 132-138.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000232      或      http://jme.biam.ac.cn/CN/Y2022/V50/I4/132
Fig.1  BP,FeN-BP碳载体的N2吸附-脱附等温线
Sample SBET/(m2·g-1) Pore volume/(cm3·g-1) Average pore size/nm
BP 1507.77 2.74 7.28
FeN-BP 979.75 2.09 8.56
Table 1  BP,FeN-BP碳载体的比表面积、孔体积和平均孔径
Fig.2  Pt/BP,Pt/FeN-BP和商业Pt/C催化剂的XRD谱图
Fig.3  Pt/BP,Pt/FeN-BP和商业Pt/C催化剂的ORR极化曲线
Fig.4  Pt/FeN-BP和商业Pt/C催化剂老化测试前后的ORR极化曲线
Fig.5  Pt/FeN-BP和商业Pt/C催化剂老化测试过程中的ECSA
Fig.6  Pt/FeN-BP,商业Pt/C催化剂的Pt4f谱和拟合谱图(a)以及Pt/FeN-BP催化剂的N1s谱和拟合谱图(b)
Fig.7  商业Pt/C和Pt/FeN-BP催化剂老化测试前(1)后(2)的TEM图
(a)商业Pt/C;(b)Pt/FeN-BP
Sample Particle size/nm
Before ADT After ADT
Pt/C 2.80 4.02
Pt/FeN-BP 1.99 3.23
Table 2  商业Pt/C和Pt/FeN-BP催化剂老化测试前后Pt粒子的平均粒径
1 WANG J , WANG H , FAN Y , et al. Techno-economic challenges of fuel cell commercialization[J]. Engineering, 2018, 4 (3): 352- 360.
doi: 10.1016/j.eng.2018.05.007
2 LEE M Y . Fuel cells: operating flexibly[J]. Nature Energy, 2016, 1 (9): 16136.
doi: 10.1038/nenergy.2016.136
3 STEPHENS I E L , ROSSMEISL J , CHORKENDORFF I . Toward sustainable fuel cells[J]. Science, 2016, 354 (6318): 1378- 1379.
doi: 10.1126/science.aal3303
4 ZHANG Y H , WILKINSON D P , TAGHIPOUR F . development and characterization of a micro redox fuelcell[J]. Journal of the Electrochemical Society, 2020, 167 (11): 4515.
5 孙鹏, 李忠芳, 王传刚, 等. 燃料电池用高温质子交换膜的研究进展[J]. 材料工程, 2021, 49 (1): 23- 34.
5 SUN P , LI Z F , WANG C G , et al. Research progress of high temperature proton exchange membranes applied in fuel cells[J]. Journal of Materials Engineering, 2021, 49 (1): 23- 34.
6 衣宝廉. 燃料电池: 原理·技术·应用[M]. 北京: 化学工业出版社, 2003.
6 YI B L . Fuelcell: principle, technology, application[M]. Beijing: Chemical Industry Press, 2003.
7 GARAPATI M S , SUNDARA R . Highly efficient and ORR active platinum-scandium alloy-partially exfoliated carbon nanotubes electrocatalyst for proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44 (21): 10951- 10963.
doi: 10.1016/j.ijhydene.2019.02.161
8 LIU M , ZHAO Z , DUAN X , et al. Nanoscale structure design for high-performance Pt-based ORR catalysts[J]. Advanced Materials, 2019, 31 (6): 1802234.
doi: 10.1002/adma.201802234
9 HE K , ZHANG C , HE Q B , et al. Effectiveness of PEMFC histo-rical state and operating mode in PEMFC prognosis[J]. International Journal of Hydrogen Energy, 2020, 45 (56): 32355- 32366.
doi: 10.1016/j.ijhydene.2020.08.149
10 孙世刚. 电催化纳米材料[M]. 北京: 化学工业出版社, 2018.
10 SUN S G . Electrocatalytic nanomaterials[M]. Beijing: Chemical Industry Press, 2018.
11 WANG J , LI B , YANG D , et al. Preparation of an octahedral PtNi/CNT catalyst and its application in high durability PEMFC cathodes[J]. RSC Advances, 2018, 8 (33): 18381- 18387.
doi: 10.1039/C8RA02158A
12 HU B , DENG X , ZHOU L S , et al. Facile synthesis of synergistic Pt/(Co-N)@C composites as alternative oxygen-reduction electrode of PEMFCs with attractive activity and durability[J]. Engineering, 2020, 193, 108012.
13 SCHALKWYK F V , PATTRICK G , OLIVIER J , et al. Development and scale up of enhanced ORR Pt-based catalysts for PEM FCs[J]. Fuel Cells, 2016, 16 (4): 414- 427.
doi: 10.1002/fuce.201500161
14 WANG X X , SOKOLOWSKI J , LIU H , et al. Pt alloy oxygen-reduction electrocatalysts: synthesis, structure, and property[J]. Chinese Journal of Catalysis, 2020, 41 (5): 739- 755.
doi: 10.1016/S1872-2067(19)63407-8
15 朱诗尧, 李平, 叶黎城, 等. 基于Pt/CNTs催化剂的燃料电池Pt/buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46 (6): 27- 35.
doi: 10.3969/j.issn.1673-1433.2018.06.009
15 ZHU S Y , LI P , YE L C , et al. Preparation and characterization of Pt/buckypaper catalytic layer based on Pt/CNTs catalyst for fuel cells[J]. Journal of Materials Engineering, 2018, 46 (6): 27- 35.
doi: 10.3969/j.issn.1673-1433.2018.06.009
16 XIONG B , ZHOU Y , ZHAO Y Y , et al. The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation[J]. Carbon, 2013, 52, 181- 192.
doi: 10.1016/j.carbon.2012.09.019
17 PRITHI J A , RAJALAKSHMI N , RAO G R . Nitrogen doped mesoporous carbon supported Pt electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 43 (9): 4716- 4725.
18 罗凡. 低温燃料电池高活性高稳定性铂基催化剂的研究[D]. 广州: 华南理工大学, 2015.
18 LUO F. Research on high-activity and high-stability platinum-based catalysts for low-temperature fuel cells[D]. Guangzhou: South China University of Technology, 2015.
19 LI X H , MARKUS A . Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis[J]. Chemical Society Reviews, 2013, 42 (16): 6593- 6604.
doi: 10.1039/c3cs60067j
20 KASIBHATTA K R , VEERAPPAN V , BALASUBRAMANIAN P , et al. Highly crystalline and conductive nitrogen-doped mesoporous carbon with graphitic walls and its electrochemical performance[J]. Chemistry A European Journal, 2011, 17 (12): 3390- 3397.
doi: 10.1002/chem.201002419
21 MENGGENG H , RONGMIN D , SU Y M , et al. Highly active Fe-N-doped porous hollow carbon nanospheres as oxygen reduction electrocatalysts in both acidic and alkaline media[J]. Nanoscale, 2020, 12 (28): 1- 37.
22 LISA S O , RICHARD G F . Transition-metal nanocluster stabilization for catalysis: a critical review of ranking methods and putative stabilizers[J]. Chemistry Reviews, 2007, 251 (9): 1075- 1100.
23 XIAO J P , PAN X L , ZHANG F , et al. Size-dependence of carbon nanotube confinement in catalysis[J]. Chemical Science, 2017, 8 (1): 278- 283.
doi: 10.1039/C6SC02298G
24 LIANG J F , ZHANG X M , JIANG L Y , et al. N-doped ordered mesoporous carbon as a multifunctional support of ultrafine Pt nanoparticles for hydrogenation of nitroarenes[J]. Chinese Journal of Catalysis, 2017, 38 (7): 1252- 1260.
doi: 10.1016/S1872-2067(17)62833-X
25 GUO D H , RIKU S , AKIBA C , et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351 (6271): 361- 365.
doi: 10.1126/science.aad0832
26 EJAZ A , JEON S . The individual role of pyrrolic, pyridinic and graphitic nitrogen in the growth kinetics of Pd NPs on N-rGO followed by a comprehensive study on ORR[J]. International Journal of Hydrogen Energy, 2018, 43 (11): 5690- 5702.
doi: 10.1016/j.ijhydene.2017.12.184
27 OUYANG W P , ZENG D R , YU X , et al. Exploring the active sites of nitrogen-doped graphene as catalysts for the oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2014, 39 (28): 15996- 16005.
doi: 10.1016/j.ijhydene.2014.01.045
28 SINGH S K , TAKEYASU K , NAKAMURA J . Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials[J]. Advanced Materials, 2019, 31 (13): 1804297.
doi: 10.1002/adma.201804297
29 HU P P , HUANG Z W , AMGHOUZ Z , et al. Electronic metal-support interactions in single-atom catalysts[J]. Angewandte Chemie International Edition, 2014, 53 (13): 3418- 3421.
doi: 10.1002/anie.201309248
30 DUPONT J , BOLZAN G R , ABARCA G , et al. Imprinted naked Pt nanoparticles on N-doped carbon supports: a synergistic effect between catalyst and support[J]. Chem Eur J, 2018, 24 (6): 1365- 1372.
doi: 10.1002/chem.201704094
31 VINAYAN B P , NAGAR R , RAJALAKSHMI N , et al. Novel platinum-cobalt alloy nanoparticles dispersed on nitrogen-doped graphene as a cathode electrocatalyst for PEMFC applications[J]. Advanced Functional Materials, 2012, 22 (16): 3519- 3526.
doi: 10.1002/adfm.201102544
[1] 陈达, 石宇晴, 张伟, 练美玲. 基于MXene的电化学传感研究进展[J]. 材料工程, 2022, 50(4): 85-95.
[2] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[3] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[4] 吴鹏, 陈诚, 赵雪伶, 林东海. 纳米材料模拟酶应用进展[J]. 材料工程, 2022, 50(2): 62-72.
[5] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[6] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[7] 李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
[8] 欧阳丽霞, 武兆辉, 王建涛. 锂离子电池浆料的制备技术及其影响因素[J]. 材料工程, 2021, 49(7): 21-34.
[9] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[10] 郑秋燕, 杨智, 李茂辉, 潘廷仙, 秦好丽, 田娟. 铁前驱体对FeN/ZIF-8催化剂氧还原活性的影响[J]. 材料工程, 2021, 49(6): 132-139.
[11] 朱雪洁, 钟诗江, 杨晓霞, 张学习, 钱明芳, 耿林. NiTi基形状记忆合金弹热效应及其应用研究进展[J]. 材料工程, 2021, 49(3): 1-13.
[12] 董亚光, 陈尚, 王俊升, 靳柯. 含BCC/B2共格结构多主元合金研究进展[J]. 材料工程, 2021, 49(2): 1-9.
[13] 曾静, 武东政, 庄奕超, 赵金保. 镁电池正极材料性能提升策略的研究进展[J]. 材料工程, 2021, 49(2): 10-20.
[14] 毛龙, 刘小超, 谢斌, 吴慧青, 刘跃军. 植酸-金属离子螯合物改性层状黏土及其在聚己内酯中的增强与抗菌效应研究[J]. 材料工程, 2021, 49(2): 127-135.
[15] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn