1 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 2 Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China
The hardness, conductivity and room temperature tensile test were used to study the properties of the new aluminum alloy aged at 110-140 ℃ for different time.The microstructure of the alloy was observed by transmission microscope (TEM).The results show that the optimum aging process of the new aluminum alloy is aging at 110 ℃ for 24 h.Tensile strength, yield strength and elongation are 808, 785 MPa, 6.9%, respectively.Aging temperature is the main factor affecting the type, density and size of precipitates.When aged at 110 ℃, the main precipitations are GPⅠ zones, GPⅡ zones and metastable η' phase. After aging at 110 ℃ for a long time (up to 96 h), GPⅠ zones and GPⅡ zones still exist stably.Compared with aging at 110 ℃, the precipitation process accelerates at 140 ℃.After aging at 140 ℃ for 4 h, no GP zone is observed, and the main precipitate phase is η'.After aging at 140 ℃ for 24 h, the main precipitates are η' phase and η phase.
YANG S J , DAI S L . A glimpse at the development and application of aluminum alloys in aviation industry[J]. Materials Review, 2005, 19 (2): 76- 80.
doi: 10.3321/j.issn:1005-023X.2005.02.023
DAI S L , ZHANG K , YANG S J , et al. Advanced aeronautical aluminum alloy materials technology and application[M]. Beijing: National Defense Industry Press, 2012.
CHEN G H , LI G A , CHEN J Z , et al. Effect of rolling microstructure characteristics on fracture toughness of 7B50-T7751 aluminum alloy thick plate[J]. Light Alloy Fabrication Technology, 2018, 46 (6): 29- 33.
YAN L , DU F S , DAI S L , et al. Effect of microstructures on fatigue crack propagation in 2E12 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20 (7): 1275- 1281.
6
袁志山. 新型高强2A97铝锂合金强韧机理研究[D]. 沈阳: 东北大学, 2007.
6
YUAN Z S.Strengthening and toughening mechanisms of a novel high-strength 2A97Al-Li alloy[D]. Shenyang: Northeastern University, 2007.
HU J L , JIAO Z T , JIN M , et al. Dislocation density model of 7A85 aluminum alloy during plastic deformation process[J]. The Chinese Journal of Nonferrous Metals, 2020, 30 (6): 1263- 1269.
ZHANG X F , LU Z , ZHAO Z , et al. Microstructure evolution of as-extruded 7A85 aluminum alloy during high temperature deformation[J]. Journal of Hunan University (Natural Sciences), 2017, 44 (6): 7- 11.
9
Technical data: rod and bar alloy 7068[Z/OL].[2021-03-18].http://www.kaiseraluminum.com/customer-portal/product-information/#collapse-3.
LI G A. Research on the composition design and preparation technology of 700 MPa ultra-high strength aluminum alloy[D]. Beijing: Beijing Institute of Aeronautical Materials, 2012.
YANG S J , XING Q Y , YU H J , et al. Heat-treatment process of a new high zinc Al-Zn-Mg-Cu alloy[J]. Journal of Materials Engineering, 2016, 44 (12): 41- 47.
doi: 10.11868/j.issn.1001-4381.2016.12.007
LIU J T , ZHANG Y A , LI X W , et al. Thermodynamic calculation of Al-9.5Zn-2.0Mg-1.7Cu alloy[J]. Journal of Aeronautical Materials, 2013, 33 (6): 1- 7.
doi: 10.3969/j.issn.1001-4381.2013.06.001
LIAO F , FAN S T , DENG Y L , et al. First-principle calculations of mechanical properties of Al2Cu, Al2CuMg and MgZn2 intermetallic in high strength aluminum alloys[J]. Journal of Aeronautical Materials, 2016, 36 (6): 1- 8.
MA Z F , LU Z , GAO W L , et al. Effect of micro Mn element on in-plane anisotropy of ultra-high strength aluminum alloy forging piece[J]. Materials Review, 2015, 29 (16): 94- 97.
FANG H J , SUN J , LIU H , et al. Effect of Cu, Mn, Ti content on microstructure and mechanical properties of 7136 aluminum alloy[J]. Heat Treatment of Metals, 2017, 42 (4): 53- 57.
TENG H T , XIONG B Q , ZHANG Y A , et al. Solidification microstructure of high zinc-containing Al-Zn-Mg-Cu alloys[J]. The Chinese Journal of Nonferrous Metals, 2015, 25 (4): 852- 865.
YUAN D L , CHEN S Y , ZHOU L , et al. Microstructures in as-cast and as-homogenized Al-Zn-Mg-Cu alloys with high zinc ultra-high strength[J]. The Chinese Journal of Nonferrous Metals, 2018, 28 (12): 2393- 2403.
ZHANG Z , CHEN Z J , YAO Q , et al. Effect of three-step homogenization on microstructure and mechanical properties of 7068 aluminum alloy[J]. Nonferrous Metals Processing, 2014, 43 (5): 13- 17.
20
WANG J S, ZANG J X, XIAO X. First-principles calculations, thermodynamic calculations and kinetic calculations of ultra high strength aluminum alloys of Al-Zn-Mg-Cu-Zr[C]//CMC 2017: Advances in Materials Processing.Singapore: Springer, 2017: 1245-1254.