Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (8): 72-80    DOI: 10.11868/j.issn.1001-4381.2021.000242
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
7050铝合金结构件热处理与冷成形过程残余应力演化规律的数值模拟
王浩, 肖纳敏(), 李惠曲, 王晓
中国航发北京航空材料研究院, 北京 100095
Modeling of residual stress evolution of 7050 aluminium alloy component during heat treatment and cold forming
Hao WANG, Na-min XIAO(), Hui-qu LI, Xiao WANG
AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(14415 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

基于Hansel-Spittel黏塑性流变应力模型以及应力-应变曲线构建7050铝合金在不同温度区间的材料本构方程。采用有限元仿真技术,首先分析试块级试样淬火与冷压缩过程的残余应力变化,模拟的分布规律与试块的超声测试分析结果一致。在此基础上,研究带筋条结构的铝合金结构件淬火热处理与冷变形工艺残余应力演化规律,并对结构件开展了超声残余应力测试和机加工变形验证。结果表明:淬火后残余应力呈外压内拉分布。不同的冷变形工艺对结构件淬火残余应力的消减程度有较大差异。对于冷压缩工艺,当变形量超过2%后,辐板压缩对辐板心部的应力状态改善较好,而筋条压缩只改善筋条局部位置的应力状态。3%压下量的冷拉伸工艺对整体的应力状态改变较大,可同时有效改善筋条部位和辐板部位残余应力的均匀性。经冷拉后,铝合金结构件机加工变形程度可得到明显改善。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王浩
肖纳敏
李惠曲
王晓
关键词 7050铝合金残余应力冷变形热力耦合模拟    
Abstract

A thermal mechanical coupling numerical model of 7050 aluminium alloy was established using the Hansel-Spittel constitutive model. The stress state of the samples during quenching and cold deformation was analyzed using the finite element simulation technology at first, which is in good accordance with the measured result by ultrasonic test. Then, residual stress evolution rule during heat treatment and cold deformation of an aluminium component with rib structure was studied and ultrasonic residual stress inspection and matching deformation verification were carried out on the structural component. The results show that residual stress after quenching is in the state of external compression and internal tension. The reduction degree of quenching induced residual stress by different cold deformation methods is obviously different. For cold compression, when deformation exceeds 2%, compression on the web obviously improves stress state of the whole web region while compression on the lib has relatively less improvement. For cold stretching, 3% deformation can effectively improve the stress uniformity for both web region and lib region. After cold stretching, the distortion during machining can be obviously improved.

Key words7050 aluminium alloy    residual stress    cold deformation    thermal mechanical coupling simulation
收稿日期: 2021-03-18      出版日期: 2021-08-12
中图分类号:  TG166.3  
通讯作者: 肖纳敏     E-mail: nmxiao@126.com
作者简介: 肖纳敏(1980-), 男, 研究员, 博士, 研究方向: 航空构件热处理工艺仿真及变形控制, 联系地址: 北京市海淀区温泉镇环山村8号(100095), E-mail: nmxiao@126.com
引用本文:   
王浩, 肖纳敏, 李惠曲, 王晓. 7050铝合金结构件热处理与冷成形过程残余应力演化规律的数值模拟[J]. 材料工程, 2021, 49(8): 72-80.
Hao WANG, Na-min XIAO, Hui-qu LI, Xiao WANG. Modeling of residual stress evolution of 7050 aluminium alloy component during heat treatment and cold forming. Journal of Materials Engineering, 2021, 49(8): 72-80.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000242      或      http://jme.biam.ac.cn/CN/Y2021/V49/I8/72
Fig.1  7050铝合金375 ℃(a)与室温(b)应力-应变曲线
Parameter High temperature (325-450 ℃) Low temperature (25-300 ℃)
A 9.27×102 3.65×102
m1 -4.83×10-3 -8.43×10-4
m2 9.38×10-2 4.39×10-1
m3 -1.9×10-2 -1.25×10-1
m4 -4.56×10-1 -6.94×10-1
m8 5.39×10-4 7.34×10-4
Table 1  7050铝合金Hansel-Spittel本构模型参数
Temperature/ ℃ Thermal diffusivity/ (m2·s-1) Specific heat/ (J·kg-1· K-1) Thermal conductivity/ (W·m-1· K-1)
-99 6.93×10-6 9.38×102 1.83×102
25 6.90×10-6 9.42×102 1.83×102
97 7.18×10-6 9.11×102 1.84×102
193 7.18×10-6 9.10×102 1.84×102
Table 2  7050铝合金比热、热导率与热扩散率
Temperature/ ℃ Young’s modulus/ GPa Shear modulus/ GPa Poisson’s ratio
20 71.11 26.68 0.33
100 68.32 25.61 0.33
200 64.09 24.03 0.33
300 59.58 22.32 0.34
Table 3  7050铝合金的弹性常数
Temperature/℃ Linear thermal expansion/% Average expansion coefficient/℃-1
20 0 -
20-100 0.160 20.1×10-6
20-200 0.413 22.9×10-6
20-300 0.685 24.5×10-6
Table 4  7050铝合金的热膨胀系数
Fig.2  反求获得的界面换热系数
(a)锻件/空气界面换热系数; (b)锻件/水界面换热系数
Fig.3  淬火后铝合金试块中心1/4截面最大(a)和最小(b)主应力分布
Fig.4  不同压下量冷压时高度方向主应力对比图
(a)最大主应力;(b)最小主应力
Fig.5  不同压下量卸载后高度方向最大(a)和最小(b)主应力分布图
Fig.6  淬火与冷压后铝合金试块残余应力超声声速扫查图
(a)淬火后超声扫查;(b)3%冷压缩后超声扫查
Fig.7  铝合金筋条结构件示意图
Fig.8  热处理过程7050铝合金锻件1/4截面(长度方向)应力分布
(a)最大主应力分布; (b)最小主应力分布
Fig.9  锻件冷压缩示意图
(a)冷压筋条; (b)冷压辐板
Fig.10  锻件冷压缩前后应力分布(选取截面图)
(a)锻件冷压过程等效应力分布; (b)锻件冷压过程最大主应力分布
Fig.11  淬火与冷压后铝合金试块超声声速扫查图
(a)淬火后;(b)冷压筋条后;(c)冷压辐板后
Fig.12  锻件冷拉伸示意图
Fig.13  冷拉伸前后锻件1/4截面(长度方向)最大(a)与最小(b)主应力分布
Fig.14  淬火(a)与冷拉伸(b)后铝合金结构件残余应力超声声速扫查图
Fig.15  冷拉伸前后零件机加工变形对比图
1 燕云程, 黄蓓, 李维, 等. Al-Zn-Mg-Cu系超高强度铝合金的研究进展[J]. 材料导报, 2018, 32 (2): 358- 364.
1 YAN Y C , HUANG P , LI W , et al. Research progress of Al-Zn-Mg-Cu ultra-high strength aluminum alloy[J]. Materials Review, 2018, 32 (2): 358- 364.
2 ROBINSON J S , TANNER D A , PETEGEM S V , et al. Influence of quenching and aging on residual stress in Al-Zn-Mg-Cu alloy 7449[J]. Materials Science and Technology, 2012, 4 (28): 420- 430.
3 ROBINSON J S , TANNER D A , TRUMAN C E , et al. The Influence of quench sensitivity on residual stresses in the aluminiumalloys 7010 and 7075[J]. Materials Characterization, 2012, 65, 73- 85.
doi: 10.1016/j.matchar.2012.01.005
4 CASUSO M , POLVOROSA R , VEIGA F , et al. Residual stress and distortion modeling on aeronautical aluminum alloy parts for machining sequence optimization[J]. International Journal of Ad-vanced Manufacturing Technology, 2020, 110, 1219- 1232.
doi: 10.1007/s00170-020-05816-7
5 CHOBAUT N , CARRON D , ARSENE S , et al. Quench induced residual stress prediction in heat treatable 7×××aluminiumalloy thick plates using gleeble interrupted quench tests[J]. Journal of Materials Processing Technology, 2015, 222, 373- 380.
doi: 10.1016/j.jmatprotec.2015.03.029
6 XIAO B W , LI K Y , WANG Q G , et al. Numerical simulation and experimental validation of residual stresses in water quenched aluminum alloy castings[J]. Journal of Materials Engineering and Performance, 2011, 20 (9): 1648- 1657.
doi: 10.1007/s11665-011-9866-7
7 CARLONE P , PALAZZO G S , PASQUINO R . Finite element analysis of the steel quenching process: temperature field and solid-solid phase change[J]. Computers & Mathematics with Applications, 2010, 59 (1): 585- 594.
8 DOLAN G P , ROBINSON J S . Residual stress reduction in7175-T73, 6061-T6 and 2017A-T4 aluminum alloys using quenching factor analysis[J]. Journal of Materials Processing Technology, 2004, 153, 346- 351.
9 TANNER D A , ROBINSON J S . Modeling stress reduction techniques of cold compression and stretching in wrought aluminium alloy products[J]. Finite Elements in Analysis and Design, 2003, 39 (5/6): 369- 386.
10 ROBINSON J S , TANNER D A . Reducing residual stress in 7050 aluminum alloy die forgings by heat treatment[J]. Journal of Engineering Materials and Technology, 2008, 130, 1- 8.
11 姚诗杰, 夏伟军, 袁武华, 等. 基于分段冷压法7060大型铝合金锻件残余应力的消减[J]. 机械工程材料, 2018, 43 (1): 84- 88.
11 YAO S J , XIA W J , YUAN W H , et al. Residual stress reduction of 7050 large-scale aluminum alloy forging based on segmented cold-pressing method[J]. Materials for Mechanical Engineering, 2018, 43 (1): 84- 88.
12 袁武华, 赵红强, 张辉. 波纹曲面结构对冷压消减7050铝合金残余应力的影响[J]. 热加工工艺, 2019, 48 (12): 165- 168.
12 YUAN W H , ZHAO H Q , ZHANG H . Analysis of residual stress in quenched high-strength aluminum alloy ultra-thick plates and their reduction through cold compression[J]. Hot Working Technology, 2019, 48 (12): 165- 168.
13 MUAMMER K , JOHN C , TAYLAN A . Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes[J]. Journal of Materials Processing Technology, 2006, 174, 342- 354.
doi: 10.1016/j.jmatprotec.2006.02.007
14 SELLARS C M . Computer modeling of hot-working processes[J]. Materials Science and Technology, 1985, 1 (4): 325- 332.
doi: 10.1179/mst.1985.1.4.325
15 王晓, 史亦韦, 梁菁, 等. 声弹性法测量铝合金预拉伸板中的应力[J]. 材料工程, 2015, 43 (12): 95- 100.
15 WANG X , SHI Y W , LIANG J , et al. Stress in pre-stretched aluminum alloy plate by acoustic elasticity[J]. Journal of Mater-ials Engineering, 2015, 43 (12): 95- 100.
[1] 相宁, 葛勇, 张晓雯, 王博伦, 郑梦瑶, 颜悦. 熔体温度对注射成型热塑性聚氨酯制件残余应力及外形精度的影响[J]. 材料工程, 2022, 50(3): 148-156.
[2] 张鹏举, 陈静青, 杨霄. 16MnR钢激光冲击工艺及对焊接结构应力腐蚀性能的影响[J]. 材料工程, 2022, 50(11): 145-154.
[3] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
[4] 杨鑫, 王犇, 谷文萍, 张兆洋, 刘世锋, 武涛. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52-62.
[5] 相宁, 张晓雯, 葛勇, 丁尧, 郑梦瑶, 颜悦. 注射成型热塑性聚氨酯制件的取向形态演变和力学性能[J]. 材料工程, 2021, 49(12): 156-163.
[6] 蔡颖军, 王刚, 檀财旺, 王秒, 赵禹. AgCu/泡沫Cu/AgCu复合钎料对ZrB2-SiC/Inconel 600合金钎焊接头组织与性能的影响[J]. 材料工程, 2021, 49(10): 72-81.
[7] 李虎, 范王腾飞, 王敏涓, 黄旭, 黄浩. SiCf/TC17复合材料界面剪切强度测试与有限元分析[J]. 材料工程, 2021, 49(1): 160-167.
[8] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[9] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[10] 赵慧生, 陈国清, 盖鹏涛, 李志强, 周文龙, 付雪松. 拉-拉疲劳载荷下钛合金湿喷丸的残余应力松弛及再次喷丸工艺[J]. 材料工程, 2020, 48(5): 136-143.
[11] 李亚, 邓运来, 张劲, 田爱琴, 张勇. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122.
[12] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[13] 葛勇, 王博伦, 相宁, 王韬, 孙琦伟, 颜悦. 二次注射成型光学制件厚度截面的残余应力分析[J]. 材料工程, 2020, 48(10): 88-95.
[14] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[15] 侯帅, 朱有利, 邱骥, 倪永恒. 喷丸强化对Ti6Al4V半椭圆表面裂纹J积分和裂纹扩展速率的影响[J]. 材料工程, 2019, 47(1): 139-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn