Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (10): 172-178    DOI: 10.11868/j.issn.1001-4381.2021.000246
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于临界折射纵波递归定量分析的纯铁疲劳损伤无损评价
孟亦圆, 林莉, 陈军, 金士杰, 罗忠兵()
大连理工大学 无损检测研究所, 辽宁 大连 116024
Nondestructive evaluation on fatigue damage of pure iron based on critically refracted longitudinal wave combined with recurrence quantification analysis
Yiyuan MENG, Li LIN, Jun CHEN, Shijie JIN, Zhongbing LUO()
NDT & E Laboratory, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(6565 KB)   HTML ( 6 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用超声检测技术无损评价金属材料的疲劳损伤程度,是保证高性能零部件承载性能和服役可靠性的重要手段。以工业纯铁低周疲劳损伤为研究对象,提出将临界折射纵波(critically refracted longitudinal,LCR)与递归定量分析相结合的无损评价方法。结果表明:拉-压加载过程中表现为循环硬化,随加载周次增加至1000周次,LCR波幅值及对应归一化幅值差Adif整体呈单调变化,5 MHz检测频率的灵敏度高于2.25 MHz。进一步对LCR波进行递归定量分析,递归图随疲劳损伤发展变化明显,提取归一化递归度差RRdif作为损伤指标,较时域、频域和时频域最大幅值等指标的灵敏度显著提升,增加幅度最大可达44%,为早期疲劳损伤的无损评价提供了新手段。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟亦圆
林莉
陈军
金士杰
罗忠兵
关键词 疲劳损伤临界折射纵波递归定量分析无损评价    
Abstract

Nondestructive evaluation on fatigue damage of metallic materials with ultrasound is important to ensure the load-bearing capability and in-service reliability of high-performance components.The fatigue damage of industrial pure iron was studied, and a nondestructive testing method which combined the critically refracted longitudinal (LCR) wave and recurrence quantification analysis (RQA) was proposed. Results show that with the increasing loading cycles and hardening during the tensile-compressive cyclic loading until 1000 cycles, the amplitude of LCR wave and the corresponding normalized amplitude difference Adifboth evolve monotonically. The sensitivity of 5 MHz testing frequency is significantly higher than that of 2.25 MHz. A further analysis of LCR wave with RQA presents that the resulting recurrence plot possesses higher sensitivity. The normalized recurrence rate difference RRdif is extracted. The sensitivity indicates an obvious increase up to 44% compared with the maximum amplitude indexes in time domain, frequency domain, and time-frequency domain. It proves that the proposed method would be a new solution to the nondestructive evaluation on early-stage fatigue damage of metallic materials.

Key wordsfatigue damage    critically refracted longitudinal wave    recurrence quantification analysis    nondestructive evaluation
收稿日期: 2021-03-22      出版日期: 2022-10-24
中图分类号:  TH142  
  TH114  
基金资助:国家自然科学基金项目(51775087)
通讯作者: 罗忠兵     E-mail: zhbluo@dlut.edu.cn
作者简介: 罗忠兵(1984—), 男, 副教授, 博士, 博士生导师, 研究方向为材料无损检测与评价, 联系地址: 辽宁省大连市高新园区凌工路2号大连理工大学材料学院(116024), E-mail: zhbluo@dlut.edu.cn
引用本文:   
孟亦圆, 林莉, 陈军, 金士杰, 罗忠兵. 基于临界折射纵波递归定量分析的纯铁疲劳损伤无损评价[J]. 材料工程, 2022, 50(10): 172-178.
Yiyuan MENG, Li LIN, Jun CHEN, Shijie JIN, Zhongbing LUO. Nondestructive evaluation on fatigue damage of pure iron based on critically refracted longitudinal wave combined with recurrence quantification analysis. Journal of Materials Engineering, 2022, 50(10): 172-178.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000246      或      http://jme.biam.ac.cn/CN/Y2022/V50/I10/172
C Si Mn P Cr Ni Al Cu Fe
0.008 0.030 0.060 0.012 0.020 0.020 0.050 0.050 Bal
Table 1  实验用工业纯铁的化学成分(质量分数/%)
Fig.1  纯铁疲劳实验试样几何示意图
Fig.2  LCR波检测系统示意图
Fig.3  应变幅随疲劳加载周次的变化规律
Fig.4  不同疲劳加载周次下纯铁试样表面形貌
(a)0周次;(b)2周次;(c)100周次;(d)500周次;(e)1000周次
Fig.5  不同疲劳加载周次下纯铁试样LCR波时域信号波形
(a)2.25 MHz;(b)5 MHz
Fig.6  纯铁试样LCR波归一化幅值差Adif随疲劳加载周次的变化
Fig.7  纯铁试样在不同疲劳加载周次下2.25 MHz (1)和5 MHz (2) LCR波信号RP图
(a)0周次;(b)2周次;(c)100周次;(d)500周次;(e)1000周次
Fig.8  纯铁试样LCR波递归度(RR)和归一化RR差(RRdif)随疲劳加载周次的变化
Fig.9  纯铁试样LCR波RQA结果与时域、频域、时频分析结果对比
1 SURESH S . Fatigue of materials Ⅱ appendix[M]. Cambridge: Cambridge University Press, 1998.
2 李喜孟. 无损检测[M]. 北京: 机械工业出版社, 2004.
2 LI X M . Nondestructive testing[M]. Beijing: China Machine Press, 2004.
3 OHTANI T , NISHIYAMA K , YOSHIKAWA S , et al. Ultrasonic attenuation and microstructural evolution throughout tension-compression fatigue of a low-carbon steel[J]. Materials Science and Engineering: A, 2006, 442 (1/2): 466- 470.
4 HIRAO M , OGI H , SUZUKI N , et al. Ultrasonic attenuation peak during fatigue of polycrystalline copper[J]. Acta Materialia, 2000, 48 (2): 517- 524.
doi: 10.1016/S1359-6454(99)00346-8
5 LUO Z B , WANG X Y , MA Z Y , et al. Combined quantitative evaluation on early-stage fatigue damage of coarse-grained auste-nite stainless steel based on EBSD and ultrasonic technique[J]. Ultrasonics, 2020, 103, 106090.
doi: 10.1016/j.ultras.2020.106090
6 LUO Z B , JIN S J , ZOU L J , et al. Grain-scale ultrasonic pro-perties measurement of cast austenitic stainless steel[J]. Mea-surement, 2020, 151, 107231.
7 MARCANTONIO V , MONARCA D , COLANTONI A , et al. Ultrasonic waves for materials evaluation in fatigue, thermal and corrosion damage: a review[J]. Mechanical Systems and Signal Processing, 2019, 120 (1): 32- 42.
8 CHAKRAPANI S K , HOWARD A , BARNARD J . Influence of surface roughness on the measurement of acoustic nonlinearity parameter of solids using contact piezoelectric transducers[J]. Ultrasonics, 2017, 84, 112- 118.
9 BARY D E , TANG W . Subsurface stress evaluation in steel plates and bars using the LCR ultrasonic wave[J]. Nuclear Engineering & Design, 2001, 207 (2): 231- 240.
10 LANGENBERG K J , FELLINGER P , MARKLEIN R . On the nature of the so-called subsurface longitudinal wave and/or the surface longitudinal "creeping" wave[J]. Research in Nondestructive Evaluation, 1990, 2 (2): 59- 81.
doi: 10.1080/09349849009409488
11 XU C G , SONG W T , PAN Q X , et al. Nondestructive testing residual stress using ultrasonic critical refracted longitudinal wave[J]. Physics Procedia, 2015, 70, 594- 598.
doi: 10.1016/j.phpro.2015.08.030
12 刘彬, 石常亮, 缪文炳, 等. 缺陷/应力交互对碳钢LCR波声弹性系数的影响[J]. 材料工程, 2017, 45 (7): 97- 102.
12 LIU B , SHI C L , MIAO W B , et al. Interaction influence of flaw and stress on LCR wave acoustoelastic coefficient of carbon steel[J]. Journal of Materials Engineering, 2017, 45 (7): 97- 102.
13 DJERIR W , OURAK M , BOUTKEDJIRT T . Characterization of the critically refracted longitudinal (LCR) waves and their use in defect detection[J]. Research in Nondestructive Evaluation, 2014, 25 (4): 203- 217.
doi: 10.1080/09349847.2014.890262
14 罗忠兵, 王新禹, 孟亦圆, 等. 纯铁低周疲劳表面/亚表面损伤临界折射纵波评价[J]. 材料保护, 2019, 52 (9): 67- 71.
14 LUO Z B , WANG X Y , MENG Y Y , et al. Surface/near surface damage evaluation on pure iron under low cycle fatigue with LCR wave[J]. Materials Protection, 2019, 52 (9): 67- 71.
15 IOANA C , DIGULESCU A , SERBANESCU A , et al. Recent advances in non-stationary signal processing based on the concept of recurrence plot analysis[M]. Berlin: Springer International Publishing, 2014.
16 CARRIÓN A , GENOVÉS V , GOSÁLBEZ J , et al. Ultrasonic signal modality: a novel approach for concrete damage evaluation[J]. Cement and Concrete Research, 2017, 101, 25- 32.
doi: 10.1016/j.cemconres.2017.08.011
17 JIN S J , HE X C , CHEN J , et al. Recurrence quantitative ana-lysis for porosity characterization of CFRP with complex void morphology[J]. Composite Structures, 2019, 229, 111383.
doi: 10.1016/j.compstruct.2019.111383
18 WEI W L , FENG Y R , HAN L H , et al. Cyclic hardening and dynamic strain aging during low-cycle fatigue of Cr-Mo tempered martensitic steel at elevated temperatures[J]. Materials Science and Engineering: A, 2018, 734 (12): 20- 26.
19 聂君锋, 汤镇睿, 张海泉, 等. 基于位错密度的体心立方晶体塑性本构模型[J]. 清华大学学报(自然科学版), 2017, 57 (7): 780- 784.
19 NIE J F , TANG Z R , ZHANG H Q , et al. Crystal plasticity constitutive model for BCC based on the dislocation density[J]. Journal of Tsinghua University(Science and Technology), 2017, 57 (7): 780- 784.
20 董亚伟. 多晶金属棘轮行为的微观机理及相关本构模型研究[D]. 成都: 西南交通大学, 2014.
20 DONG Y W. Study on the micromechanism of ratchetting of polycrystalline metals and corresponding constitutive model[D]. Chengdu: Southwest Jiaotong University, 2014.
21 KELLER R R , ZIELINSKI W , GERBERICH W W . Fatigue-induced surface versus bulk dislocation arrangements in iron alloys[J]. Scripta Metallurgica et Materialia, 1992, 26 (10): 1523- 1528.
doi: 10.1016/0956-716X(92)90250-I
22 CHAKI S , KE W , DEMOUVEAU H . Numerical and experimental analysis of the critically refracted longitudinal beam[J]. Ultrasonics, 2013, 53 (1): 65- 69.
doi: 10.1016/j.ultras.2012.03.014
23 HIKATA A , TRUELL R , GRANATO A , et al. Sensitivity of ultrasonic attenuation and velocity changes to plastic deformation and recovery in aluminum[J]. Journal of Applied Physics, 1956, 27 (4): 396- 404.
doi: 10.1063/1.1722383
24 TAKENS F . Detecting strange attractors in turbulence[J]. Lecture Notes in Mathematics, 1981, 898 (1): 366- 381.
25 NICHOLS J M , TRICKEY S T , SEAVER M . Damage detection using multivariate recurrence quantification analysis[J]. Mechanical Systems & Signal Processing, 2006, 20 (2): 421- 437.
26 FAROOQ H , GEORGES C , FOREST S , et al. Crystal plasticity modeling of the cyclic behavior of polycrystalline aggregates under non-symmetric uniaxial loading: global and local analyses[J]. International Journal of Plasticity, 2020, 126, 102619.
27 YE W Y , EFTHYMIADIS P , PINNA C , et al. Experimental and modelling study of fatigue crack initiation in an aluminium beam with a hole under 4-point bending[J]. International Journal of Solids and Structures, 2018, 138, 87- 96.
28 ABRAHAM S , SHIVAPRASAD S , DAS C , et al. Effect of grain size distribution on the acoustic nonlinearity parameter[J]. Journal of Applied Physics, 2020, 127 (18): 185102.
[1] 刘彬, 石常亮, 缪文炳, 董世运. 缺陷/应力交互对碳钢Lcr波声弹性系数的影响[J]. 材料工程, 2017, 45(7): 97-102.
[2] 王晓, 史亦韦, 梁菁, 何方成, 陶春虎. 声弹性法测量铝合金预拉伸板中的应力[J]. 材料工程, 2015, 43(12): 95-100.
[3] 张志强, 李国禄, 王海斗, 徐滨士, 朴钟宇. 等离子喷涂Fe基合金涂层组织及接触疲劳损伤性能的研究[J]. 材料工程, 2012, 0(6): 59-62.
[4] 刘昆鹏, 赵子华, 张峥. 321不锈钢疲劳早期损伤的涡流评估[J]. 材料工程, 2012, 0(11): 61-65.
[5] 冷建成, 徐敏强, 王坤, 李建伟. 基于磁记忆技术的疲劳损伤监测[J]. 材料工程, 2011, 0(5): 26-29.
[6] 杜双明, 乔生儒. 3D-Cf/SiC复合材料在1500℃的拉-拉疲劳行为[J]. 材料工程, 2011, 0(5): 34-37,47.
[7] 刘昌奎, 陶春虎, 陈星, 张兵, 董世运. 金属磁记忆检测技术定量评估构件疲劳损伤研究[J]. 材料工程, 2009, 0(8): 33-37.
[8] 何方成, 宫兆斌. 超声波声速测量技术及其在材料评价中的应用[J]. 材料工程, 2003, 0(8): 33-34.
[9] 刘宇艳, 万志敏, 田振辉. 单向帘线/橡胶复合材料的疲劳损伤模型与疲劳寿命预报[J]. 材料工程, 2003, 0(4): 27-29,38.
[10] 杜双明, 乔生儒, 纪岗昌, 韩栋. 3D-C/SiC复合材料在室温和1300℃的拉-拉疲劳行为[J]. 材料工程, 2002, 0(9): 22-25.
[11] 魏建锋, 郑修麟. 聚醚醚酮基复合材料的疲劳寿命表达式及累积疲劳损伤预测[J]. 材料工程, 1997, 0(12): 13-17.
[12] 曹大树, 吴培远. 微动疲劳损伤失效分析 [J]. 材料工程, 1996, 0(12): 44-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn