Nondestructive evaluation on fatigue damage of pure iron based on critically refracted longitudinal wave combined with recurrence quantification analysis
Yiyuan MENG, Li LIN, Jun CHEN, Shijie JIN, Zhongbing LUO()
NDT & E Laboratory, Dalian University of Technology, Dalian 116024, Liaoning, China
Nondestructive evaluation on fatigue damage of metallic materials with ultrasound is important to ensure the load-bearing capability and in-service reliability of high-performance components.The fatigue damage of industrial pure iron was studied, and a nondestructive testing method which combined the critically refracted longitudinal (LCR) wave and recurrence quantification analysis (RQA) was proposed. Results show that with the increasing loading cycles and hardening during the tensile-compressive cyclic loading until 1000 cycles, the amplitude of LCR wave and the corresponding normalized amplitude difference Adifboth evolve monotonically. The sensitivity of 5 MHz testing frequency is significantly higher than that of 2.25 MHz. A further analysis of LCR wave with RQA presents that the resulting recurrence plot possesses higher sensitivity. The normalized recurrence rate difference RRdif is extracted. The sensitivity indicates an obvious increase up to 44% compared with the maximum amplitude indexes in time domain, frequency domain, and time-frequency domain. It proves that the proposed method would be a new solution to the nondestructive evaluation on early-stage fatigue damage of metallic materials.
孟亦圆, 林莉, 陈军, 金士杰, 罗忠兵. 基于临界折射纵波递归定量分析的纯铁疲劳损伤无损评价[J]. 材料工程, 2022, 50(10): 172-178.
Yiyuan MENG, Li LIN, Jun CHEN, Shijie JIN, Zhongbing LUO. Nondestructive evaluation on fatigue damage of pure iron based on critically refracted longitudinal wave combined with recurrence quantification analysis. Journal of Materials Engineering, 2022, 50(10): 172-178.
SURESH S . Fatigue of materials Ⅱ appendix[M]. Cambridge: Cambridge University Press, 1998.
2
李喜孟. 无损检测[M]. 北京: 机械工业出版社, 2004.
2
LI X M . Nondestructive testing[M]. Beijing: China Machine Press, 2004.
3
OHTANI T , NISHIYAMA K , YOSHIKAWA S , et al. Ultrasonic attenuation and microstructural evolution throughout tension-compression fatigue of a low-carbon steel[J]. Materials Science and Engineering: A, 2006, 442 (1/2): 466- 470.
4
HIRAO M , OGI H , SUZUKI N , et al. Ultrasonic attenuation peak during fatigue of polycrystalline copper[J]. Acta Materialia, 2000, 48 (2): 517- 524.
doi: 10.1016/S1359-6454(99)00346-8
5
LUO Z B , WANG X Y , MA Z Y , et al. Combined quantitative evaluation on early-stage fatigue damage of coarse-grained auste-nite stainless steel based on EBSD and ultrasonic technique[J]. Ultrasonics, 2020, 103, 106090.
doi: 10.1016/j.ultras.2020.106090
6
LUO Z B , JIN S J , ZOU L J , et al. Grain-scale ultrasonic pro-perties measurement of cast austenitic stainless steel[J]. Mea-surement, 2020, 151, 107231.
7
MARCANTONIO V , MONARCA D , COLANTONI A , et al. Ultrasonic waves for materials evaluation in fatigue, thermal and corrosion damage: a review[J]. Mechanical Systems and Signal Processing, 2019, 120 (1): 32- 42.
8
CHAKRAPANI S K , HOWARD A , BARNARD J . Influence of surface roughness on the measurement of acoustic nonlinearity parameter of solids using contact piezoelectric transducers[J]. Ultrasonics, 2017, 84, 112- 118.
9
BARY D E , TANG W . Subsurface stress evaluation in steel plates and bars using the LCR ultrasonic wave[J]. Nuclear Engineering & Design, 2001, 207 (2): 231- 240.
10
LANGENBERG K J , FELLINGER P , MARKLEIN R . On the nature of the so-called subsurface longitudinal wave and/or the surface longitudinal "creeping" wave[J]. Research in Nondestructive Evaluation, 1990, 2 (2): 59- 81.
doi: 10.1080/09349849009409488
11
XU C G , SONG W T , PAN Q X , et al. Nondestructive testing residual stress using ultrasonic critical refracted longitudinal wave[J]. Physics Procedia, 2015, 70, 594- 598.
doi: 10.1016/j.phpro.2015.08.030
LIU B , SHI C L , MIAO W B , et al. Interaction influence of flaw and stress on LCR wave acoustoelastic coefficient of carbon steel[J]. Journal of Materials Engineering, 2017, 45 (7): 97- 102.
13
DJERIR W , OURAK M , BOUTKEDJIRT T . Characterization of the critically refracted longitudinal (LCR) waves and their use in defect detection[J]. Research in Nondestructive Evaluation, 2014, 25 (4): 203- 217.
doi: 10.1080/09349847.2014.890262
LUO Z B , WANG X Y , MENG Y Y , et al. Surface/near surface damage evaluation on pure iron under low cycle fatigue with LCR wave[J]. Materials Protection, 2019, 52 (9): 67- 71.
15
IOANA C , DIGULESCU A , SERBANESCU A , et al. Recent advances in non-stationary signal processing based on the concept of recurrence plot analysis[M]. Berlin: Springer International Publishing, 2014.
16
CARRIÓN A , GENOVÉS V , GOSÁLBEZ J , et al. Ultrasonic signal modality: a novel approach for concrete damage evaluation[J]. Cement and Concrete Research, 2017, 101, 25- 32.
doi: 10.1016/j.cemconres.2017.08.011
17
JIN S J , HE X C , CHEN J , et al. Recurrence quantitative ana-lysis for porosity characterization of CFRP with complex void morphology[J]. Composite Structures, 2019, 229, 111383.
doi: 10.1016/j.compstruct.2019.111383
18
WEI W L , FENG Y R , HAN L H , et al. Cyclic hardening and dynamic strain aging during low-cycle fatigue of Cr-Mo tempered martensitic steel at elevated temperatures[J]. Materials Science and Engineering: A, 2018, 734 (12): 20- 26.
NIE J F , TANG Z R , ZHANG H Q , et al. Crystal plasticity constitutive model for BCC based on the dislocation density[J]. Journal of Tsinghua University(Science and Technology), 2017, 57 (7): 780- 784.
20
董亚伟. 多晶金属棘轮行为的微观机理及相关本构模型研究[D]. 成都: 西南交通大学, 2014.
20
DONG Y W. Study on the micromechanism of ratchetting of polycrystalline metals and corresponding constitutive model[D]. Chengdu: Southwest Jiaotong University, 2014.
21
KELLER R R , ZIELINSKI W , GERBERICH W W . Fatigue-induced surface versus bulk dislocation arrangements in iron alloys[J]. Scripta Metallurgica et Materialia, 1992, 26 (10): 1523- 1528.
doi: 10.1016/0956-716X(92)90250-I
22
CHAKI S , KE W , DEMOUVEAU H . Numerical and experimental analysis of the critically refracted longitudinal beam[J]. Ultrasonics, 2013, 53 (1): 65- 69.
doi: 10.1016/j.ultras.2012.03.014
23
HIKATA A , TRUELL R , GRANATO A , et al. Sensitivity of ultrasonic attenuation and velocity changes to plastic deformation and recovery in aluminum[J]. Journal of Applied Physics, 1956, 27 (4): 396- 404.
doi: 10.1063/1.1722383
24
TAKENS F . Detecting strange attractors in turbulence[J]. Lecture Notes in Mathematics, 1981, 898 (1): 366- 381.
25
NICHOLS J M , TRICKEY S T , SEAVER M . Damage detection using multivariate recurrence quantification analysis[J]. Mechanical Systems & Signal Processing, 2006, 20 (2): 421- 437.
26
FAROOQ H , GEORGES C , FOREST S , et al. Crystal plasticity modeling of the cyclic behavior of polycrystalline aggregates under non-symmetric uniaxial loading: global and local analyses[J]. International Journal of Plasticity, 2020, 126, 102619.
27
YE W Y , EFTHYMIADIS P , PINNA C , et al. Experimental and modelling study of fatigue crack initiation in an aluminium beam with a hole under 4-point bending[J]. International Journal of Solids and Structures, 2018, 138, 87- 96.
28
ABRAHAM S , SHIVAPRASAD S , DAS C , et al. Effect of grain size distribution on the acoustic nonlinearity parameter[J]. Journal of Applied Physics, 2020, 127 (18): 185102.