Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (4): 104-111    DOI: 10.11868/j.issn.1001-4381.2021.000267
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能
任美娟1, 王淼1, 吴芳辉1,*(), 贾虎2, 叶明富1, 文国强1
1 安徽工业大学 化学与化工学院, 安徽 马鞍山 243000
2 安徽工业大学 数理学院, 安徽 马鞍山 243000
Preparation and electrocatalytic properties of nitrogen doped porous carbon loaded copper and cobalt nanocomposite
Meijuan REN1, Miao WANG1, Fanghui WU1,*(), Hu JIA2, Mingfu YE1, Guoqiang WEN1
1 School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243000, Anhui, China
2 School of Mathematics and Physics, Anhui University of Technology, Maanshan 243000, Anhui, China
全文: PDF(7230 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

先以ZIF-8作为前驱体采用简单的高温炭化法制备出氮掺杂多孔碳纳米多面体(NPC), 再通过一步化学还原法将铜和钴颗粒负载到多孔碳上, 成功制备出Cu@Co/NPC纳米复合材料。运用X射线粉末衍射仪、透射电子显微镜和X射线光电子能谱等手段对复合材料进行表征, 将该复合材料修饰到玻碳电极表面上, 研究其对肼的电化学响应。结果表明, Cu@Co/NPC纳米复合材料发挥出协同作用, 从而对肼展现出比单一组分修饰电极更优异的电催化作用。在优化的实验条件下, 复合材料修饰电极与肼的浓度在5~1850 μmol/L范围内呈良好的线性关系, 检测限达0.08 μmol/L。此外, 该复合材料修饰电极测定肼的稳定性、重现性以及选择性均较好, 已被成功用于环境水样中肼的检测, 结果令人满意。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任美娟
王淼
吴芳辉
贾虎
叶明富
文国强
关键词 Cu@Co氮掺杂多孔碳纳米复合材料电化学测定    
Abstract

Nitrogen doped porous carbon nanopolyhedra (NPC) derived from ZIF-8 was firstly prepared by high temperature carbonization. Subsequently, copper and cobalt were decorated on NPC to form novel nanocomposite by one-step chemical reduction method. Cu@Co/NPC hybrid material was characterized using X-ray powder diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The composite was modified on the surface of glassy carbon electrode to study its electrochemical response to hydrazine. The results show that Cu@Co /NPC nanocomposites play a synergistic role, which shows better electrocatalytic effect on hydrazine than single component modified electrode. Under the optimum conditions, the concentration of composite modified electrode and hydrazine in the range of 5-1850 μmol/L exhibits good linear relationship, and the detection limit is 0.08 μmol/L. In addition, the composite modified electrode has good stability, reproducibility and selectivity for the determination of hydrazine. It has been successfully used for the determination of hydrazine in environmental water samples with satisfactory results.

Key wordsCu@Co    N-doped porous carbon    nanocomposite    hydrazine    electrochemical detection
收稿日期: 2021-03-26      出版日期: 2022-04-18
中图分类号:  O657.1  
基金资助:国家自然科学基金(21771003);安徽省自然科学基金(1808085MB36)
通讯作者: 吴芳辉     E-mail: wfhwfh@ahut.edu.cn
作者简介: 吴芳辉(1975—),女,教授,博士,研究方向为功能碳材料制备与应用,联系地址:安徽省马鞍山市安徽工业大学化工学院(243000),E-mail:wfhwfh@ahut.edu.cn
引用本文:   
任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
Meijuan REN, Miao WANG, Fanghui WU, Hu JIA, Mingfu YE, Guoqiang WEN. Preparation and electrocatalytic properties of nitrogen doped porous carbon loaded copper and cobalt nanocomposite. Journal of Materials Engineering, 2022, 50(4): 104-111.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000267      或      http://jme.biam.ac.cn/CN/Y2022/V50/I4/104
Fig.1  ZIF-8, NPC, Cu/NPC, Co/NPC和Cu@Co/NPC的XRD图
Fig.2  ZIF-8(a), NPC(b), Cu@Co(c)和Cu@Co/NPC(d)的TEM照片
Fig.3  Cu@Co/NPC复合材料的XPS全谱(a)和Cu2p(b), Co2p(c)及N1s(d)的高分辨谱图
Fig.4  0.1 mol/L PBS (pH= 7.0)缓冲溶液中1.0 mmol/L N2H4在各电极上的循环伏安图(扫速为50 mV/s)
Fig.5  各电极在含有5 mmol/L [Fe(CN)6]4-/3- (1∶1) 的0.1 mol/L KCl溶液中的交流阻抗图(扫速为50 mV/s)
Fig.6  扫速对Cu/Co(1∶1)@NPC修饰电极响应电流的影响
(a)含2 mmol/L N2H4的0.1 mol/L PBS (pH=7.0)缓冲溶液中修饰电极在不同扫速下的循环伏安图;(b)扫速平方根与峰电流之间的线性关系图
Fig.7  Cu@Co/NPC复合材料的制备及对肼电化学响应示意图
Fig.8  Cu/Co(1∶1)@NPC修饰电极对不同浓度肼的响应
(a)0.1 mol/L PBS (pH=7.0)中连续添加不同浓度肼的安培曲线;(b)肼的催化电流和浓度之间的线性关系图
Modified material Sensitivity/(μA·mmol-1·L·cm-2) Detection limit/(μmol·L-1) Linear range/(μmol·L-1) Reference
Ni@f-MWCNT 1.71 20-200 [18]
Pd/C nanofibers 8.69 2.9 10-4000 [20]
Au/HDT/4-NiIITAPcAuNPs 15 0.05 10-100 [21]
NiS-RGO 10 50-1700 [22]
N-graphene/PVP/AuNPs/SPCE 1370 0.07 2-300 [23]
Cu@Co/NPC 798.6 0.08 5-1850 This work
Table 1  各种肼电化学传感器的性能比较
Sample Concentration of added N2H4/(μmol·L-1) Concentration of found N2H4/(μmol·L-1) RSD/% Recovery/%
River water 100 100.3 4.8 100.3
200 200.5 4.3 100.2
Drinking 100 105.6 4.9 105.6
water 200 199.0 4.5 99.5
Table 2  不同实际水样中肼的测定结果(n=6)
1 VIJAY N , VELMATHI S . Near-infrared-emitting probes for detection of nanomolar hydrazine in a complete aqueous medium with real-time application in bioimaging and vapor-phase hydrazine detection[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (11): 4457- 4463.
2 LIU T H , YANG L J , FENG W , et al. Dual-mode photonic sensor array for detecting and discriminating hydrazine and aliphatic amines[J]. ACS Applied Materials & Interfaces, 2020, 12 (9): 11084- 11093.
3 LIU D Q , YANG Z B , WANG P , et al. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes[J]. Nanoscale, 2013, 5 (5): 1917- 1921.
doi: 10.1039/c2nr33383j
4 WANG L , ZHENG Y L , LU X P , et al. Dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode for glucose sensing[J]. Sensors and Actuators B, 2014, 195, 1- 7.
doi: 10.1016/j.snb.2014.01.007
5 阚侃, 王珏, 付东, 等. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48 (8): 101- 109.
5 KAN K , WANG J , FU D , et al. Synthesis and energy storage properties of N/O co-doped porous carbon nanoribbons[J]. Journal of Materials Engineering, 2020, 48 (8): 101- 109.
6 SREENIVASAN S T , NOVERON J C . Tuning of trifunctional NiCu bimetallic nanoparticles confined in a porous carbon network with surface composition and local structural distortions for the electrocatalytic oxygen reduction, oxygen and hydrogen evolution reactions[J]. Journal of the American Chemical Society, 2020, 142 (34): 14688- 14701.
doi: 10.1021/jacs.0c06960
7 HU M , REBOUL J , FURUKAWA S , et al. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon[J]. Journal of the American Chemical Society, 2012, 134 (6): 2864- 2867.
doi: 10.1021/ja208940u
8 GAI P B , ZHANG H J , ZHANG Y S , et al. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on nitrogen doped porous carbon nanopolyhedra[J]. Journal of Materials Chemitry B, 2013, 1 (21): 2742- 2749.
doi: 10.1039/c3tb20215a
9 CHEN W , ZHANG X M , AI F J , et al. Graphitic carbon nanocubes derived from ZIF-8 for photothermal therapy[J]. Inorganic Chemistry, 2016, 55 (12): 5750- 5752.
doi: 10.1021/acs.inorgchem.6b01013
10 CRAVILLON J , UNZER S M , LOHMEIER S J , et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework[J]. Chemical Materials, 2009, 21 (8): 1410- 1412.
doi: 10.1021/cm900166h
11 SHENG Q L , LIU D , ZHENG J B . NiCo alloy nanoparticles anchored on polypyrrole/reduced graphene oxide nanocomposites for nonenzymatic glucose sensing[J]. New Journal of Chemistry, 2016, 40 (8): 6658- 6665.
doi: 10.1039/C6NJ01264G
12 TIAN F Y , CERRO A M , MOSIER A M . Surface and stability characterization of a nanoporous ZIF-8 thin film[J]. Journal of Physical Chemistry C, 2014, 118 (26): 14449- 14456.
doi: 10.1021/jp5041053
13 LEI Y J , WEI L , ZHAI S L , et al. Metal-free bifunctional carbon electrocatalysts derived from zeolitic imidazolate frameworks for efficient water splitting[J]. Material Chemistry Frontier, 2018, 2 (1): 102- 111.
doi: 10.1039/C7QM00452D
14 MONDAL P , SINHA A , SALAM N , et al. Enhanced catalytic performance by copper nanoparticle-graphene based composite[J]. RSC Advances, 2013, 3 (16): 5615- 5623.
doi: 10.1039/c3ra23280h
15 LONG Q , XU Z Q , XIAO H H , et al. A facile synthesis of a cobalt nanoparticle-graphene nanocomposite with high-performance and triple-band electromagnetic wave absorption properties[J]. RSC Advances, 2018, 8 (3): 1210- 1217.
doi: 10.1039/C7RA12190C
16 LUO L Q , ZHU L M , WANG Z X . Nonenzymatic amperometric determination of glucose by CuO nanocubes-graphene nanocomposite modified electrode[J]. Bioelectrochemitry, 2012, 88, 156- 163.
doi: 10.1016/j.bioelechem.2012.03.006
17 LAVIRON E . General repression of the liner potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. Journal of Electroanalytical Chemistry, 1979, 101 (1): 19- 28.
doi: 10.1016/S0022-0728(79)80075-3
18 KUMAR A S , BARATHI P , PILLAI K C . In situ precipitation of nickel-hexacyanoferrate within multi-walled carbon nanotube modified electrode and its selective hydrazine electrocatalysis in physiological pH[J]. Journal of Electroanalysis Chemistry, 2011, 654 (1/2): 85- 95.
19 LIN K C , YIN C Y , CHEN S M . Simultaneous determination of AA, DA, and UA based on bipolymers by electropolymerization of luminol and 3, 4-ethylenedioxythiophene monomers[J]. International Journal of Electrochemical Science, 2011, 6 (9): 3951- 3965.
20 ZHANG H J , HUANG J S , HOU H Q , et al. Electrochemical detection of hydrazine based on electrospun palladium nanoparticle/carbon nanofibers[J]. Electroanalysis, 2009, 21 (16): 1869- 1874.
doi: 10.1002/elan.200904630
21 JEEVAGAN A J , JOHN S A . Synthesis of non-peripheral amine substituted nickel (Ⅱ) phthalocyanine capped gold nanoparticles and their immobilization on electrode for the electrocatalytic oxidation of hydrazine[J]. RSC Advances, 2013, 3 (7): 2256- 2264.
doi: 10.1039/C2RA22895E
22 RADHAKRISHNAN S , KIM S J . Facile fabrication of NiS and a reduced graphene oxide hybrid film for nonenzymatic detection of glucose[J]. RSC Advances, 2015, 5 (55): 44346- 44352.
doi: 10.1039/C5RA01074H
23 SAENGSOOKWAOW C , RANGKUPAN R , CHAILAPAKUL O , et al. Nitrogen-doped graphene-polyvinylpyrrolidone/gold nanoparticles modified electrode as a novel hydrazine sensor[J]. Sensors and Actuators B, 2016, 227, 524- 532.
doi: 10.1016/j.snb.2015.12.091
[1] 李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
[2] 周锋, 任向红, 强洪夫, 曾逸智, 樊苗苗. GO增强g-C3N4气凝胶的可见光响应及其光催化降解偏二甲肼废水[J]. 材料工程, 2021, 49(11): 171-178.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[5] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[6] 廖向娜, 贺雍律, 张鉴炜, 鞠苏, 江大志, 刘佳音, 刘钧. CNTs-纤维增强树脂基复合材料纳米-介观尺度数值模拟研究进展[J]. 材料工程, 2020, 48(12): 1-11.
[7] 曾宝平, 贾瑛, 许国根, 李明, 冯锐. CTAB作用下TiO2/g-C3N4的制备及光催化降解偏二甲肼废水[J]. 材料工程, 2019, 47(9): 139-144.
[8] 卢璐, 吴磊, 史继诚, 徐洪峰, 丛涛泉. PEMFC用抗溺水性功能化Pt/C催化剂的制备及表征[J]. 材料工程, 2019, 47(6): 63-69.
[9] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[10] 张宇, 黄峰, 马金瑞, 刘强, 孙煜. 羟基化处理对氮化硼膜耐原子氧性能的影响[J]. 材料工程, 2018, 46(7): 61-67.
[11] 王飞, 贾书海, 唐振华, 汪永林. 石墨烯纳米复合材料光驱动技术的研究进展[J]. 材料工程, 2018, 46(4): 12-22.
[12] 赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6): 129-137.
[13] 毕波, 王学宝. 纳米碳材料在聚合物阻燃中的应用研究进展[J]. 材料工程, 2017, 45(5): 135-144.
[14] 陈阁谷, 关莹, 亓宪明, 彭锋, 姚春丽, 孙润仓. 聚合物/层状硅酸盐纳米复合材料阻燃性研究进展[J]. 材料工程, 2015, 43(8): 104-112.
[15] 张宗华, 刘刚, 张晖, 张忠, 王小群. 纳米氧化铝颗粒对高性能环氧树脂玻璃化转变温度的影响[J]. 材料工程, 2014, 0(9): 39-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn