Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (2): 1-11    DOI: 10.11868/j.issn.1001-4381.2021.000295
  生物医用材料专栏 本期目录 | 过刊浏览 | 高级检索 |
牙科陶瓷材料的摩擦学性能研究进展
雷磊1, 伍雨驰1, 程子晋1, 刘莉2, 郑靖1,*()
1 西南交通大学 材料先进技术教育部重点实验室 摩擦学研究所, 成都 610031
2 西南交通大学医院 口腔科, 成都 610031
Research progress in tribological property of dental ceramics
Lei LEI1, Yuchi WU1, Zijin CHENG1, Li LIU2, Jing ZHENG1,*()
1 Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials(Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
2 Department of Stomatology, Southwest Jiaotong University Hospital, Chengdu 610031, China
全文: PDF(10043 KB)   HTML ( 52 )  
输出: BibTeX | EndNote (RIS)      
摘要 

陶瓷材料因其优异的耐磨性、化学稳定性、生物相容性和美观性被广泛用于牙齿缺损和缺失修复。本文首先介绍了牙科陶瓷材料的化学成分、微观结构和力学性能,基于陶瓷材料的磨损与磨蚀机制,归纳总结了牙科陶瓷材料摩擦学性能优化方面所取得的进展,指出陶瓷材料和天然人牙摩擦学性能失配严重制约了陶瓷修复体的临床应用,进而从室验介质、对摩副以及载荷、位移和循环次数等方面分析汇总牙科陶瓷材料摩擦学性能的体外测试方法。最后,从仿生摩擦学角度探讨了牙科陶瓷材料的未来发展趋势,并指出研制仿生陶瓷基复合材料是解决陶瓷修复体与天然人牙摩擦学性能失配难题最具潜力的策略。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷磊
伍雨驰
程子晋
刘莉
郑靖
关键词 牙科陶瓷材料摩擦学性能测试方法微观结构仿生设计    
Abstract

Ceramics are widely used as dental restorative materials because of their superior wear resistance, chemical stability, biocompatibility, and aesthetic features. In this paper, the chemical compositions, microstructures and mechanical properties of dental ceramics were introduced, based on the wear mechanisms of typical dental ceramics and their abrasiveness with opposing human teeth, the main progress concerning the tribological performance optimization of dental ceramics were summarized, and it was pointed out that the mismatch of tribological properties between ceramics and human teeth seriously restricts the clinical application of dental ceramics. Then the in vitro test methods of tribological properties of dental ceramic materials are analyzed and summarized from the aspects of laboratory test medium, friction pair, load, displacement and cycle times. Finally, the future development trends of dental ceramics were discussed from the perspective of bionic tribology. It was pointed out that bionic design of ceramic matrix composites is a promising strategy for overcoming the mismatch of tribological property between dental ceramic restorations and human teeth.

Key wordsdental ceramics    tribological property    test method    microstructure    bioinspired design
收稿日期: 2021-04-01      出版日期: 2022-02-23
中图分类号:  R318.08  
基金资助:国家自然科学基金资助项目(52035001);国家自然科学基金资助项目(51535010);高等学校学科创新引智计划资助项目(B20008)
通讯作者: 郑靖     E-mail: jzheng168@home.swjtu.edu.cn
作者简介: 郑靖(1974-), 女, 研究员, 博士, 研究方向: 生物与仿生摩擦学, 联系地址: 四川省成都市西南交通大学摩擦学研究所(610031), E-mail: jzheng168@home.swjtu.edu.cn
引用本文:   
雷磊, 伍雨驰, 程子晋, 刘莉, 郑靖. 牙科陶瓷材料的摩擦学性能研究进展[J]. 材料工程, 2022, 50(2): 1-11.
Lei LEI, Yuchi WU, Zijin CHENG, Li LIU, Jing ZHENG. Research progress in tribological property of dental ceramics. Journal of Materials Engineering, 2022, 50(2): 1-11.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000295      或      http://jme.biam.ac.cn/CN/Y2022/V50/I2/1
Material Composition Characteristic Mechanical property Reference
Feldspathic porcelains Mainly glass phase and a few crystal phase comprising leucite Good aesthetics but poor mechanical performance E=45-60 GPa;
H=3.6-6.0 GPa;
σ=64-104 MPa;
KIC=0.7-1.2 MPa·m1/2
[5, 18-23]
Glass-ceramics Crystal phase comprising leucite, lithium disilicate, mica and fluorapatite and glass phase High crystal content, increased mechanical performance, but decreased translucency E=65-105 GPa;
H=3.4-8.4 GPa;
σ=110-400 MPa;
KIC=1.1-3.0 MPa·m1/2
[5, 24-29]
Glass-infiltrated ceramics Crystal phase comprising alumina, spinel and zirconia and glass phase Good mechanical performance, some types have poor translucency E=166-300 GPa;
H=7.4-12.9 GPa;
σ=233-600 MPa;
KIC=3.1-4.6 MPa·m1/2
[30-33]
Polycrystalline ceramics Crystal phase comprising alumina, zirconia, etc Excellent mechanical performance E=200-240 GPa;
H=12-13 GPa;
σ=680-1200 MPa;
KIC=3.5-10.0 MPa·m1/2
[29, 34-40]
Polymer infiltrated ceramics Feldspathic porcelain and methacrylate resin Human tooth-matching elasticity modulus and hardness E=16.4-38.4 GPa;
H=1.1-3.4 GPa;
σ=124-281 MPa;
KIC=1.0-1.7 MPa·m1/2
[41-47]
Table 1  牙科陶瓷材料分类[5, 18-47]
Group Wear mechanism Abrasive potential Reference
Feldspathic porcelains Fatigue wear and brittle delamination initially occur in glass phase matrix and then lead to overall abrasive wear High abrasive potential, generally causing strong plough effect on the surface of opposing human enamel [48-50]
Glass-ceramics Crystal-glass interface cracking results in ceramic particle exfoliation and abrasive wear Hard crystal particles cause severe abrasive wear on opposing human enamel surface [51-54]
Glass-infiltrated ceramics (glass-infiltrated alumina ceramics) Tribochemical reaction induces the formation of wear debris layer with anti-wear effect, leading to excellent wear-resistance No clear report on their abrasive potential to human enamel [55-57]
Polycrystalline ceramics (zirconia ceramics) High strength and toughness can effectively resist surface damage, leading to excellent wear-resistance Low abrasive potential, and the wear mechanism of opposing human enamel is fatigue wear [39, 58]
Polymer infiltrated ceramics The wear of polymer phase causes ceramic framework protruding and ceramic particles exfoliation, causing weak wear-resistance Low abrasive potential due to human tooth-matching elasticity modulus and hardness [59-60]
Table 2  牙科陶瓷材料的磨损机制与磨蚀性[39, 48-60]
Fig.1  牙科陶瓷材料磨损表面扫描电镜形貌
(a)长石质瓷[50];(b)玻璃陶瓷[51];(c)玻璃渗透氧化铝陶瓷[56]
Fig.2  氧化锆陶瓷磨损表面SEM形貌[39]
(a)磨损表面的犁沟;(b)图(a)中心区域的放大图
Fig.3  树脂渗透陶瓷表面SEM形貌[59]
(a)原始表面;(b)磨损初期;(c)稳定磨损阶段
Fig.4  人牙釉质磨损表面SEM形貌
(a)与长石质瓷对摩[58];(b)与氧化锆陶瓷抛光表面对摩[58];(c)与树脂渗透陶瓷对摩[60]
Fig.5  摩擦磨损试验机示意图 (a)往复式;(b)销盘式
Fig.6  人牙釉质跨尺度多级结构示意图[89]
1 NANCI A . Ten Cate's oral histology[M]. Amsterdam: Elsevier, 2012: 1.
2 XIA J , TIAN R , HUA L C , et al. Enamel crystallite strength and wear: nanoscale responses of teeth to chewing loads[J]. Journal of the Royal Society Interface, 2017, 14 (135): 1- 8.
3 张震康, 俞光岩, 徐韬. 实用口腔科学[M]. 北京: 人民卫生出版社, 2009: 500- 527.
3 ZHANG Z K , YU G Y , XU T . Practice of stomatology[M]. Beijing: People's Medical Publishing House, 2009: 500- 527.
4 ZHOU Z R , ZHENG J . Tribology of dental materials: a review[J]. Journal of Physics D, 2008, 41 (11): 113001.
doi: 10.1088/0022-3727/41/11/113001
5 HO G W , MATINLINNA J P . Insights on ceramics as dental materials. part Ⅰ: ceramic material types in dentistry[J]. Silicon, 2011, 3 (3): 109- 115.
doi: 10.1007/s12633-011-9078-7
6 KRUZIC J J , ARSECULARATNE J A , TANAKA C B , et al. Recent advances in understanding the fatigue and wear behavior of dental composites and ceramics[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 504- 533.
doi: 10.1016/j.jmbbm.2018.08.008
7 ZARONE F , RUSSO S , SORRENTINO R . From porcelain-fused-to-metal to zirconia: clinical and experimental considerations[J]. Dental Materials, 2011, 27 (1): 83- 96.
doi: 10.1016/j.dental.2010.10.024
8 GUO J , TIAN B , WEI R , et al. Investigation of the time-dependent wear behavior of veneering ceramic in porcelain fused to metal crowns during chewing simulations[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 40, 23- 32.
doi: 10.1016/j.jmbbm.2014.08.006
9 STAWARCZYK B , LIEBERMANN A , EICHBERGER M , et al. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 55, 1- 11.
10 YU P , XIONG Y , ZHAO P , et al. On the wear behavior and damage mechanism of bonded interface: ceramic vs resin composite inlays[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 101, 103430.
doi: 10.1016/j.jmbbm.2019.103430
11 HEINTZE S D , CAVALLERI A , FORJANIC M , et al. Wear of ceramic and antagonist-a systematic evaluation of influencing factors in vitro[J]. Dental Materials, 2008, 24 (4): 433- 449.
doi: 10.1016/j.dental.2007.06.016
12 KRAMER N , KUNZELAMNN K H , TASCHNER M , et al. Antagonist enamel wears more than ceramic inlays[J]. Journal of Dental Research, 2006, 85 (12): 1097- 1100.
doi: 10.1177/154405910608501206
13 MUNDHE K , JAIN V , PRUTHI G , et al. Clinical study to evaluate the wear of natural enamel antagonist to zirconia and metal ceramic crowns[J]. The Journal of Prosthetic Dentistry, 2015, 114 (3): 358- 363.
doi: 10.1016/j.prosdent.2015.03.001
14 CUYA J L , MANNA A B , LIVI K J , et al. Nanoindentation mapping of the mechanical properties of human molar tooth enamel[J]. Archives of Oral Biology, 2002, 47 (4): 281- 291.
doi: 10.1016/S0003-9969(02)00006-7
15 HE L H , SWAIN M V . Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1 (1): 18- 29.
doi: 10.1016/j.jmbbm.2007.05.001
16 SAKAGUCHI R L , POWERS J M . Craig's restorative dental materials[M]. Philadelphia: Mosby Elsevier, 2012: 16.
17 YAHYAZADEHFAR M , BAJAJ D , AROL D D . Hidden contributions of the enamel rods on the fracture resistance of human teeth[J]. Acta Biomaterialia, 2013, 9 (1): 4806- 4814.
doi: 10.1016/j.actbio.2012.09.020
18 CESAR P F , YOSHIMURA H N , MIRANDA J W G , et al. Correlation between fracture toughness and leucite content in dental porcelains[J]. Journal of Dentistry, 2005, 33 (9): 721- 729.
doi: 10.1016/j.jdent.2005.02.001
19 GE C , GREEN C C , SEDERSTROM D , et al. Effect of porcelain and enamel thickness on porcelain veneer failure loads in vitro[J]. The Journal of Prosthetic Dentistry, 2014, 111 (5): 380- 387.
doi: 10.1016/j.prosdent.2013.09.025
20 HOMSY F , EID R , EL GHOUL W , et al. Considerations for altering preparation designs of porcelain inlay/onlay restorations for nonvital teeth[J]. Journal of Prosthodontics, 2015, 24 (6): 457- 462.
doi: 10.1111/jopr.12279
21 JAGER N D , FEILZER A J , DAVIDSON C L . The influence of surface roughness on porcelain strength[J]. Dental Materials, 2000, 16 (6): 381- 388.
doi: 10.1016/S0109-5641(00)00030-0
22 SHI J Y , LI X , NI J , et al. Clinical evaluation and patient satisfaction of single zirconia-based and high-noble alloy porcelain-fused-to-metal crowns in the esthetic area: a retrospective cohort study[J]. Journal of Prosthodontics, 2016, 25 (7): 526- 530.
doi: 10.1111/jopr.12344
23 ZHANG G , YAO B , GAO H , et al. Nanomechanics properties of feldspathic dental ceramics[J]. Journal of Computational and Theoretical Nanoscience, 2008, 5 (8): 1493- 1496.
doi: 10.1166/jctn.2008.808
24 GONZAGA C C , YOSHIMURA H N , CESAR P F , et al. Subcritical crack growth in porcelains, glass-ceramics, and glass-infiltrated alumina composite for dental restorations[J]. Journal of Materials Science Materials in Medicine, 2009, 20 (5): 1017- 1024.
doi: 10.1007/s10856-008-3667-z
25 GUAZZATO M , ALBAKRY M , RINGER S P , et al. Strength, fracture toughness and microstructure of a selection of all-ceramic materials part Ⅰ: pressable and alumina glass-infiltrated ceramics[J]. Dental Materials, 2004, 20 (5): 441- 448.
doi: 10.1016/j.dental.2003.05.003
26 GUESS P C , SCHULTHEIS S , BONFANTE E A , et al. All-ceramic systems: laboratory and clinical performance[J]. Dental Clinics of North America, 2011, 55 (2): 333- 352.
doi: 10.1016/j.cden.2011.01.005
27 PENG Z , IZZAT A R M , ZHANG Y , et al. Wear behavior of pressable lithium disilicate glass ceramic[J]. Journal of Biomedical Materials Research: Part B, 2016, 104 (5): 968- 978.
doi: 10.1002/jbm.b.33447
28 RITZBERGER C , SCHWEIGER M , HÖLAND W . Principles of crystal phase formation in Ivoclar Vivadent glass-ceramics for dental restorations[J]. Journal of Non-Crystalline Solids, 2016, 432, 137- 142.
doi: 10.1016/j.jnoncrysol.2015.04.034
29 SANTOS M J M C , COSTA M D , RUBO J H , et al. Current all-ceramic systems in dentistry: a review[J]. Compendium of Continuing Education in Dentistry, 2015, 36 (1): 31- 37.
30 BONA A D , MECHOLSKY J J , BARRETT A A , et al. Characterization of glass-infiltrated alumina-based ceramics[J]. Dental Materials, 2008, 24 (11): 1568- 1574.
doi: 10.1016/j.dental.2008.06.005
31 SEGHI R R , DENRY I L , ROSENSTIEL S F . Relative fracture toughness and hardness of new dental ceramics[J]. The Journal of Prosthetic Dentistry, 1995, 74, 145- 150.
doi: 10.1016/S0022-3913(05)80177-5
32 WAGNER W C , CHU T M . Biaxial flexural strength and indentation fracture toughness of three new dental core ceramics[J]. Journal of Prosthetic Dentistry, 1996, 76 (2): 140- 144.
doi: 10.1016/S0022-3913(96)90297-8
33 ERSU B , YUZUGULLU B , RUYA Y A , et al. Surface roughness and bond strengths of glass-infiltrated alumina-ceramics prepared using various surface treatments[J]. Journal of Dentistry, 2009, 37 (11): 848- 856.
doi: 10.1016/j.jdent.2009.06.017
34 CHRISTEL P , MEUNIER A , HELLER M , et al. Mechanical properties and short-term in vivo evaluation of yttrium-oxide-partially-stabilized zirconia[J]. Journal of Biomedical Materials Research, 1989, 23 (1): 45- 61.
doi: 10.1002/jbm.820230105
35 DENRY I , KELLY J . State of the art of zirconia for dental applications[J]. Dental Materials, 2008, 24 (3): 299- 307.
doi: 10.1016/j.dental.2007.05.007
36 GUAZZATO M , ALBAKRY M , RINGER S P , et al. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. part Ⅱ. zirconia-based dental ceramics[J]. Dental Materials, 2004, 20 (5): 449- 456.
doi: 10.1016/j.dental.2003.05.002
37 MCLAREN E A , GIORDANO R . Ceramics overview: classification by microstructure and processing methods[J]. Cosmetic Dentistry, 2015, 1, 18- 27.
38 RAIGRODSKI A J . Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature[J]. The Journal of Prosthetic Dentistry, 2004, 92 (6): 557- 562.
doi: 10.1016/j.prosdent.2004.09.015
39 ZHANG F , SPIES B C , VLEUGELS J , et al. High-translucent yttria-stabilized zirconia ceramics are wear-resistant and antagonist-friendly[J]. Dental Materials, 2019, 35 (12): 1776- 1790.
doi: 10.1016/j.dental.2019.10.009
40 ZHANG Y , LAWN B R . Novel zirconia materials in dentistry[J]. Journal of Dental Research, 2017, 97 (2): 140- 147.
41 DELLA B A , CORAZZA P H , ZHANG Y . Characterization of a polymer-infiltrated ceramic-network material[J]. Dental Materials, 2014, 30 (5): 564- 569.
doi: 10.1016/j.dental.2014.02.019
42 FACENDA J C , BORBA M , CORAZZA P H . A literature review on the new polymer-infiltrated ceramic-network material(PICN)[J]. Journal of Esthetic and Restorative Dentistry, 2018, 30 (4): 281- 286.
doi: 10.1111/jerd.12370
43 HE L H , SWAIN M . A novel polymer infiltrated ceramic dental material[J]. Dental Materials, 2011, 27 (6): 527- 534.
doi: 10.1016/j.dental.2011.02.002
44 LI J , CUI B C , LIN Y H , et al. High strength and toughness in chromatic polymer-infiltrated zirconia ceramics[J]. Dental Materials, 2016, 32 (12): 1555- 1563.
doi: 10.1016/j.dental.2016.09.003
45 LI J , ZHANG X H , CUI B C , et al. Mechanical performance of polymer-infiltrated zirconia ceramics[J]. Journal of Dentistry, 2017, 58, 60- 66.
doi: 10.1016/j.jdent.2017.01.008
46 LI S , ZHAO Y , ZHANG J F , et al. Machinability of poly(methyl methacrylate) infiltrated zirconia hybrid composites[J]. Materials Letters, 2014, 131, 347- 349.
doi: 10.1016/j.matlet.2014.06.021
47 SWAIN M V , COLDEA A , BILKHAIR A , et al. Interpenetrating network ceramic-resin composite dental restorative materials[J]. Dental Materials, 2016, 32 (1): 34- 42.
doi: 10.1016/j.dental.2015.09.009
48 NAKAMURA Y , YAMAMOTO T , SHIIGETA Y , et al. In vitro investigation of human enamel wear by dental porcelain[J]. Bio-medical Materials and Engineering, 2019, 30 (4): 365- 374.
doi: 10.3233/BME-191059
49 NAKASHIMA J , TAIRA Y , SAWASE T . In vitro wear of four ceramic materials and human enamel on enamel antagonist[J]. European Journal of Oral Sciences, 2016, 124 (3): 295- 300.
doi: 10.1111/eos.12272
50 YU H Y , CAI Z B , REN P D , et al. Friction and wear behavior of dental feldspathic porcelain[J]. Wear, 2006, 261 (5/6): 611- 621.
51 ARSECULARATNE J A , DINGELDEIN J P , HOFFMAN M . An in vitro study of the wear mechanism of a leucite glass dental ceramic[J]. Biosurface and Biotribology, 2015, 1 (1): 50- 61.
doi: 10.1016/j.bsbt.2015.02.004
52 DUPRIEZ N D , VON K A K , KUNZELMANN K H . A comparative study of sliding wear of nonmetallic dental restorative materials with emphasis on micromechanical wear mechanisms[J]. Journal of Biomedical Materials Research: Part B, 2015, 103 (4): 925- 934.
doi: 10.1002/jbm.b.33193
53 THEOCHAROPOULOS A , CHEN X , HILL R , et al. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics[J]. Journal of Dentistry, 2013, 41 (6): 561- 568.
doi: 10.1016/j.jdent.2013.02.006
54 GALI S , RAVIKUMAR K . Zirconia toughened mica glass ceramics for dental restorations: wear, thermal, optical and cytocompatibility properties[J]. Dental Materials, 2019, 35 (12): 1706- 1717.
doi: 10.1016/j.dental.2019.08.112
55 KALIN M , HOCKEY B , JAHANMIR S . Wear of hydroxyapatite sliding against glass-infiltrated alumina[J]. Journal of Materials Research, 2003, 18 (1): 27- 36.
doi: 10.1557/JMR.2003.0005
56 KALIN M , JAHANMIR S , DRAZIC G . Wear mechanisms of glass-infiltrated alumina sliding against alumina in water[J]. Journal of the American Ceramic Society, 2005, 88 (2): 346- 352.
doi: 10.1111/j.1551-2916.2005.00051.x
57 KALIN M , JAHANMIR S , IVES L K . Effect of counterface roughness on abrasive wear of hydroxyapatite[J]. Wear, 2002, 252 (9/10): 679- 685.
58 LIN W , LIU Y H , SI W J , et al. Friction and wear behaviors of dental ceramics against natural tooth enamel[J]. Journal of the European Ceramic Society, 2012, 32 (11): 2599- 2606.
doi: 10.1016/j.jeurceramsoc.2012.03.021
59 XU Z , YU P , AROLA D D , et al. A comparative study on the wear behavior of a polymer infiltrated ceramic network(PICN) material and tooth enamel[J]. Dental Materials, 2017, 33 (12): 1351- 1361.
doi: 10.1016/j.dental.2017.08.190
60 SANTOS F , BRANCO A , POLIDO M , et al. Comparative study of the wear of the pair human teeth/Vita Enamic® vs commonly used dental ceramics through chewing simulation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 251- 260.
doi: 10.1016/j.jmbbm.2018.08.029
61 BORRERO-LOPEZ O , GUIBERTEAU F , ZHANG Y , et al. Wear of ceramic-based dental materials[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 92, 144- 151.
doi: 10.1016/j.jmbbm.2019.01.009
62 FIGUEIREDO-PINA C G , MONTEIRO A , GUEDES M , et al. Effect of feldspar porcelain coating upon the wear behavior of zirconia dental crowns[J]. Wear, 2013, 297 (1/2): 872- 877.
63 ABOUSHAHBA M , KATAMISH H , ELAGROUDY M . Evaluation of hardness and wear of surface treated zirconia on enamel wear: an in-vitro study[J]. Future Dental Journal, 2018, 4 (1): 76- 83.
doi: 10.1016/j.fdj.2017.10.001
64 YU P , XU Z , AROLA D D , et al. Effect of acidic agents on the wear behavior of a polymer infiltrated ceramic network(PICN) material[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 154- 163.
doi: 10.1016/j.jmbbm.2017.06.001
65 SILVA C S , HENRIQUES B , NOVAES D O A P , et al. Micro-scale abrasion and sliding wear of zirconium-lithium silicate glass-ceramic and polymer-infiltrated ceramic network used in dentistry[J]. Wear, 2020, 448/449, 203214.
doi: 10.1016/j.wear.2020.203214
66 CHOI J W , BAE I H , NOH T H , et al. Wear of primary teeth caused by opposed all-ceramic or stainless steel crowns[J]. The Journal of Advanced Prosthodontics, 2016, 8 (1): 43- 52.
doi: 10.4047/jap.2016.8.1.43
67 SOUZA J C M , SILVA C S , CARAM S J , et al. Wear behavior of dental glass-ceramics: a scoping review on the damage of opposing tooth enamel surfaces[J]. Biotribology, 2020, 21, 100116.
doi: 10.1016/j.biotri.2020.100116
68 JANG Y S , NGUYEN T T , KO Y H , et al. In vitro wear behavior between enamel cusp and three aesthetic restorative materials: zirconia, porcelain, and composite resin[J]. The Journal of Advanced Prosthodontics, 2019, 11 (1): 7- 15.
doi: 10.4047/jap.2019.11.1.7
69 GOU M , CHEN H , KANG J , et al. Antagonist enamel wear of tooth-supported monolithic zirconia posterior crowns in vivo: a systematic review[J]. The Journal of Prosthetic Dentistry, 2019, 121 (4): 598- 603.
doi: 10.1016/j.prosdent.2018.06.005
70 AMER R , KURKLU D , KATEEB E , et al. Three-body wear potential of dental yttrium-stabilized zirconia ceramic after grinding, polishing, and glazing treatments[J]. The Journal of Prosthetic Dentistry, 2014, 112 (5): 1151- 1155.
doi: 10.1016/j.prosdent.2013.12.021
71 BUCIUMEANU M , QUEIROZ J R C , MARTINELLI A E , et al. The effect of surface treatment on the friction and wear behavior of dental Y-TZP ceramic against human enamel[J]. Tribology International, 2017, 116, 192- 198.
doi: 10.1016/j.triboint.2017.07.016
72 CHONG B J , THANGAVEL A K , ROLTON S B , et al. Clinical and laboratory surface finishing procedures for zirconia on opposing human enamel wear: a laboratory study[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50, 93- 103.
doi: 10.1016/j.jmbbm.2015.06.007
73 JANYAVULA S , LAWSON N , CAKIR D , et al. The wear of polished and glazed zirconia against enamel[J]. The Journal of Prosthetic Dentistry, 2013, 109 (1): 22- 29.
doi: 10.1016/S0022-3913(13)60005-0
74 EDGAR M W . Saliva its secretion composition and functions[J]. British Dental Journal, 1992, 172 (8): 305- 312.
doi: 10.1038/sj.bdj.4807861
75 SCHIPPER R G , SILLETTI E , VINGERHOEDS M H . Saliva as research material: biochemical, physicochemical and practical aspects[J]. Archives of Oral Biology, 2007, 52 (12): 1114- 1135.
doi: 10.1016/j.archoralbio.2007.06.009
76 ZHENG J , HUANG H , SHI M Y , et al. In vitro study on the wear behaviour of human tooth enamel in citric acid solution[J]. Wear, 2011, 271 (9/10): 2313- 2321.
77 FATHY S M , SWAIN M V . In-vitro wear of natural tooth surface opposed with zirconia reinforced lithium silicate glass ceramic after accelerated ageing[J]. Dental Materials, 2018, 34 (3): 551- 559.
doi: 10.1016/j.dental.2017.12.010
78 ZHANG H , SUN Y , GUO J , et al. The effect of food medium on the wear behaviour of veneering porcelain: an in vitro study using the three-body abrasion mode[J]. Journal of Dentistry, 2019, 83, 87- 94.
doi: 10.1016/j.jdent.2019.02.010
79 PALMER D S , BARCO M T , PELLEU G B . Wear of human enamel against a commercial castable ceramic restorative material[J]. Journal of Prosthetic Dentistry, 1991, 65 (2): 192- 195.
doi: 10.1016/0022-3913(91)90161-O
80 ROOTARE H M , POWERS J M , RAIG R G . Sintered hydroxyapatite ceramic for wear studies[J]. Journal of Dental Research, 1978, 57 (7): 777- 783.
81 ZHENG J , LI Y , SHI M Y , et al. Microtribological behaviour of human tooth enamel and artificial hydroxyapatite[J]. Tribology International, 2013, 63, 177- 185.
doi: 10.1016/j.triboint.2012.04.019
82 PREIS V , BEHR M , HANDEL G , et al. Wear performance of dental ceramics after grinding and polishing treatments[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 10, 13- 22.
doi: 10.1016/j.jmbbm.2012.03.002
83 GILLINGS B . Jaw movements in young adult men during chewing[J]. Journal of Prosthetic Dentistry, 1973, 29 (2): 567- 576.
84 HIIEMAE K , HEATH M R , HEATH G , et al. Natural bites, food consistency and feeding behaviour in man[J]. Archives of Oral Biology, 1996, 41 (2): 175- 189.
doi: 10.1016/0003-9969(95)00112-3
85 WODA A , MISHELLANY A , PEYRON M A . The regulation of masticatory function and food bolus formation[J]. Journal of Oral Rehabilitation, 2006, 33 (11): 840- 849.
doi: 10.1111/j.1365-2842.2006.01626.x
86 KADOKAWA A , SUZUKI S , TANAKA T . Wear evaluation of porcelain opposing gold, composite resin, and enamel[J]. The Journal of Prosthetic Dentistry, 2006, 96 (4): 258- 265.
doi: 10.1016/j.prosdent.2006.08.016
87 DUNNE S . Quantitative measurement of tooth and ceramic wear: in vivo study[J]. International Journal of Prosthodontics, 2008, 21 (3): 245- 252.
88 LAMBRECHTS P , BRAEM M , VUYLSTEKE-WAUTERS M , et al. Quantitative in vivo wear of human enamel[J]. Journal of Dental Research, 1989, 68 (12): 1752- 1754.
doi: 10.1177/00220345890680120601
89 LEI L , ZHENG L , XIAO H , et al. Wear mechanism of human tooth enamel: the role of interfacial protein bonding between HA crystals[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103845.
doi: 10.1016/j.jmbbm.2020.103845
90 PENG J , XIAO H , YANG D , et al. Surface hardening behavior of enamel by masticatory loading: occurrence mechanism and antiwear effect[J]. ACS Biomaterials Science & Engineering, 2020, 6 (8): 4454- 4461.
91 ZHENG J , ZENG Y , WEN J , et al. Impact wear behavior of human tooth enamel under simulated chewing conditions[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 119- 127.
doi: 10.1016/j.jmbbm.2016.04.039
92 CUI F Z , GE J . New observations of the hierarchical structure of human enamel, from nanoscale to microscale[J]. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1 (3): 185- 191.
doi: 10.1002/term.21
93 WHITE S N , LUO W , PAINE M L , et al. Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel[J]. Journal of Dental Research, 2001, 80 (1): 321- 326.
doi: 10.1177/00220345010800010501
94 ZHENG J , ZHOU Z R . Study of in vitro wear of human tooth enamel[J]. Tribology Letters, 2007, 26 (2): 181- 189.
doi: 10.1007/s11249-006-9192-7
[1] 张勇, 刘华艳, 张友源, 燕青芝. Ti3SiC2陶瓷材料的制备及抗烧蚀行为[J]. 材料工程, 2021, 49(9): 119-127.
[2] 张海连, 段淼, 李四中, 林志勇. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49(7): 85-91.
[3] 杨礼河, 陈绪望, 张建国, 孙玉德. 纳米G/Fe3O4复合材料的制备及其摩擦学性能[J]. 材料工程, 2021, 49(2): 143-148.
[4] 王勉, 刘秀波, 欧阳春生, 罗迎社, 陈德强. 304不锈钢激光原位合成自润滑涂层的宽温域摩擦学性能[J]. 材料工程, 2021, 49(1): 133-143.
[5] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[6] 尹艳丽, 于鹤龙, 周新远, 宋占永, 王红美, 王文宇, 刘晓亭, 徐滨士. 基于正交实验方法的蛇纹石润滑油添加剂摩擦学性能[J]. 材料工程, 2020, 48(7): 146-153.
[7] 黄希, 李小燕, 方晓东, 熊子成, 彭奕超, 韦丽华. 容错事故燃料包壳用FeCrAl合金的研究进展[J]. 材料工程, 2020, 48(3): 19-33.
[8] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[9] 姚彧敏, 李红, 刘正启, 杨敏, 任慕苏, 孙晋良. 高导热碳/碳复合材料微观结构及导热性能[J]. 材料工程, 2020, 48(11): 155-161.
[10] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[11] 吴雪梅, 杨绿, 周元康, 曹阳. 超微坡缕石/Cu复合粉体作为润滑油添加剂的摩擦学性能[J]. 材料工程, 2018, 46(9): 88-94.
[12] 周堃, 刘杰, 赵宇. 硅橡胶密封件长期贮存老化行为[J]. 材料工程, 2018, 46(8): 163-168.
[13] 陈义川, 胡跃辉, 胡克艳, 张效华, 童帆, 帅伟强, 劳子轩. 共掺浓度对Na-Al共掺杂ZnO薄膜微观结构和光电性能的影响[J]. 材料工程, 2018, 46(6): 51-56.
[14] 刘红娟, 谢水波, 张希晨, 刘迎九, 曾涛涛. 氧化石墨烯复合材料吸附铀的研究进展[J]. 材料工程, 2018, 46(5): 11-21.
[15] 申造宇, 黄光宏, 何利民, 牟仁德, 李建平. 大尺寸TiAl/Ti3Al微叠层超薄板制备和力学性能[J]. 材料工程, 2018, 46(5): 72-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn