1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China 2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
Soft magnetic materials have been widely applied in modern industries as energy materials. In recent years, with the increasingly high frequency and miniaturization of magnetic components, as well as the call of energy conservation and environmental protection, the development and research of high-performance soft magnetic material are of great important significance. The present work generalized the development history of soft magnetic alloys comprehensively, from the viewpoints of chemical compositions, microstructures, magnetic properties, application fields, and advantages and disadvantages of different soft magnetic alloys. The involved alloy systems include primarily traditional crystalline alloys, amorphous/nanocrystalline alloys, and high entropy alloys. It is found that the microstructure induced by alloy compositions plays a dominant role in soft magnetic property, especially the coercivity. Then the influence factors on the coercivity of alloys and the related micro-mechanisms were discussed, in which the grain size in traditional alloys or particle size in nano-crystalline alloys is crucial to achieve lower coercivity. Therefore, the development of the micro-mechanisms of coercivity in high entropy soft magnetic alloys was described. Finally, it was expected that high entropy soft magnetic alloys would be more beneficial to modulate alloy properties due to the diversification of microstructures induced by the mixing of multi-principal elements, which shows great potential to serve as a new generation of high temperature soft magnet materials.
DAI D S , QIAN K M . Ferromagnetism[M]. 2nd ed Beijing: Science Press, 2017.
2
科埃. 磁学和磁性材料[M]. 北京: 北京大学出版社, 2014.
2
COEY J M D . Magnetism and magnetic materials[M]. Beijing: Peking University Press, 2014.
3
ALI M , AHMAD F . A review of processing techniques for Fe-Ni soft magnetic materials[J]. Materials and Manufacturing Processes, 2019, 34 (14): 1580- 1604.
doi: 10.1080/10426914.2019.1662038
4
SUNDAR R S , DEEVI S C . Soft magnetic FeCo alloys: alloy development, processing, and properties[J]. International Materials Reviews, 2005, 50 (3): 157- 192.
doi: 10.1179/174328005X14339
5
QIAO J L , GUO F H , HU J W , et al. Development of thin-gauge low iron loss non-oriented silicon steel[J]. Metallurgical Research & Technology, 2021, 118 (1): 113.
LIU J C , MEI Y H , LU G Q . Research progress of high frequency soft magnetic materials in power electronics[J]. Journal of Materials Engineering, 2017, 45 (5): 127- 134.
CHENG R , LEI G L , WANG L F , et al. Research progress on high temperature and high saturation flux density soft magnetic ferrites[J]. China Ceramics, 2018, 54 (12): 1- 6.
8
ALBEN R , BECKER J J , CHI M C . Random anisotropy in amorphous ferromagnets[J]. Journal of Applied Physics, 1978, 49 (3): 1653- 1658.
doi: 10.1063/1.324881
9
YOSHIZAWA Y , OGUMA S , YAMAUCHI K . New Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. Journal of Applied Physics, 1988, 64 (10): 6044- 6046.
doi: 10.1063/1.342149
10
SUZUKI K , KATAOKA N , INOUE A , et al. High saturation magnetization and soft magnetic properties of bcc Fe-Zr-B alloys with ultrafine grain structure[J]. Materials Transactions JIM, 1990, 31 (8): 743- 746.
doi: 10.2320/matertrans1989.31.743
11
WILLARD M A , LAUGHLIN D E , MCHENRY M E , et al. Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys[J]. Journal of Applied Physics, 1998, 84 (12): 6773- 6777.
doi: 10.1063/1.369007
12
HERZER G . Modern soft magnets: amorphous and nanocrystalline materials[J]. Acta Materialia, 2013, 61 (3): 718- 734.
doi: 10.1016/j.actamat.2012.10.040
13
LI Y H , JIA X J , ZHANG W , et al. Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing alpha-Fe nanoparticles-structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys[J]. Journal of Materials Science & Technology, 2021, 65, 171- 181.
14
LI Y H , ZHANG G Z , WU L C , et al. Effects of annealing temperature and heating rate on microstructure, magnetic, and mechanical properties of high-BS Fe81.7-xSi4B13NbxCu1.3 nanocrystalline alloys[J]. Journal of Materials Science, 2021, 56 (3): 2572- 2583.
doi: 10.1007/s10853-020-05341-8
15
YAO K F , SHI L X , CHEN S Q , et al. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys[J]. Acta Physica Sinica, 2018, 67 (1): 016101.
doi: 10.7498/aps.67.20171473
16
ZUO T T , GAO M C , OUYANG L Z , et al. Tailoring magnetic behavior of CoFeMnNiX (X= Al, Cr, Ga, and Sn) high entropy alloys by metal doping[J]. Acta Materialia, 2017, 130, 10- 18.
doi: 10.1016/j.actamat.2017.03.013
17
ZHANG Y , ZUO T T , CHENG Y Q , et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability[J]. Scientific Reports, 2013, 3, 1455.
doi: 10.1038/srep01455
18
MA Y , WANG Q , ZHOU X Y , et al. A novel soft-magnetic B2-based multiprincipal-element alloy with a uniform distribution of coherent body-centered-cubic nanoprecipitates[J]. Advanced Materials, 2021, 2006723.
19
ZHOU K X , SUN B R , LIU G Y , et al. FeCoNiAlSi high entropy alloys with exceptional fundamental and application-oriented magnetism[J]. Intermetallics, 2020, 122, 106801.
doi: 10.1016/j.intermet.2020.106801
20
ZHANG Y , ZHANG M , LI D Y , et al. Compositional design of soft magnetic high entropy alloys by minimizing magnetostriction coefficient in (Fe0.3Co0.5Ni0.2)100-x(Al1/3Si2/3)x system[J]. Metals, 2019, 9 (3): 382.
doi: 10.3390/met9030382
21
DENG Q , TANG Y J , TAN Y F , et al. Effect of grain boundary character distribution on soft magnetic property of face-centered cubic FeCoNiAl0.2 medium-entropy alloy[J]. Materials Characterization, 2020, 159, 110028.
doi: 10.1016/j.matchar.2019.110028
22
CHEN C , ZHANG H , FAN Y Z , et al. Improvement of corrosion resistance and magnetic properties of FeCoNiAl0.2Si0.2 high entropy alloy via rapid-solidification[J]. Intermetallics, 2020, 122, 106778.
doi: 10.1016/j.intermet.2020.106778
23
LI P P , WANG A D , LIU C T . Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl)x high entropy alloys[J]. Intermetallics, 2017, 87, 21- 26.
doi: 10.1016/j.intermet.2017.04.007
24
LI Z , WANG C X , YU L Y , et al. Magnetic properties and microstructure of FeCoNi(CuAl)0.8Snx (0≤x≤0.10) high-entropy alloys[J]. Entropy, 2018, 20 (11): 872.
doi: 10.3390/e20110872
25
LI Z , GU Y , PAN M X , et al. Tailoring AC magnetic properties of FeCoNi(MnSi)x (0≤x≤0.4) high-entropy alloys by the addition of Mn and Si elements[J]. Journal of Alloys and Compounds, 2019, 792, 215- 221.
doi: 10.1016/j.jallcom.2019.03.411
26
ZHANG H , YANG Y X , LIU L , et al. A novel FeCoNiCr0.2Si0.2 high entropy alloy with an excellent balance of mechanical and soft magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2019, 478, 116- 121.
doi: 10.1016/j.jmmm.2019.01.096
27
MURATA Y , MORINAGA M . Recrystallization behaviour of pure iron at Curie temperature[J]. Scripta Materialia, 2000, 43 (6): 509- 513.
doi: 10.1016/S1359-6462(00)00458-9
28
BARRET W F , BROWN W , HADFFELD R A . Researches on the electrical conductivity and magnetic properties of upwards of one hundred different alloys of iron[J]. Journal of the Institution of Electrical Engineers, 1902, 31 (156): 674- 722.
doi: 10.1049/jiee-1.1902.0032
29
MENG L , ZHANG N , ZHANG B , et al. Evolution of {0kl} 〈100〉 texture and microstructure in preparation of ultra-thin grain-oriented silicon steel[J]. Journal of Magnetism and Magnetic Materials, 2021, 523, 167590.
doi: 10.1016/j.jmmm.2020.167590
30
WANG Y P , AN L Z , SONG H Y , et al. Dependence of recrystallization behavior on initial Goss orientation in ultra-thin grain-oriented silicon steels[J]. Journal of Magnetism and Magnetic Materials, 2020, 499, 166290.
doi: 10.1016/j.jmmm.2019.166290
31
ZHANG Y X , XIA Y K , DUN H , et al. Evolution of the shear band in cold-rolling of strip-cast Fe-1.3%Si non-oriented silicon steel[J]. Materials, 2021, 14 (4): 775.
doi: 10.3390/ma14040775
32
OUYANG G Y , MACZIEWSKI C R , JENSEN B , et al. Effects of solidification cooling rates on microstructures and physical properties of Fe-6.5%Si alloys[J]. Acta Materialia, 2021, 205, 116575.
doi: 10.1016/j.actamat.2020.116575
33
LIANG Y F , WANG S , QI J K , et al. Microstructure and properties of cost-effective Fe-6.5 wt%Si ribbons fabricated by melt-spinning[J]. Scripta Materialia, 2019, 163, 107- 110.
doi: 10.1016/j.scriptamat.2019.01.002
34
OUYANG G Y , CHEN X , LIANG Y F , et al. Review of Fe-6.5 wt%Si high silicon steel-a promising soft magnetic material for sub-kHz application[J]. Journal of Magnetism and Magnetic Materials, 2019, 481, 234- 250.
doi: 10.1016/j.jmmm.2019.02.089
35
ARNOLD H D , ELMEN G W . Permalloy, a new magnetic material of very high permeability[J]. Bell System Technical Journal, 1923, 2 (3): 101- 111.
doi: 10.1002/j.1538-7305.1923.tb03595.x
36
BOOTHBY O L , BOZORTH R M . A new magnetic material of high permeability[J]. Journal of Applied Physics, 1947, 18 (2): 173- 176.
doi: 10.1063/1.1697599
37
CHIN G . Review of magnetic properties of Fe-Ni alloys[J]. IEEE Transactions on Magnetics, 1971, 7 (1): 102- 113.
doi: 10.1109/TMAG.1971.1067014
38
CHEN C W . Metallurgy and magnetic properties of an Fe-Co-V alloy[J]. Journal of Applied Physics, 1961, 32 (3): 348- 355.
doi: 10.1063/1.2000465
39
MASUMOTO H , YAMAMOTO T . On a new alloy "Sendust" and its magnetic and electric properties[J]. The Journal of the Japan Institute of Metals, 1937, 1 (3): 127- 135.
40
YAMAMOTO T , UTSUSHIKAWA Y . Effects of Ni content on magnetic properties of a new high permeability magnetic alloy 'Super Sendust' in the Fe-Si-Al-Ni system[J]. The Japan Institute of Metals and Materials, 1976, 40 (10): 975- 981.
doi: 10.2320/jinstmet1952.40.10_975
41
OTOMO S . Effects of Cr and Ti additions on wear resistance and magnetic properties of Fe-Al-Si alloy[J]. Nippon Kinzoku Gakkaishi, 1994, 58 (4): 455- 460.
42
KLEMENT W , WILLENS R H , DUWEZ P . Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187 (4740): 869- 870.
WANG L J , ZHANG G Q , LI S H , et al. Advantages and prospects of iron-based amorphous alloy applied to motor cores[J]. Metallic Functional Materials, 2010, 17 (5): 58- 62.
44
DUWEZ P , LIN S C . Amorphous ferromagnetic phase in iron-carbon-phosphorus alloys[J]. Journal of Applied Physics, 1967, 38 (10): 4096- 4097.
doi: 10.1063/1.1709084
45
GUO S F , SU C , CUI J X , et al. Effects of B addition on glass forming ability and thermal behavior of FePC-based bulk metallic glasses[J]. Journal of Iron and Steel Research International, 2017, 24 (4): 442- 447.
doi: 10.1016/S1006-706X(17)30067-5
46
INOUE A , GOOK J S . Fe-based ferromagnetic glassy alloys with wide supercooled liquid region[J]. Materials Transactions JIM, 1995, 36 (9): 1180- 1183.
doi: 10.2320/matertrans1989.36.1180
47
INOUE A , KONG F L , HAN Y , et al. Development and application of Fe-based soft magnetic bulk metallic glassy inductors[J]. Journal of Alloys and Compounds, 2018, 731, 1303- 1309.
doi: 10.1016/j.jallcom.2017.08.240
48
WAN C , YANG W M , LIU H S , et al. Ductile Fe-based bulk metallic glasses at room temperature[J]. Materials Science and Technology, 2018, 34 (6): 751- 756.
doi: 10.1080/02670836.2017.1412037
49
LI H X , LU Z C , WANG S L , et al. Fe-based bulk metallic glasses: glass formation, fabrication, properties and applications[J]. Progress in Materials Science, 2019, 103, 235.
LIU T H , GUO S F . Research progress of glass-formation rule and mechanical properties of Fe-based bulk amorphous alloys[J]. Journal of Materials Engineering, 2020, 48 (11): 46- 57.
doi: 10.11868/j.issn.1001-4381.2020.000389
51
ZHU K R , JIANG W , WU J L , et al. Effect of Mo on properties of the industrial Fe-B-alloy-derived Fe-based bulk metallic glasses[J]. International Journal of Minerals Metallurgy and Materials, 2017, 24 (8): 926- 930.
doi: 10.1007/s12613-017-1479-1
52
HASEGAWA R , NARASIMHAN M C , DECRISTOFARO N . A high permeability Fe-Ni base glassy alloy containing Mo[J]. Journal of Applied Physics, 1978, 49 (3): 1712- 1714.
doi: 10.1063/1.324897
53
OHANDLEY R C , MENDELSOHN L I , NESBITT E A . New non-magnetostrictive metallic glass[J]. IEEE Transactions on Magnetics, 1976, 12 (6): 942- 944.
doi: 10.1109/TMAG.1976.1059134
54
HUANG D W , LI Y H , YANG Y P , et al. Soft magnetic Co-based Co-Fe-B-Si-P bulk metallic glasses with high saturation magnetic flux density of over 1.2 T[J]. Journal of Alloys and Compounds, 2020, 843, 154862.
doi: 10.1016/j.jallcom.2020.154862
55
MAN Q K , DONG Y Q , CHANG C T , et al. Co-based bulk metallic glasses with good soft-magnetic properties and high strength[J]. Materials Science Forum, 2017, 898, 703- 708.
doi: 10.4028/www.scientific.net/MSF.898.703
56
BAO F , LI Y H , ZHU Z W , et al. Enhancement of glass-forming ability and thermal stability of a soft magnetic Co75B25 metallic glass by micro-alloying Y and Nb[J]. Journal of Iron and Steel Research International, 2020, 28 (5): 597- 603.
57
ABROSIMOVA G , ARONIN A . On decomposition of amorphous phase in metallic glasses[J]. Reviews on Advanced Materials Science, 2017, 50 (1/2): 55- 61.
58
LAI L M , HE R G , DING K L , et al. Ternary Co-Mo-B bulk metallic glasses with ultrahigh strength and good ductility[J]. Journal of Non-Crystalline Solids, 2019, 524, 119657.
doi: 10.1016/j.jnoncrysol.2019.119657
59
WANG Q Q , ZHOU J , ZENG Q S , et al. Ductile Co-based bulk metallic glass with superhigh strength and excellent soft magne-tic properties induced by modulation of structural heterogeneity[J]. Materialia, 2020, 9, 100561.
doi: 10.1016/j.mtla.2019.100561
60
ZHANG G L , WANG Q Q , YUAN C C , et al. Effects of Cu additions on mechanical and soft-magnetic properties of CoFeBSiNb bulk metallic glasses[J]. Journal of Alloys and Compounds, 2018, 737, 815- 820.
doi: 10.1016/j.jallcom.2017.12.176
61
LI Y H , JIA X J , XU Y Q , et al. Soft magnetic Fe-Si-B-Cu nanocrystalline alloys with high Cu concentrations[J]. Journal of Alloys and Compounds, 2017, 722, 859- 863.
doi: 10.1016/j.jallcom.2017.06.128
62
KONG F , WANG A , FAN X , et al. High BS Fe84-xSi4B8P4Cux (x=0-1.5) nanocrystalline alloys with excellent magnetic softness[J]. Journal of Applied Physics, 2011, 109 (7): 07A303.
doi: 10.1063/1.3535290
HUANG M Q , WU K M , XIANG Q , et al. Research status and future development trend of a novel FeSiBPCu nano soft magnetic alloy[J]. Journal of Iron and Steel Research, 2018, 30 (10): 763- 768.
64
JIA X J , LI Y H , XIE G Q , et al. Role of Mo addition on structure and magnetic properties of the Fe85Si2B8P4Cu1 nanocrystalline alloy[J]. Journal of Non-Crystalline Solids, 2018, 481, 590- 593.
doi: 10.1016/j.jnoncrysol.2017.12.003
65
DASTANPOUR E , ENAYATI M H , MASOOD A , et al. Quantification of the anomalous crystallization and soft magnetic properties of Fe-Si-B-P-Cu (Nanomet) by isothermal calorimetry[J]. Journal of Alloys and Compounds, 2020, 830, 154705.
doi: 10.1016/j.jallcom.2020.154705
66
JIA X J , LI Y H , WU L C , et al. A study on the role of Ni content on structure and properties of Fe-Ni-Si-B-P-Cu nanocrystalline alloys[J]. Journal of Alloys and Compounds, 2020, 822, 152784.
doi: 10.1016/j.jallcom.2019.152784
67
LI W , XIE C X , YAO C L , et al. Amorphous formation and magnetic properties of Co-containing FeSiBPCu nanocrystalline alloys[J]. Journal of Non-Crystalline Solids, 2019, 505, 87- 91.
doi: 10.1016/j.jnoncrysol.2018.10.044
68
JIA X J , LI Y H , WU L C , et al. The role of Cu content on structure and magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys[J]. Journal of Materials Science, 2019, 54 (5): 4400- 4408.
doi: 10.1007/s10853-018-3131-5
69
WANG Z , YANG J , HAN Y M , et al. Magnetostriction and effective magnetic anisotropy of Co-contained Finemet nanocrystalline alloys[J]. Journal of Applied Physics, 2010, 107 (9): 09A308.
doi: 10.1063/1.3340514
70
WEN L X , WANG Z , WANG J , et al. High temperature magne-tic permeability of Si-rich Finemet-type nanocrystalline (Fe1-xCox)74.5Nb2Si17.5B5Cu1 alloys[J]. Journal of Magnetism and Magnetic Materials, 2015, 379, 265- 269.
doi: 10.1016/j.jmmm.2014.12.058
71
PETZOLD J . Applications of nanocrystalline softmagnetic materials for modern electronic devices[J]. Scripta Materialia, 2003, 48 (7): 895- 901.
doi: 10.1016/S1359-6462(02)00624-3
72
SUZUKI K , MAKINO A , INOUE A , et al. Soft magnetic properties of nanocrystalline bcc Fe-Zr-B and Fe-M-B-Cu (M=transition metal) alloys with high saturation magnetization (invited)[J]. Journal of Applied Physics, 1991, 70 (10): 6232- 6237.
doi: 10.1063/1.350006
73
MAKINO A , SUZUKI K , INOUE A , et al. Magnetic properties and microstructure of nanocrystalline bcc Fe-M-B (M=Zr, Hf, Nb) alloys[J]. Journal of Magnetism and Magnetic Materials, 1994, 133 (1/3): 329- 333.
74
MAKINO A , BITOH T , KOJIMA A , et al. Magnetic properties of zero-magnetostrictive nanocrystalline Fe-Zr-Nb-B soft magnetic alloys with high magnetic induction[J]. Journal of Magnetism and Magnetic Materials, 2000, 215/216, 288- 292.
doi: 10.1016/S0304-8853(00)00136-0
75
MAKINO A , HATANAI T , YOSHIDA S , et al. High permeabi-lity and low core losses of nanocrystalline Fe-Nb-Zr-B-Cu alloys[J]. Science Reports of the Research Institutes Tohoku University Series A, 1996, 42 (1): 121- 125.
76
WILLARD M A. Structural and magnetic characterization of HITPERM soft magnetic materials for high temperature applications[D]. Pittsburgh: Carnegie ivlellon University, 2000.
77
SHEN B L , KIMURA H , INOUE A . Structure and magnetic properties of Fe42.5Co42.5Nb7B8 nanocrystalline alloy[J]. Materials Transactions, 2002, 43 (3): 589- 592.
doi: 10.2320/matertrans.43.589
78
XUE L , YANG W M , LIU H S , et al. Effect of Co addition on the magnetic properties and microstructure of FeNbBCu nanocrystalline alloys[J]. Journal of Magnetism and Magnetic Materials, 2016, 419, 198- 201.
doi: 10.1016/j.jmmm.2016.06.020
79
GUPTA P , SVEC P , SINHA A K , et al. Correlation of B2 super-lattice ordering with soft magnetic and mechanical properties of nanocrystalline FeCoNbB HITPERM alloys[J]. Materials Research Express, 2019, 6 (2): 026537.
80
SKORVANEK I , MARCIN J , KRENICKY T , et al. Improved soft magnetic behaviour in field-annealed nanocrystalline Hitperm alloys[J]. Journal of Magnetism and Magnetic Materials, 2006, 304 (2): 203- 207.
doi: 10.1016/j.jmmm.2006.02.120
81
YEH J W , CHEN S K , LIN S J , et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6 (5): 299- 303.
doi: 10.1002/adem.200300567
82
GEORGE E P , RAABE D , RITCHIE R O . High-entropy alloys[J]. Nature Reviews Materials, 2019, 4 (8): 515- 534.
doi: 10.1038/s41578-019-0121-4
83
LI Z Z , ZHAO S T , RITCHIE R O , et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys[J]. Progress in Materials Science, 2019, 102, 296- 345.
doi: 10.1016/j.pmatsci.2018.12.003
84
OSES C , TOHER C , CURTAROLO S . High-entropy ceramics[J]. Nature Reviews Materials, 2020, 5 (4): 295- 309.
doi: 10.1038/s41578-019-0170-8
85
RAABE D , SUN B H , Da SILVA A K , et al. Current challenges and opportunities in microstructure-related properties of advanced high-strength steels[J]. Metallurgical and Materials Transactions A, 2020, 51 (11): 5517- 5586.
86
MIRACLE D B . High entropy alloys as a bold step forward in alloy development[J]. Nature Communications, 2019, 10 (1): 1805.
doi: 10.1038/s41467-019-09700-1
87
QIN G , CHEN R R , ZHENG H T , et al. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition[J]. Journal of Materials Science & Technology, 2019, 35 (4): 578- 583.
88
LUCAS MS , MAUGER L , MUNOZ J , et al. Magnetic and vibrational properties of high-entropy alloys[J]. Journal of Applied Physics, 2011, 109 (7): 07E307.
doi: 10.1063/1.3538936
89
GAO M C , MIRACLE D B , MAURICE D , et al. High-entropy functional materials[J]. Journal of Materials Research, 2018, 33 (19): 3138- 3155.
doi: 10.1557/jmr.2018.323
90
ZUO T T , LI R B , REN X J , et al. Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy[J]. Journal of Magnetism and Magnetic Materials, 2014, 371, 60- 68.
doi: 10.1016/j.jmmm.2014.07.023
91
KAO Y F , CHEN S K , CHEN T J , et al. Electrical, magnetic, and hall properties of AlxCoCrFeNi high-entropy alloys[J]. Journal of Alloys and Compounds, 2011, 509 (5): 1607- 1614.
doi: 10.1016/j.jallcom.2010.10.210
92
KOZELJ P , VRTNIK S , JELEN A , et al. Discovery of a FeCoNiPdCu high-entropy alloy with excellent magnetic softness[J]. Advanced Engineering Materials, 2019, 21 (5): 1801055.
doi: 10.1002/adem.201801055
93
MA Y , WANG Q , JIANG B B , et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions[J]. Acta Materialia, 2018, 147, 213- 225.
doi: 10.1016/j.actamat.2018.01.050
94
LU Q , ZHANG W Y , ZHANG B C , et al. Note on magnetic properties of grain oriented 4%Si-Fe[J]. Acta Metallurgica Sinica, 1984, 20 (2): 127- 130.
95
YE F , LIANG Y F , WANG Y L , et al. Fe-6.5wt.%Si high silicon steel sheets produced by cold rolling[J]. Materials Science Forum, 2010, 638/642, 1428- 1433.
doi: 10.4028/www.scientific.net/MSF.638-642.1428
96
SMITH C H . Magnetic shielding to multi-gigawatt magnetic switches ten years of amorphous magnetic applications[J]. IEEE Transactions on Magnetics, 1982, 18 (6): 1376.
doi: 10.1109/TMAG.1982.1062022
97
LI J G , SU Z B , WEI F L , et al. Magnetic properties of nanostructured Fe40Ni38Mo4B18[J]. Chinese Physics Letters, 1999, 16 (3): 211- 213.
doi: 10.1088/0256-307X/16/3/020
98
MAKINO A , MEN H , KUBOTA T , et al. New Fe-metalloids based nanocrystalline alloys with high Bs of 1.9 T and excellent magnetic softness[J]. Journal of Applied Physics, 2009, 105 (7): 07A308.
doi: 10.1063/1.3058624
99
MOYA J A . Nanocrystals and amorphous matrix phase studies of Finemet-like alloys containing Ge[J]. Journal of Magnetism and Magnetic Materials, 2010, 322 (13): 1784- 1792.
doi: 10.1016/j.jmmm.2009.12.030
100
MAKINO A , HATANAI T , INOUE A , et al. Nanocrystalline soft magnetic Fe-M-B (M= Zr, Hf, Nb) alloys and their applications[J]. Materials Science and Engineering: A, 1997, 226, 594- 602.
101
LIANG X B , KULIK T , FERENC J , et al. Thermal and magnetic properties of Hf-containing HITPERM alloys[J]. Journal of Magnetism and Magnetic Materials, 2007, 308 (2): 227- 232.
doi: 10.1016/j.jmmm.2006.05.025
102
MA S G , ZHANG Y . Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy[J]. Materials Science and Engineering: A, 2012, 532, 480- 486.
doi: 10.1016/j.msea.2011.10.110
103
LI P P , WANG A D , LIU C T . A ductile high entropy alloy with attractive magnetic properties[J]. Journal of Alloys and Compounds, 2017, 694, 55- 60.
doi: 10.1016/j.jallcom.2016.09.186
104
ZHANG Q , XU H , TAN X H , et al. The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl)x (x=0-1.2) high-entropy alloys[J]. Journal of Alloys and Compounds, 2017, 693, 1061- 1067.
doi: 10.1016/j.jallcom.2016.09.271
105
LI Z , XU H , GU Y , et al. Correlation between the magnetic properties and phase constitution of FeCoNi(CuAl)0.8Gax (0 ≤ x≤0.08) high-entropy alloys[J]. Journal of Alloys and Compounds, 2018, 746, 285- 291.
doi: 10.1016/j.jallcom.2018.02.189
106
FU Z Q , MACDONALD B E , MONSON T C , et al. Influence of heat treatment on microstructure, mechanical behavior, and soft magnetic properties in an fcc-based Fe29Co28Ni29Cu7Ti7 high-entropy alloy[J]. Journal of Materials Research, 2018, 33 (15): 2214- 2222.
doi: 10.1557/jmr.2018.161
107
CHEN C , ZHANG H , FAN Y Z , et al. A novel ultrafine-grained high entropy alloy with excellent combination of mechanical and soft magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2020, 502, 166513.
doi: 10.1016/j.jmmm.2020.166513
108
PFEIFER F , RADELOFF C . Soft magnetic Ni-Fe and Co-Fe alloys-some physical and metallurgical aspects[J]. Journal of Magnetism and Magnetic Materials, 1980, 19 (1/3): 190- 207.
109
HERZER G . Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets[J]. IEEE Transactions on Magnetics, 1990, 26 (5): 1397- 1402.
doi: 10.1109/20.104389
110
SUZUKI K , HERZER G . Magnetic-field-induced anisotropies and exchange softening in Fe-rich nanocrystalline soft magnetic alloys[J]. Scripta Materialia, 2012, 67 (6): 548- 553.
doi: 10.1016/j.scriptamat.2012.03.006
111
SUZUKI K , HERZER G , CADOGAN J . The effect of coherent uniaxial anisotropies on the grain-size dependence of coercivity in nanocrystalline soft magnetic alloys[J]. Journal of Magnetism and Magnetic Materials, 1998, 177, 949- 950.
112
钟文定. 铁磁学[M]. 北京: 科学出版社, 1987.
112
ZHONG W D . Ferromagnetism[M]. Beijing: Science Press, 1987.