Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (3): 69-80    DOI: 10.11868/j.issn.1001-4381.2021.000299
  综述 本期目录 | 过刊浏览 | 高级检索 |
高性能软磁合金的研究进展
计植耀1,2, 马跃1,2, 王清1,2,*(), 董闯1,2
1 大连理工大学 三束材料改性教育部重点实验室, 辽宁 大连 116024
2 大连理工大学 材料科学与工程学院, 辽宁 大连 116024
Research progress in high-performance soft magnetic alloys
Zhiyao JI1,2, Yue MA1,2, Qing WANG1,2,*(), Chuang DONG1,2
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024, Liaoning, China
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(7082 KB)   HTML ( 4 )  
输出: BibTeX | EndNote (RIS)      
摘要 

软磁材料是一种极为重要且应用十分广泛的能源材料, 近年来, 随着磁性元件的日益高频化和小型化, 以及节能环保的号召, 开发和研究高性能软磁材料具有重要意义。本工作概述了软磁合金的发展历史, 重点归纳出各类软磁合金(包括传统软磁合金、非晶/纳米晶软磁合金、高熵软磁合金)的成分、微观组织、磁性能以及应用范围, 并总结出不同软磁合金的优、缺点; 指出典型合金的微观组织对合金软磁性能(尤其矫顽力)具有关键性的主导作用, 进而探讨了影响软磁合金矫顽力的因素及其微观机制, 发现控制晶粒尺寸(或纳米粒子尺寸)是获得低矫顽力的关键, 并描述了矫顽力的微观影响机制在高熵软磁合金中的发展; 最后, 展望了高熵软磁合金因多主元混合的成分特性带来的组织多样化, 更有利于实现对合金性能的调控, 并有望作为新一代高温软磁体材料。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
计植耀
马跃
王清
董闯
关键词 软磁合金高熵合金铁基合金非晶/纳米晶合金矫顽力微观组织    
Abstract

Soft magnetic materials have been widely applied in modern industries as energy materials. In recent years, with the increasingly high frequency and miniaturization of magnetic components, as well as the call of energy conservation and environmental protection, the development and research of high-performance soft magnetic material are of great important significance. The present work generalized the development history of soft magnetic alloys comprehensively, from the viewpoints of chemical compositions, microstructures, magnetic properties, application fields, and advantages and disadvantages of different soft magnetic alloys. The involved alloy systems include primarily traditional crystalline alloys, amorphous/nanocrystalline alloys, and high entropy alloys. It is found that the microstructure induced by alloy compositions plays a dominant role in soft magnetic property, especially the coercivity. Then the influence factors on the coercivity of alloys and the related micro-mechanisms were discussed, in which the grain size in traditional alloys or particle size in nano-crystalline alloys is crucial to achieve lower coercivity. Therefore, the development of the micro-mechanisms of coercivity in high entropy soft magnetic alloys was described. Finally, it was expected that high entropy soft magnetic alloys would be more beneficial to modulate alloy properties due to the diversification of microstructures induced by the mixing of multi-principal elements, which shows great potential to serve as a new generation of high temperature soft magnet materials.

Key wordssoft magnetic alloy    high entropy alloy    Fe-based alloy    amorphous/nano-crystalline alloy    coercivity    microstructure
收稿日期: 2021-04-06      出版日期: 2022-03-19
中图分类号:  TM271+2  
基金资助:国家自然科学基金项目(U1867201);国家自然科学基金项目(91860108);辽宁省自然科学基金(2019-KF-05-01);中央高校基本科研业务费专项资金(DUT19LAB01)
通讯作者: 王清     E-mail: wangq@dlut.edu.cn
作者简介: 王清(1977—),女,教授,博士,研究方向为合金设计方法和先进工程合金的研发,联系地址:辽宁省大连市凌工路2号大连理工大学材料馆(116024),E-mail:wangq@dlut.edu.cn
引用本文:   
计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
Zhiyao JI, Yue MA, Qing WANG, Chuang DONG. Research progress in high-performance soft magnetic alloys. Journal of Materials Engineering, 2022, 50(3): 69-80.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000299      或      http://jme.biam.ac.cn/CN/Y2022/V50/I3/69
Fig.1  传统合金(纯铁)(a)[27]和纳米晶合金(Finemet型合金)(b)[12]的组织示意图
Fig.2  CoFeMnNiX (X=Al(a), Sn(b))和Al1.5Co4Fe2Cr(c)高熵合金的TEM暗场图像(1)及其相应的选区电子衍射图(2)[16, 18]
Alloy series Typical alloy BS*/T HC/(A·m-1) TC/K ρ/(μΩ·cm) Ref
Iron Pure Fe 2.15 70 1042 10 [2]
Silicon steel 4Si-Fe 1.96 24 999 58.8 [94]
6.5Si-Fe 1.39 15.92 973 82 [95]
Fe-Si-Al alloys 9.62Si-5.38Al-Fe 1.75 80 [39]
Fe-Ni alloys Fe-78.5Ni 1.08 4 873 16 [35]
79 Ni-16Fe-5Mo 0.79 0.16 55 [36]
Fe-Co alloys Fe-49Co-2V 2.4 393 1253 25 [4]
Amorphous alloys Fe79B16Si5 1.58 8 678 125 [96]
Fe40Ni38Mo4B18 0.86 6.2 [97]
Co75B15Si7P3 0.8 1.8 654 [54]
Nanocrystalline alloys Fe73.5Si13.5B9Cu1Nb3 1.24 0.53 843 [9]
Fe84.3Si4B8P3Cu0.7 1.94 10 [98]
Fe81.3Cu1.7Si4B13 1.77 7.1 [61]
Fe71.5Si9.5Ge6B9Nb3Cu1 1.32 0.45 [99]
Fe91Zr7B2 1.7 7.2 44 [10]
Fe85.6-86Zr3.25Nb3.25-3.5B6.5-8Cu1 1.53-1.61 1.2-2.0 [100]
Fe44Co44Zr7B4Cu1 2.0 160 [11]
Fe42.5Co42.5Nb7B8 1.9 60 1173 [77]
Fe43Co43Hf7B6Cu1 1.5 50 [101]
High entropy alloys FeCoNi 1.66 189 24 [23]
AlCoCrFeNi 0.58 4100 [102]
FeCoNi(AlSi)0.1-0.2 1.15-1.25 1088-1400 883 44.4-69.5 [17]
FeCoNiMn0.25Al0.25 1.02 268 1073 100 [103]
CoFeMnNiAl 1.33 629 [16]
FeCoNi(AlCu)0.8 0.79 618.5[122] [104]
FeCoNi(CuAl)0.8Ga0-0.08Sn0-0.1 0.79-0.89 362-1020 634-685 [24, 105]
Fe29Co28Ni29Cu7Ti7 1.16 266.65 [106]
FeCoNi(MnSi)0.1-0.2 1.16-1.43 109.8-121.9 [25]
FeCoNiPdCu 1.03 115 962 33.3 [92]
FeCoNiCr0.2Si0.2 0.99 187.9 702 [26]
FeCoNiCu0.2Si0.2 1.36 200 887 [107]
Al1.5Co4Fe2Cr 1.3 127.3 1061 244 [18]
Table 1  各类典型软磁合金的软磁性能
Fig.3  典型软磁材料的BSHC[18]
Fig.4  软磁合金的矫顽力HC与晶粒尺寸Dg (或粒子尺寸Dp)的关系示意图[12, 22]
1 戴道生, 钱昆明. 铁磁学[M]. 2版 北京: 科学出版社, 2017.
1 DAI D S , QIAN K M . Ferromagnetism[M]. 2nd ed Beijing: Science Press, 2017.
2 科埃. 磁学和磁性材料[M]. 北京: 北京大学出版社, 2014.
2 COEY J M D . Magnetism and magnetic materials[M]. Beijing: Peking University Press, 2014.
3 ALI M , AHMAD F . A review of processing techniques for Fe-Ni soft magnetic materials[J]. Materials and Manufacturing Processes, 2019, 34 (14): 1580- 1604.
doi: 10.1080/10426914.2019.1662038
4 SUNDAR R S , DEEVI S C . Soft magnetic FeCo alloys: alloy development, processing, and properties[J]. International Materials Reviews, 2005, 50 (3): 157- 192.
doi: 10.1179/174328005X14339
5 QIAO J L , GUO F H , HU J W , et al. Development of thin-gauge low iron loss non-oriented silicon steel[J]. Metallurgical Research & Technology, 2021, 118 (1): 113.
6 刘君昌, 梅云辉, 陆国权. 电力电子中高频软磁材料的研究进展[J]. 材料工程, 2017, 45 (5): 127- 134.
6 LIU J C , MEI Y H , LU G Q . Research progress of high frequency soft magnetic materials in power electronics[J]. Journal of Materials Engineering, 2017, 45 (5): 127- 134.
7 程戎, 雷国莉, 王凌峰, 等. 高温高饱和磁通密度软磁铁氧体研究进展[J]. 中国陶瓷, 2018, 54 (12): 1- 6.
7 CHENG R , LEI G L , WANG L F , et al. Research progress on high temperature and high saturation flux density soft magnetic ferrites[J]. China Ceramics, 2018, 54 (12): 1- 6.
8 ALBEN R , BECKER J J , CHI M C . Random anisotropy in amorphous ferromagnets[J]. Journal of Applied Physics, 1978, 49 (3): 1653- 1658.
doi: 10.1063/1.324881
9 YOSHIZAWA Y , OGUMA S , YAMAUCHI K . New Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. Journal of Applied Physics, 1988, 64 (10): 6044- 6046.
doi: 10.1063/1.342149
10 SUZUKI K , KATAOKA N , INOUE A , et al. High saturation magnetization and soft magnetic properties of bcc Fe-Zr-B alloys with ultrafine grain structure[J]. Materials Transactions JIM, 1990, 31 (8): 743- 746.
doi: 10.2320/matertrans1989.31.743
11 WILLARD M A , LAUGHLIN D E , MCHENRY M E , et al. Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys[J]. Journal of Applied Physics, 1998, 84 (12): 6773- 6777.
doi: 10.1063/1.369007
12 HERZER G . Modern soft magnets: amorphous and nanocrystalline materials[J]. Acta Materialia, 2013, 61 (3): 718- 734.
doi: 10.1016/j.actamat.2012.10.040
13 LI Y H , JIA X J , ZHANG W , et al. Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing alpha-Fe nanoparticles-structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys[J]. Journal of Materials Science & Technology, 2021, 65, 171- 181.
14 LI Y H , ZHANG G Z , WU L C , et al. Effects of annealing temperature and heating rate on microstructure, magnetic, and mechanical properties of high-BS Fe81.7-xSi4B13NbxCu1.3 nanocrystalline alloys[J]. Journal of Materials Science, 2021, 56 (3): 2572- 2583.
doi: 10.1007/s10853-020-05341-8
15 YAO K F , SHI L X , CHEN S Q , et al. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys[J]. Acta Physica Sinica, 2018, 67 (1): 016101.
doi: 10.7498/aps.67.20171473
16 ZUO T T , GAO M C , OUYANG L Z , et al. Tailoring magnetic behavior of CoFeMnNiX (X= Al, Cr, Ga, and Sn) high entropy alloys by metal doping[J]. Acta Materialia, 2017, 130, 10- 18.
doi: 10.1016/j.actamat.2017.03.013
17 ZHANG Y , ZUO T T , CHENG Y Q , et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability[J]. Scientific Reports, 2013, 3, 1455.
doi: 10.1038/srep01455
18 MA Y , WANG Q , ZHOU X Y , et al. A novel soft-magnetic B2-based multiprincipal-element alloy with a uniform distribution of coherent body-centered-cubic nanoprecipitates[J]. Advanced Materials, 2021, 2006723.
19 ZHOU K X , SUN B R , LIU G Y , et al. FeCoNiAlSi high entropy alloys with exceptional fundamental and application-oriented magnetism[J]. Intermetallics, 2020, 122, 106801.
doi: 10.1016/j.intermet.2020.106801
20 ZHANG Y , ZHANG M , LI D Y , et al. Compositional design of soft magnetic high entropy alloys by minimizing magnetostriction coefficient in (Fe0.3Co0.5Ni0.2)100-x(Al1/3Si2/3)x system[J]. Metals, 2019, 9 (3): 382.
doi: 10.3390/met9030382
21 DENG Q , TANG Y J , TAN Y F , et al. Effect of grain boundary character distribution on soft magnetic property of face-centered cubic FeCoNiAl0.2 medium-entropy alloy[J]. Materials Characterization, 2020, 159, 110028.
doi: 10.1016/j.matchar.2019.110028
22 CHEN C , ZHANG H , FAN Y Z , et al. Improvement of corrosion resistance and magnetic properties of FeCoNiAl0.2Si0.2 high entropy alloy via rapid-solidification[J]. Intermetallics, 2020, 122, 106778.
doi: 10.1016/j.intermet.2020.106778
23 LI P P , WANG A D , LIU C T . Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl)x high entropy alloys[J]. Intermetallics, 2017, 87, 21- 26.
doi: 10.1016/j.intermet.2017.04.007
24 LI Z , WANG C X , YU L Y , et al. Magnetic properties and microstructure of FeCoNi(CuAl)0.8Snx (0≤x≤0.10) high-entropy alloys[J]. Entropy, 2018, 20 (11): 872.
doi: 10.3390/e20110872
25 LI Z , GU Y , PAN M X , et al. Tailoring AC magnetic properties of FeCoNi(MnSi)x (0≤x≤0.4) high-entropy alloys by the addition of Mn and Si elements[J]. Journal of Alloys and Compounds, 2019, 792, 215- 221.
doi: 10.1016/j.jallcom.2019.03.411
26 ZHANG H , YANG Y X , LIU L , et al. A novel FeCoNiCr0.2Si0.2 high entropy alloy with an excellent balance of mechanical and soft magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2019, 478, 116- 121.
doi: 10.1016/j.jmmm.2019.01.096
27 MURATA Y , MORINAGA M . Recrystallization behaviour of pure iron at Curie temperature[J]. Scripta Materialia, 2000, 43 (6): 509- 513.
doi: 10.1016/S1359-6462(00)00458-9
28 BARRET W F , BROWN W , HADFFELD R A . Researches on the electrical conductivity and magnetic properties of upwards of one hundred different alloys of iron[J]. Journal of the Institution of Electrical Engineers, 1902, 31 (156): 674- 722.
doi: 10.1049/jiee-1.1902.0032
29 MENG L , ZHANG N , ZHANG B , et al. Evolution of {0kl} 〈100〉 texture and microstructure in preparation of ultra-thin grain-oriented silicon steel[J]. Journal of Magnetism and Magnetic Materials, 2021, 523, 167590.
doi: 10.1016/j.jmmm.2020.167590
30 WANG Y P , AN L Z , SONG H Y , et al. Dependence of recrystallization behavior on initial Goss orientation in ultra-thin grain-oriented silicon steels[J]. Journal of Magnetism and Magnetic Materials, 2020, 499, 166290.
doi: 10.1016/j.jmmm.2019.166290
31 ZHANG Y X , XIA Y K , DUN H , et al. Evolution of the shear band in cold-rolling of strip-cast Fe-1.3%Si non-oriented silicon steel[J]. Materials, 2021, 14 (4): 775.
doi: 10.3390/ma14040775
32 OUYANG G Y , MACZIEWSKI C R , JENSEN B , et al. Effects of solidification cooling rates on microstructures and physical properties of Fe-6.5%Si alloys[J]. Acta Materialia, 2021, 205, 116575.
doi: 10.1016/j.actamat.2020.116575
33 LIANG Y F , WANG S , QI J K , et al. Microstructure and properties of cost-effective Fe-6.5 wt%Si ribbons fabricated by melt-spinning[J]. Scripta Materialia, 2019, 163, 107- 110.
doi: 10.1016/j.scriptamat.2019.01.002
34 OUYANG G Y , CHEN X , LIANG Y F , et al. Review of Fe-6.5 wt%Si high silicon steel-a promising soft magnetic material for sub-kHz application[J]. Journal of Magnetism and Magnetic Materials, 2019, 481, 234- 250.
doi: 10.1016/j.jmmm.2019.02.089
35 ARNOLD H D , ELMEN G W . Permalloy, a new magnetic material of very high permeability[J]. Bell System Technical Journal, 1923, 2 (3): 101- 111.
doi: 10.1002/j.1538-7305.1923.tb03595.x
36 BOOTHBY O L , BOZORTH R M . A new magnetic material of high permeability[J]. Journal of Applied Physics, 1947, 18 (2): 173- 176.
doi: 10.1063/1.1697599
37 CHIN G . Review of magnetic properties of Fe-Ni alloys[J]. IEEE Transactions on Magnetics, 1971, 7 (1): 102- 113.
doi: 10.1109/TMAG.1971.1067014
38 CHEN C W . Metallurgy and magnetic properties of an Fe-Co-V alloy[J]. Journal of Applied Physics, 1961, 32 (3): 348- 355.
doi: 10.1063/1.2000465
39 MASUMOTO H , YAMAMOTO T . On a new alloy "Sendust" and its magnetic and electric properties[J]. The Journal of the Japan Institute of Metals, 1937, 1 (3): 127- 135.
40 YAMAMOTO T , UTSUSHIKAWA Y . Effects of Ni content on magnetic properties of a new high permeability magnetic alloy 'Super Sendust' in the Fe-Si-Al-Ni system[J]. The Japan Institute of Metals and Materials, 1976, 40 (10): 975- 981.
doi: 10.2320/jinstmet1952.40.10_975
41 OTOMO S . Effects of Cr and Ti additions on wear resistance and magnetic properties of Fe-Al-Si alloy[J]. Nippon Kinzoku Gakkaishi, 1994, 58 (4): 455- 460.
42 KLEMENT W , WILLENS R H , DUWEZ P . Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187 (4740): 869- 870.
43 王立军, 张广强, 李山红, 等. 铁基非晶合金应用于电机铁芯的优势及前景[J]. 金属功能材料, 2010, 17 (5): 58- 62.
43 WANG L J , ZHANG G Q , LI S H , et al. Advantages and prospects of iron-based amorphous alloy applied to motor cores[J]. Metallic Functional Materials, 2010, 17 (5): 58- 62.
44 DUWEZ P , LIN S C . Amorphous ferromagnetic phase in iron-carbon-phosphorus alloys[J]. Journal of Applied Physics, 1967, 38 (10): 4096- 4097.
doi: 10.1063/1.1709084
45 GUO S F , SU C , CUI J X , et al. Effects of B addition on glass forming ability and thermal behavior of FePC-based bulk metallic glasses[J]. Journal of Iron and Steel Research International, 2017, 24 (4): 442- 447.
doi: 10.1016/S1006-706X(17)30067-5
46 INOUE A , GOOK J S . Fe-based ferromagnetic glassy alloys with wide supercooled liquid region[J]. Materials Transactions JIM, 1995, 36 (9): 1180- 1183.
doi: 10.2320/matertrans1989.36.1180
47 INOUE A , KONG F L , HAN Y , et al. Development and application of Fe-based soft magnetic bulk metallic glassy inductors[J]. Journal of Alloys and Compounds, 2018, 731, 1303- 1309.
doi: 10.1016/j.jallcom.2017.08.240
48 WAN C , YANG W M , LIU H S , et al. Ductile Fe-based bulk metallic glasses at room temperature[J]. Materials Science and Technology, 2018, 34 (6): 751- 756.
doi: 10.1080/02670836.2017.1412037
49 LI H X , LU Z C , WANG S L , et al. Fe-based bulk metallic glasses: glass formation, fabrication, properties and applications[J]. Progress in Materials Science, 2019, 103, 235.
50 刘天豪, 郭胜峰. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48 (11): 46- 57.
doi: 10.11868/j.issn.1001-4381.2020.000389
50 LIU T H , GUO S F . Research progress of glass-formation rule and mechanical properties of Fe-based bulk amorphous alloys[J]. Journal of Materials Engineering, 2020, 48 (11): 46- 57.
doi: 10.11868/j.issn.1001-4381.2020.000389
51 ZHU K R , JIANG W , WU J L , et al. Effect of Mo on properties of the industrial Fe-B-alloy-derived Fe-based bulk metallic glasses[J]. International Journal of Minerals Metallurgy and Materials, 2017, 24 (8): 926- 930.
doi: 10.1007/s12613-017-1479-1
52 HASEGAWA R , NARASIMHAN M C , DECRISTOFARO N . A high permeability Fe-Ni base glassy alloy containing Mo[J]. Journal of Applied Physics, 1978, 49 (3): 1712- 1714.
doi: 10.1063/1.324897
53 OHANDLEY R C , MENDELSOHN L I , NESBITT E A . New non-magnetostrictive metallic glass[J]. IEEE Transactions on Magnetics, 1976, 12 (6): 942- 944.
doi: 10.1109/TMAG.1976.1059134
54 HUANG D W , LI Y H , YANG Y P , et al. Soft magnetic Co-based Co-Fe-B-Si-P bulk metallic glasses with high saturation magnetic flux density of over 1.2 T[J]. Journal of Alloys and Compounds, 2020, 843, 154862.
doi: 10.1016/j.jallcom.2020.154862
55 MAN Q K , DONG Y Q , CHANG C T , et al. Co-based bulk metallic glasses with good soft-magnetic properties and high strength[J]. Materials Science Forum, 2017, 898, 703- 708.
doi: 10.4028/www.scientific.net/MSF.898.703
56 BAO F , LI Y H , ZHU Z W , et al. Enhancement of glass-forming ability and thermal stability of a soft magnetic Co75B25 metallic glass by micro-alloying Y and Nb[J]. Journal of Iron and Steel Research International, 2020, 28 (5): 597- 603.
57 ABROSIMOVA G , ARONIN A . On decomposition of amorphous phase in metallic glasses[J]. Reviews on Advanced Materials Science, 2017, 50 (1/2): 55- 61.
58 LAI L M , HE R G , DING K L , et al. Ternary Co-Mo-B bulk metallic glasses with ultrahigh strength and good ductility[J]. Journal of Non-Crystalline Solids, 2019, 524, 119657.
doi: 10.1016/j.jnoncrysol.2019.119657
59 WANG Q Q , ZHOU J , ZENG Q S , et al. Ductile Co-based bulk metallic glass with superhigh strength and excellent soft magne-tic properties induced by modulation of structural heterogeneity[J]. Materialia, 2020, 9, 100561.
doi: 10.1016/j.mtla.2019.100561
60 ZHANG G L , WANG Q Q , YUAN C C , et al. Effects of Cu additions on mechanical and soft-magnetic properties of CoFeBSiNb bulk metallic glasses[J]. Journal of Alloys and Compounds, 2018, 737, 815- 820.
doi: 10.1016/j.jallcom.2017.12.176
61 LI Y H , JIA X J , XU Y Q , et al. Soft magnetic Fe-Si-B-Cu nanocrystalline alloys with high Cu concentrations[J]. Journal of Alloys and Compounds, 2017, 722, 859- 863.
doi: 10.1016/j.jallcom.2017.06.128
62 KONG F , WANG A , FAN X , et al. High BS Fe84-xSi4B8P4Cux (x=0-1.5) nanocrystalline alloys with excellent magnetic softness[J]. Journal of Applied Physics, 2011, 109 (7): 07A303.
doi: 10.1063/1.3535290
63 黄梦琪, 吴开明, 向前, 等. 一种新型FeSiBPCu系纳米软磁合金的研究现状及未来发展趋势[J]. 钢铁研究学报, 2018, 30 (10): 763- 768.
63 HUANG M Q , WU K M , XIANG Q , et al. Research status and future development trend of a novel FeSiBPCu nano soft magnetic alloy[J]. Journal of Iron and Steel Research, 2018, 30 (10): 763- 768.
64 JIA X J , LI Y H , XIE G Q , et al. Role of Mo addition on structure and magnetic properties of the Fe85Si2B8P4Cu1 nanocrystalline alloy[J]. Journal of Non-Crystalline Solids, 2018, 481, 590- 593.
doi: 10.1016/j.jnoncrysol.2017.12.003
65 DASTANPOUR E , ENAYATI M H , MASOOD A , et al. Quantification of the anomalous crystallization and soft magnetic properties of Fe-Si-B-P-Cu (Nanomet) by isothermal calorimetry[J]. Journal of Alloys and Compounds, 2020, 830, 154705.
doi: 10.1016/j.jallcom.2020.154705
66 JIA X J , LI Y H , WU L C , et al. A study on the role of Ni content on structure and properties of Fe-Ni-Si-B-P-Cu nanocrystalline alloys[J]. Journal of Alloys and Compounds, 2020, 822, 152784.
doi: 10.1016/j.jallcom.2019.152784
67 LI W , XIE C X , YAO C L , et al. Amorphous formation and magnetic properties of Co-containing FeSiBPCu nanocrystalline alloys[J]. Journal of Non-Crystalline Solids, 2019, 505, 87- 91.
doi: 10.1016/j.jnoncrysol.2018.10.044
68 JIA X J , LI Y H , WU L C , et al. The role of Cu content on structure and magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys[J]. Journal of Materials Science, 2019, 54 (5): 4400- 4408.
doi: 10.1007/s10853-018-3131-5
69 WANG Z , YANG J , HAN Y M , et al. Magnetostriction and effective magnetic anisotropy of Co-contained Finemet nanocrystalline alloys[J]. Journal of Applied Physics, 2010, 107 (9): 09A308.
doi: 10.1063/1.3340514
70 WEN L X , WANG Z , WANG J , et al. High temperature magne-tic permeability of Si-rich Finemet-type nanocrystalline (Fe1-xCox)74.5Nb2Si17.5B5Cu1 alloys[J]. Journal of Magnetism and Magnetic Materials, 2015, 379, 265- 269.
doi: 10.1016/j.jmmm.2014.12.058
71 PETZOLD J . Applications of nanocrystalline softmagnetic materials for modern electronic devices[J]. Scripta Materialia, 2003, 48 (7): 895- 901.
doi: 10.1016/S1359-6462(02)00624-3
72 SUZUKI K , MAKINO A , INOUE A , et al. Soft magnetic properties of nanocrystalline bcc Fe-Zr-B and Fe-M-B-Cu (M=transition metal) alloys with high saturation magnetization (invited)[J]. Journal of Applied Physics, 1991, 70 (10): 6232- 6237.
doi: 10.1063/1.350006
73 MAKINO A , SUZUKI K , INOUE A , et al. Magnetic properties and microstructure of nanocrystalline bcc Fe-M-B (M=Zr, Hf, Nb) alloys[J]. Journal of Magnetism and Magnetic Materials, 1994, 133 (1/3): 329- 333.
74 MAKINO A , BITOH T , KOJIMA A , et al. Magnetic properties of zero-magnetostrictive nanocrystalline Fe-Zr-Nb-B soft magnetic alloys with high magnetic induction[J]. Journal of Magnetism and Magnetic Materials, 2000, 215/216, 288- 292.
doi: 10.1016/S0304-8853(00)00136-0
75 MAKINO A , HATANAI T , YOSHIDA S , et al. High permeabi-lity and low core losses of nanocrystalline Fe-Nb-Zr-B-Cu alloys[J]. Science Reports of the Research Institutes Tohoku University Series A, 1996, 42 (1): 121- 125.
76 WILLARD M A. Structural and magnetic characterization of HITPERM soft magnetic materials for high temperature applications[D]. Pittsburgh: Carnegie ivlellon University, 2000.
77 SHEN B L , KIMURA H , INOUE A . Structure and magnetic properties of Fe42.5Co42.5Nb7B8 nanocrystalline alloy[J]. Materials Transactions, 2002, 43 (3): 589- 592.
doi: 10.2320/matertrans.43.589
78 XUE L , YANG W M , LIU H S , et al. Effect of Co addition on the magnetic properties and microstructure of FeNbBCu nanocrystalline alloys[J]. Journal of Magnetism and Magnetic Materials, 2016, 419, 198- 201.
doi: 10.1016/j.jmmm.2016.06.020
79 GUPTA P , SVEC P , SINHA A K , et al. Correlation of B2 super-lattice ordering with soft magnetic and mechanical properties of nanocrystalline FeCoNbB HITPERM alloys[J]. Materials Research Express, 2019, 6 (2): 026537.
80 SKORVANEK I , MARCIN J , KRENICKY T , et al. Improved soft magnetic behaviour in field-annealed nanocrystalline Hitperm alloys[J]. Journal of Magnetism and Magnetic Materials, 2006, 304 (2): 203- 207.
doi: 10.1016/j.jmmm.2006.02.120
81 YEH J W , CHEN S K , LIN S J , et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6 (5): 299- 303.
doi: 10.1002/adem.200300567
82 GEORGE E P , RAABE D , RITCHIE R O . High-entropy alloys[J]. Nature Reviews Materials, 2019, 4 (8): 515- 534.
doi: 10.1038/s41578-019-0121-4
83 LI Z Z , ZHAO S T , RITCHIE R O , et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys[J]. Progress in Materials Science, 2019, 102, 296- 345.
doi: 10.1016/j.pmatsci.2018.12.003
84 OSES C , TOHER C , CURTAROLO S . High-entropy ceramics[J]. Nature Reviews Materials, 2020, 5 (4): 295- 309.
doi: 10.1038/s41578-019-0170-8
85 RAABE D , SUN B H , Da SILVA A K , et al. Current challenges and opportunities in microstructure-related properties of advanced high-strength steels[J]. Metallurgical and Materials Transactions A, 2020, 51 (11): 5517- 5586.
86 MIRACLE D B . High entropy alloys as a bold step forward in alloy development[J]. Nature Communications, 2019, 10 (1): 1805.
doi: 10.1038/s41467-019-09700-1
87 QIN G , CHEN R R , ZHENG H T , et al. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition[J]. Journal of Materials Science & Technology, 2019, 35 (4): 578- 583.
88 LUCAS MS , MAUGER L , MUNOZ J , et al. Magnetic and vibrational properties of high-entropy alloys[J]. Journal of Applied Physics, 2011, 109 (7): 07E307.
doi: 10.1063/1.3538936
89 GAO M C , MIRACLE D B , MAURICE D , et al. High-entropy functional materials[J]. Journal of Materials Research, 2018, 33 (19): 3138- 3155.
doi: 10.1557/jmr.2018.323
90 ZUO T T , LI R B , REN X J , et al. Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy[J]. Journal of Magnetism and Magnetic Materials, 2014, 371, 60- 68.
doi: 10.1016/j.jmmm.2014.07.023
91 KAO Y F , CHEN S K , CHEN T J , et al. Electrical, magnetic, and hall properties of AlxCoCrFeNi high-entropy alloys[J]. Journal of Alloys and Compounds, 2011, 509 (5): 1607- 1614.
doi: 10.1016/j.jallcom.2010.10.210
92 KOZELJ P , VRTNIK S , JELEN A , et al. Discovery of a FeCoNiPdCu high-entropy alloy with excellent magnetic softness[J]. Advanced Engineering Materials, 2019, 21 (5): 1801055.
doi: 10.1002/adem.201801055
93 MA Y , WANG Q , JIANG B B , et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions[J]. Acta Materialia, 2018, 147, 213- 225.
doi: 10.1016/j.actamat.2018.01.050
94 LU Q , ZHANG W Y , ZHANG B C , et al. Note on magnetic properties of grain oriented 4%Si-Fe[J]. Acta Metallurgica Sinica, 1984, 20 (2): 127- 130.
95 YE F , LIANG Y F , WANG Y L , et al. Fe-6.5wt.%Si high silicon steel sheets produced by cold rolling[J]. Materials Science Forum, 2010, 638/642, 1428- 1433.
doi: 10.4028/www.scientific.net/MSF.638-642.1428
96 SMITH C H . Magnetic shielding to multi-gigawatt magnetic switches ten years of amorphous magnetic applications[J]. IEEE Transactions on Magnetics, 1982, 18 (6): 1376.
doi: 10.1109/TMAG.1982.1062022
97 LI J G , SU Z B , WEI F L , et al. Magnetic properties of nanostructured Fe40Ni38Mo4B18[J]. Chinese Physics Letters, 1999, 16 (3): 211- 213.
doi: 10.1088/0256-307X/16/3/020
98 MAKINO A , MEN H , KUBOTA T , et al. New Fe-metalloids based nanocrystalline alloys with high Bs of 1.9 T and excellent magnetic softness[J]. Journal of Applied Physics, 2009, 105 (7): 07A308.
doi: 10.1063/1.3058624
99 MOYA J A . Nanocrystals and amorphous matrix phase studies of Finemet-like alloys containing Ge[J]. Journal of Magnetism and Magnetic Materials, 2010, 322 (13): 1784- 1792.
doi: 10.1016/j.jmmm.2009.12.030
100 MAKINO A , HATANAI T , INOUE A , et al. Nanocrystalline soft magnetic Fe-M-B (M= Zr, Hf, Nb) alloys and their applications[J]. Materials Science and Engineering: A, 1997, 226, 594- 602.
101 LIANG X B , KULIK T , FERENC J , et al. Thermal and magnetic properties of Hf-containing HITPERM alloys[J]. Journal of Magnetism and Magnetic Materials, 2007, 308 (2): 227- 232.
doi: 10.1016/j.jmmm.2006.05.025
102 MA S G , ZHANG Y . Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy[J]. Materials Science and Engineering: A, 2012, 532, 480- 486.
doi: 10.1016/j.msea.2011.10.110
103 LI P P , WANG A D , LIU C T . A ductile high entropy alloy with attractive magnetic properties[J]. Journal of Alloys and Compounds, 2017, 694, 55- 60.
doi: 10.1016/j.jallcom.2016.09.186
104 ZHANG Q , XU H , TAN X H , et al. The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl)x (x=0-1.2) high-entropy alloys[J]. Journal of Alloys and Compounds, 2017, 693, 1061- 1067.
doi: 10.1016/j.jallcom.2016.09.271
105 LI Z , XU H , GU Y , et al. Correlation between the magnetic properties and phase constitution of FeCoNi(CuAl)0.8Gax (0 ≤ x≤0.08) high-entropy alloys[J]. Journal of Alloys and Compounds, 2018, 746, 285- 291.
doi: 10.1016/j.jallcom.2018.02.189
106 FU Z Q , MACDONALD B E , MONSON T C , et al. Influence of heat treatment on microstructure, mechanical behavior, and soft magnetic properties in an fcc-based Fe29Co28Ni29Cu7Ti7 high-entropy alloy[J]. Journal of Materials Research, 2018, 33 (15): 2214- 2222.
doi: 10.1557/jmr.2018.161
107 CHEN C , ZHANG H , FAN Y Z , et al. A novel ultrafine-grained high entropy alloy with excellent combination of mechanical and soft magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2020, 502, 166513.
doi: 10.1016/j.jmmm.2020.166513
108 PFEIFER F , RADELOFF C . Soft magnetic Ni-Fe and Co-Fe alloys-some physical and metallurgical aspects[J]. Journal of Magnetism and Magnetic Materials, 1980, 19 (1/3): 190- 207.
109 HERZER G . Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets[J]. IEEE Transactions on Magnetics, 1990, 26 (5): 1397- 1402.
doi: 10.1109/20.104389
110 SUZUKI K , HERZER G . Magnetic-field-induced anisotropies and exchange softening in Fe-rich nanocrystalline soft magnetic alloys[J]. Scripta Materialia, 2012, 67 (6): 548- 553.
doi: 10.1016/j.scriptamat.2012.03.006
111 SUZUKI K , HERZER G , CADOGAN J . The effect of coherent uniaxial anisotropies on the grain-size dependence of coercivity in nanocrystalline soft magnetic alloys[J]. Journal of Magnetism and Magnetic Materials, 1998, 177, 949- 950.
112 钟文定. 铁磁学[M]. 北京: 科学出版社, 1987.
112 ZHONG W D . Ferromagnetism[M]. Beijing: Science Press, 1987.
[1] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[2] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[3] 于源, 乔竹辉, 任海波, 刘维民. 高熵合金摩擦磨损性能的研究进展[J]. 材料工程, 2022, 50(3): 1-17.
[4] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[5] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[6] 张昊, 吴昊, 唐啸天, 罗涛, 邓人钦. 微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响[J]. 材料工程, 2022, 50(3): 50-59.
[7] 胡广, 赵英杰, 马胜国, 张团卫, 赵聃, 王志华. 考虑位错密度和损伤的NiCoCrFe高熵合金晶体塑性有限元分析[J]. 材料工程, 2022, 50(3): 60-68.
[8] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[9] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[10] 李红, 韩祎, 曹健, MARIUSZ Bober, JACEK Senkara. 高熵合金在钎焊和表面工程领域的应用研究进展[J]. 材料工程, 2021, 49(8): 1-10.
[11] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[12] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[13] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[14] 武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
[15] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn