Please wait a minute...
 
2222材料工程  2022, Vol. 50 Issue (6): 138-148    DOI: 10.11868/j.issn.1001-4381.2021.000315
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热处理温度对刚玉基耐火材料组织和微粒脱落的影响
张轶波, 郑亮, 许文勇, 李周, 张国庆()
中国航发北京航空材料研究院 先进高温结构材料重点实验室,北京 100095
Effect of heat treatment temperature on microstructure and particle shedding of corundum-based refractory materials
Yibo ZHANG, Liang ZHENG, Wenyong XU, Zhou LI, Guoqing ZHANG()
Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(26735 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为研究温度对刚玉基耐火材料组织和微粒脱落的影响,对粉末冶金高温合金粉末制备用刚玉基(Al2O3)耐火材料进行950~1350 ℃不同温度保温60 min处理。采用XRD分析热处理前后耐火材料的结构,采用扫描电镜对各样品进行微观形貌观察和微区成分测定,并用黏附实验评价不同温度处理后耐火材料颗粒脱落性的改善情况,探索加热保温处理对减少颗粒脱落的机理。采用热冲击测试评价不同温度处理后耐火材料耐热冲击性,并测试耐火材料的显气孔率与体积密度。结果表明:随着加热温度升高,耐火材料中的铝酸钙黏结剂成分将逐步从CaAl2O4(CA)转化为CaAl4O7(CA2),一方面耐火材料中细小的陶瓷颗粒逐步烧结在一起,直至形成相互连接的稳定网状结构;另一方面逐步在大颗粒骨料上润湿铺展并相互连接,最后形成对大颗粒的包覆,同时耐火材料微粒黏附力将随着加热温度的升高逐渐增强。采用预热处理对于耐火材料的显气孔率、体积密度以及整体的耐热冲击性影响不大,但是随着温度升高,对于耐火材料表面在热冲击测试中的局部脱落程度和质量损失率有较明显改善。在保温60 min的条件下,加热温度在1150~1350 ℃时微粒脱落明显减少,其中1250~1350 ℃为较优预热温度段。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张轶波
郑亮
许文勇
李周
张国庆
关键词 粉末冶金高温合金耐火材料热处理烧结    
Abstract

Corundum-based (Al2O3) refractory materials prepared by powder metallurgy superalloy powder were heat treated at 950-1350 ℃ for 60 min in order to study the effect of temperature on the microstructure and particle shedding of corundum-based refractory materials. The phase structure of the refractory materials before and after heat treatment was analyzed by XRD. Scanning electron microscopy (SEM) with energy dispersive spectrum (EDS) was used to characterize the microstructure and phase composition of the refractory samples. In addition, the adhesion experiment was used to evaluate the particle shedding of the refractory materials after heat treatment at different temperatures, and explore the mechanism of pre-heating treatment reducing the possibility of particle shedding. Thermal shock test was used to evaluate the thermal shock resistance of refractory materials after heat treatment at different temperatures. The apparent porosity and bulk density were measured. The results show that with the increase of preheating temperature, the composition of calcium aluminate cement binder in refractories is gradually changed from CaAl2O4 (CA) to CaAl4O7 (CA2), and the fine ceramic particles in refractories are sintered together until the interconnected network structure is formed. With the increase of preheating temperature, the fine refractory particles in the refractory are gradually wet and spread on the large particles as aggregated and connected to form a network structure, and finally the large particles are coated. The particle adhesion of refractory gradually increases with the increase of heating temperature. The heat treatment has minor effect on the apparent porosity, bulk density and heat shock resistance of the refractory materials. However, with the increase of heating temperature, the local peeling degree of the refractory surface and mass loss rate in the thermal shock test are significantly improved. The particle shedding is obviously reduced whereas preheating for 60 min at 1150-1350 ℃, and the relative suitable preheating temperature is in the range of 1250-1350 ℃.

Key wordspowder metallurgy superalloy    refractory material    heat treatment    sintering
收稿日期: 2021-04-07      出版日期: 2022-06-20
中图分类号:  TQ175.71  
基金资助:国家重点研发计划(2019YFA0705300);国家自然科学基金(52071310);国家自然科学基金(91860131);国家科技重大专项(Y2019-Ⅶ-0011-0151)
通讯作者: 张国庆     E-mail: g.zhang@126.com
作者简介: 张国庆(1962—),男,研究员,博士,研究方向为高温合金、金属间化合物、特殊钢、粉体材料等高性能金属结构材料及其先进制备加工技术,联系地址:北京市81信箱5分箱(100095),E-mail: g.zhang@126.com
引用本文:   
张轶波, 郑亮, 许文勇, 李周, 张国庆. 热处理温度对刚玉基耐火材料组织和微粒脱落的影响[J]. 材料工程, 2022, 50(6): 138-148.
Yibo ZHANG, Liang ZHENG, Wenyong XU, Zhou LI, Guoqing ZHANG. Effect of heat treatment temperature on microstructure and particle shedding of corundum-based refractory materials. Journal of Materials Engineering, 2022, 50(6): 138-148.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000315      或      http://jme.biam.ac.cn/CN/Y2022/V50/I6/138
Sample number Heating temperature/℃ Holding time/min
0# Original state 60
1# 950 60
2# 1050 60
3# 1150 60
4# 1250 60
5# 1350 60
Table 1  耐火材料加热温度及编号
Fig.1  耐火材料预热处理加热曲线
Fig.2  经过不同加热温度保温60 min耐火材料的XRD结果
Fig.3  CaO-Al2O3二元系相图[22]
Fig.4  原始态耐火材料截面的显微组织及EDS分析结果
(a)二次电子像;(b)背散射电子像;(c)区域1 EDS分析;(d)区域2 EDS分析
Fig.5  原始态耐火材料截面高倍微观组织及能谱分析结果
(a)微观组织;(b)区域3 EDS分析;(c)区域4 EDS分析
Fig.6  不同保温温度下的耐火材料细小颗粒SEM图像
(a)原始态;(b)950 ℃; (c)1050 ℃; (d)1150 ℃; (e)1250 ℃; (f)1350 ℃
Fig.7  耐火材料细小粒子烧结过程
Fig.8  不同保温温度下的耐火材料大块颗粒SEM图像
(a)原始态;(b)950 ℃; (c)1050 ℃; (d)1150 ℃; (e)1250 ℃; (f)1350 ℃
Fig.9  耐火材料粒子烧结固定大块耐火材料颗粒过程
Fig.10  经不同温度加热处理后耐火材料导电胶黏附结果
(a)原始态;(b)950 ℃; (c)1050 ℃; (d)1150 ℃; (e)1250 ℃; (f)1350 ℃
Fig.11  经加热处理后耐火材料导电胶黏附颗粒的面积占比
Sample
number
Heating
temperature/℃
Apparent
porosity/%
Bulk
density/(g·cm-3)
0# Original state 22.21 2.84
1# 950 26.94 2.83
2# 1050 25.80 2.79
3# 1150 25.32 2.76
4# 1250 25.92 2.73
5# 1350 25.35 2.79
Table 2  经热处理后各耐火材料样品显气孔率与体积密度
Fig.12  经不同温度热处理再进行耐热冲击测试后耐火材料表面形貌
(a)原始态;(b)950 ℃; (c)1050 ℃; (d)1150 ℃; (e)1250 ℃; (f)1350 ℃
Fig.13  经不同温度热处理再进行耐热冲击测试后耐火材料质量损失率
1 张国庆, 张义文, 郑亮, 等. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55 (9): 1133- 1144.
1 ZHANG G Q , ZHANG Y W , ZHENG L , et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application[J]. Acta Metallurgica Sinica, 2019, 55 (9): 1133- 1144.
2 ZHAO Y S , ZHANG J , SONG F Y , et al. Effect of trace boron on microstructural evolution and high temperature creep perfor-mance in Re-containing single crystal superalloys[J]. Progress in Natural Science, 2020, 30 (3): 97- 107.
3 曲选辉, 张国庆, 章林. 粉末冶金技术在航空发动机中的应用[J]. 航空材料学报, 2014, 34 (1): 1- 10.
3 QU X H , ZHANG G Q , ZHANG L . Applications of powder me-tallurgy technologies in aero-engines[J]. Journal of Aeronautical Materials, 2014, 34 (1): 1- 10.
4 许文勇, 李周, 刘玉峰, 等. 温度对镍基高温合金粉末氧化行为的影响[J]. 粉末冶金技术, 2020, 38 (3): 192- 196.
4 XU W Y , LI Z , LIU Y F , et al. Influence of temperature on the oxidation behaviors of the nickel-based superalloy powders[J]. Powder Metallurgy Technology, 2020, 38 (3): 192- 196.
5 邹金文, 汪武祥. 粉末高温合金研究进展与应用[J]. 航空材料学报, 2006, 26 (3): 244- 250.
5 ZOU J W , WANG W X . Development and application of P/M superalloy[J]. Journal of Aeronautical Materials, 2006, 26 (3): 244- 250.
6 SHENOY M M , KUMAR R S , MCDOWELL D L . Modeling effects of nonmetallic inclusions on LCF in DS nickel-base superalloys[J]. International Journal of Fatigue, 2005, 27 (2): 113- 127.
doi: 10.1016/j.ijfatigue.2004.06.008
7 刘新灵, 胡春燕, 王天宇. 夹杂物尺寸对粉末高温合金低周疲劳寿命影响的机制[J]. 失效分析与预防, 2018, 13 (2): 89- 94.
7 LIU X L , HU C Y , WANG T Y . Influence mechanism of inclusion size on low cycle fatigue of powder metallurgy superalloy[J]. Failure Analysis and Prevention, 2018, 13 (2): 89- 94.
8 杨金龙, 朱晓闽, 熊江英, 等. 夹杂物尺寸及分布对FGH97高温合金低周疲劳性能的影响[J]. 稀有金属材料与工程, 2020, 49 (5): 1614- 1622.
8 YANG J L , ZHU X M , XIONG J Y , et al. Effect of inclusion size and distribution on low cycle fatigue properties of an FGH97 superalloy[J]. Rare Metal Materials and Engineering, 2020, 49 (5): 1614- 1622.
9 冯业飞, 周晓明, 邹金文, 等. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55 (11): 81- 91.
9 FENG Y F , ZHOU X M , ZOU J W , et al. Interface reaction mechanism between SiO2 and matrix and its effect on the deformation behavior of inclusions in powder metallurgy superalloy[J]. Acta Metallurgica Sinica, 2019, 55 (11): 81- 91.
10 张丽娜, 张麦仓, 李晓, 等. 粉末高温合金中非金属夹杂物问题的研究进展[J]. 兵器材料科学与工程, 2001, 24 (3): 64- 68.
10 ZHANG L N , ZHANG M C , LI X , et al. Progress in study of non-metallic inclusion in powder metallurgy(P/M) superalloys[J]. Ordnance Material Science and Engineering, 2001, 24 (3): 64- 68.
11 刘新灵, 陶春虎, 王天宇. 缺陷类型对FGH95粉末高温合金界面开裂行为影响的模拟[J]. 材料热处理学报, 2019, 40 (4): 136- 142.
11 LIU X L , TAO C H , WANG T Y . Simulation of influence of defect types on interface cracking behavior of FGH95 P/M superalloy[J]. Transactions of Materials and Heat Treatment, 2019, 40 (4): 136- 142.
12 张莹, 张义文, 吕日红, 等. PREP工艺制造的镍基高温合金粉末中夹杂物[J]. 中国有色金属学报, 2017, 27 (10): 2037- 2045.
12 ZHANG Y , ZHANG Y W , LV R H , et al. Inclusions in Ni-base superalloy powder by PREP[J]. The Chinese Journal of Nonferrous Metals, 2017, 27 (10): 2037- 2045.
13 孔豪豪, 杨树峰, 曲敬龙, 等. GH4169铸锭中夹杂物的类型及分布规律[J]. 航空学报, 2020, 41 (4): 304- 311.
13 KONG H H , YANG S F , QU J L , et al. Type and distribution of inclusion in GH4169 nickel based superalloy[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (4): 304- 311.
14 唐中杰, 郭铁明, 寇生中, 等. 镍基高温合金K4169中夹杂物的特征及形成机理[J]. 中国有色金属学报, 2015, 25 (9): 2403- 2413.
14 TANG Z J , GUO T M , KOU S Z , et al. Feature and formation mechanism of inclusions in K4169 Ni-based superalloy[J]. The Chinese Journal of Nonferrous Metals, 2015, 25 (9): 2403- 2413.
15 金文中, 张伟, 李廷举, 等. K417高温合金母合金锭真空电磁净化技术研究[J]. 真空科学与技术学报, 2011, 31 (5): 589- 593.
15 JIN W Z , ZHANG W , LI T J , et al. Electromagnetic purification of master alloy ingot of K417 superalloy in vacuum[J]. Chinese Journal of Vacuum Science and Technology, 2011, 31 (5): 589- 593.
16 GAO X Y , ZHANG L , QU X H , et al. Effect of interaction of refractories with Ni-based superalloy on inclusions during va-cuum induction melting[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27 (11): 1151- 1159.
17 郑亮, 肖程波, 张国庆, 等. 高Cr铸造镍基高温合金K4648的母合金净度研究[J]. 材料工程, 2012, (3): 1- 7.
17 ZHENG L , XIAO C B , ZHANG G Q , et al. Investigation of the master alloy cleanliness of high Cr content Ni-base superalloy K4648[J]. Journal of Materials Engineering, 2012, (3): 1- 7.
18 曲敬龙, 张雪良, 杨树峰, 等. 粉末高温合金中夹杂物问题的研究进展[J]. 粉末冶金工业, 2020, 30 (5): 1- 11.
18 QU J L , ZHANG X L , YANG S F , et al. Research on inclusions in powder metallurgy superalloy-a review[J]. Powder Metallurgy Industry, 2020, 30 (5): 1- 11.
19 李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术[M]. 北京: 国防工业出版社, 2012.
19 LI J R , XIONG J C , TANG D Z . Advanced high temperature structural materials and technology[M]. Beijing: National Defense Industry Press, 2012.
20 张国庆, 刘娜, 李周. 高性能金属材料雾化与成形技术研究进展[J]. 航空材料学报, 2020, 40 (3): 95- 109.
20 ZHANG G Q , LIU N , LI Z . Research progress in high atomization and forming technology of high performance metal materials[J]. Journal of Aeronautical Materials, 2020, 40 (3): 95- 109.
21 CHMIELA B , ROSKOSZ S . Non-metallic inclusions in castings made of nickel-base superalloys[J]. Solid State Phenomena, 2014, 212 (1): 211- 214.
22 陈肇友. 相图与耐火材料[M]. 北京: 冶金工业出版社, 2014.
22 CHEN Z Y . Phase diagram and refractory[M]. Beijing: Metallurgical Industry Press, 2014.
23 李楠, 顾华志, 赵惠忠. 耐火材料学[M]. 北京: 冶金工业出版社, 2010.
23 LI N , GU H Z , ZHAO H Z . Refractories[M]. Beijing: Metallurgical Industry Press, 2010.
[1] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[2] 吕娜, 孙振, 胡雅琪, 李炳勤, 景圣皓, 张宗良, 蒋良兴, 贾明, 刘芳洋. 硫化物固态电解质Li6PS5Cl的球磨-固相烧结制备与性能[J]. 材料工程, 2022, 50(2): 103-110.
[3] 阮家苗, 李红, 姚彧敏, 杨敏, 任慕苏, 孙晋良. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021, 49(9): 128-134.
[4] 卢国锋, 乔生儒. 具有莫来石界面的C/Si-C-N复合材料热物理性能[J]. 材料工程, 2021, 49(9): 135-141.
[5] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[6] 林洪玉, 李晓鸿, 陈璐, 杨波, 姚森, 曾小州, 李安林, 黎阳. 硅溶胶添加对氧化铝多孔陶瓷烧结性能的影响[J]. 材料工程, 2021, 49(5): 151-156.
[7] 蒋浩然, 林硕, 张康飞, 王海燕, 王佳齐, 何秀兰. ZrO2/Al2O3多孔陶瓷的制备与力学性能[J]. 材料工程, 2021, 49(5): 157-162.
[8] 刘艳芬, 张学习, 沈红先, 孙剑飞, 温亚芹, 王欢, 任晓辉, 阴爽. Ni50.1Mn24.1Ga20.3Fe5.5形状记忆合金多晶纤维的双程形状记忆效应[J]. 材料工程, 2021, 49(3): 41-47.
[9] 郭世柏, 易正翼, 段晓云, 王南川, 廖景冰. 低温燃烧法制备(W,Mo)C/Al2O3/La2O3复合粉末及性能[J]. 材料工程, 2021, 49(3): 133-140.
[10] 孙大翔, 董宇, 叶凌英, 唐建国. 形变热处理工艺对2519A铝合金动态变形行为的影响[J]. 材料工程, 2021, 49(2): 79-87.
[11] 薛彦庆, 郝启堂, 魏典, 李博. 原位自生TiB2/Al-4.5Cu复合材料微观组织和力学性能[J]. 材料工程, 2021, 49(2): 97-104.
[12] 杨博, 李广荣, 徐彤, 杨冠军. 大气等离子喷涂环境障涂层的预热处理致密化方法[J]. 材料工程, 2021, 49(11): 116-124.
[13] 于淞百, 闵凡路, 姚占虎, 张建峰. 烧结保温时间对超粗晶WC-10Co硬质合金微观结构及性能的影响[J]. 材料工程, 2021, 49(10): 89-95.
[14] 芦刚, 查军辉, 严青松, 宋方睿, 于航. PA66纤维含量对多孔铝基陶瓷型芯气孔率的影响[J]. 材料工程, 2020, 48(7): 170-175.
[15] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn